Global analysis of DVES experiments

Krešimir Kumerički

University of Zagreb

CNF mini-workshop: Experiment and Theory Interactions: Current Status February 10, 2021

Outline

1 Introduction — DVCS and GPDs

Ø Method

8 Results

Method

Results

DVCS cross section

$$d\sigma \propto |\mathcal{T}|^2 = |\mathcal{T}_{\rm BH}|^2 + |\mathcal{T}_{\rm DVCS}|^2 + \mathcal{I} \; .$$

• where e. g. interference term is

$$\mathcal{I} \quad \propto \quad \frac{-e_{\ell}}{\mathcal{P}_{1}(\phi)\mathcal{P}_{2}(\phi)} \left\{ c_{0}^{\mathcal{I}} + \sum_{n=1}^{3} \left[c_{n}^{\mathcal{I}} \cos(n\phi) + s_{n}^{\mathcal{I}} \sin(n\phi) \right] \right\},$$

• where *e. g.* $c_1^{\mathcal{I}}$ harmonic for unpolarized target is

$$c_{1,\mathrm{unpol.}}^{\mathcal{I}} \propto \left[F_1 \,\mathfrak{Re}\, \mathcal{H} - rac{t}{4M_p^2}F_2 \,\mathfrak{Re}\, \mathcal{E} + rac{x_\mathrm{B}}{2-x_\mathrm{B}}(F_1+F_2) \,\mathfrak{Re}\, \widetilde{\mathcal{H}}
ight]$$

• and at leading order everything depends on four complex

Method 00000000 Results

Factorization of DVCS \longrightarrow GPDs

• CFFs are convolution:

$${}^{a}\mathcal{H}(\xi, t, Q^{2}) = \int \mathrm{d}x \ C^{a}(x, \xi, \frac{Q^{2}}{Q_{0}^{2}}) \ H^{a}(x, \xi, t, Q_{0}^{2})$$

$${}^{a=q,G}$$

• $H^{a}(x, \eta, t, Q_{0}^{2})$ — Generalized parton distribution (GPD)

Introduction	Method	Results
00	● 0 000000	000000000000000

The Method

Two models

"Physical" CFF model
 Neural network parametrization of CFFs

In	tı	٢O	d	u	С	t	i	0	n	
0	0									

Modelling sea quark and gluon GPDs

- Instead of considering momentum fraction dependence H(x,...)
- ... it is convenient to make a transform into complementary space of conformal moments *j*:

$$H_{j}^{q}(\eta, t) \equiv \frac{\Gamma(3/2)\Gamma(j+1)}{2^{j+1}\Gamma(j+3/2)} \int_{-1}^{1} \mathrm{d}x \ \eta^{j} \ C_{j}^{3/2}(x/\eta) \ H^{q}(x, \eta, t)$$

- They are analogous to Mellin moments in DIS: $x^j \rightarrow C_i^{3/2}(x)$
- $C_i^{3/2}(x)$ Gegenbauer polynomials

Intro	du	cti	on
00			

Modelling sea quark and gluon GPDs

- Instead of considering momentum fraction dependence H(x, ...)
- ... it is convenient to make a transform into complementary space of conformal moments *j*:

$$H^{q}_{j}(\eta, t) \equiv \frac{\Gamma(3/2)\Gamma(j+1)}{2^{j+1}\Gamma(j+3/2)} \int_{-1}^{1} \mathrm{d}x \ \eta^{j} \ C_{j}^{3/2}(x/\eta) \ H^{q}(x, \eta, t)$$

- They are analogous to Mellin moments in DIS: $x^j o C_j^{3/2}(x)$
- $C_j^{3/2}(x)$ Gegenbauer polynomials
- At LO easy multiplicative evolution
- Possible direct connection to lattice QCD results

Method

Results

SO(3) partial wave expansion

 To model η-dependence of GPD's H_j(η, t) consider crossed t-channel process γ^{*}γ → pp̄ (¹/_η ↔ cos θ) and perform SO(3) partial wave expansion:

$$H_{j}(\eta, t) = \sum_{J=J_{\min}}^{j+1} h_{J,j} \frac{1}{J-\alpha(t)} \frac{1}{\left(1-\frac{t}{M^{2}}\right)^{p}} \eta^{j+1-J} d_{0,\nu}^{J}(\frac{1}{\eta})$$

- $d_{0,\nu}^J$ Wigner SO(3) functions (Legendre, Gegenbauer,...) $\nu = 0, \pm 1$ — depending on hadron helicities
- Similar to "dual" parametrization [Polyakov, Shuvaev '02]

Int	ro	d	u	С	ti	0	n
00							

Modelling valence quark GPDs

- Hybrid models at LO
- Sea quarks and gluons modelled like just described (conformal moments + SO(3) partial wave expansion + Q² evolution).
- Valence quarks model (ignoring Q^2 evolution):

$$\Im \mathfrak{m} \, \mathcal{H}(\xi, t) = \pi \left[\frac{4}{9} H^{u_{\text{val}}}(\xi, \xi, t) + \frac{1}{9} H^{d_{\text{val}}}(\xi, \xi, t) + \frac{2}{9} H^{\text{sea}}(\xi, \xi, t) \right]$$
$$H(x, x, t) = n \, r \, 2^{\alpha} \left(\frac{2x}{1+x} \right)^{-\alpha(t)} \left(\frac{1-x}{1+x} \right)^{b} \frac{1}{\left(1 - \frac{1-x}{1+x} \frac{t}{M^{2}} \right)^{p}}.$$

• Fixed: *n* (from PDFs), $\alpha(t)$ (eff. Regge), *p* (counting rules)

$$lpha^{
m val}(t) = 0.43 + 0.85 t/{
m GeV}^2 \quad (
ho, \, \omega)$$

Results
000000000

• $\mathfrak{Re}\,\mathcal{H}$ determined by dispersion relations

$$\mathfrak{Re} \, \mathcal{H}(\xi, t) = \frac{1}{\pi} \mathrm{PV} \int_0^1 d\xi' \left(\frac{1}{\xi - \xi'} - \frac{1}{\xi + \xi'} \right) \mathfrak{Im} \, \mathcal{H}(\xi', t) - \frac{\mathcal{C}}{\left(1 - \frac{t}{\mathcal{M}_{\mathcal{C}}^2} \right)^2}$$

Method

• Typical set of free parameters:

M_0^{sea} , $s_{\text{sea}}^{(2,4)}$, $s_G^{(2,4)}$	sea quarks and gluons H
r^{val} , M^{val} , b^{val}	valence <i>H</i>
$ ilde{r}^{ m val}$, $ ilde{M}^{ m val}$, $ ilde{b}^{ m val}$	valence \widetilde{H}
С, М _С	subtraction constant (H, E)
r_{π} , M_{π}	"pion pole" \widetilde{E}

• [K.K., Müller '09] ("KM model")

Krešimir Kumerički

Introduction

Introductio	n
00	

Method ○○○○○○●○ Results

Unconstrained neural networks

 Essentially a least-squares fit of a complicated many-parameter function. f(x) = tanh(∑ w_i tanh(∑ w_j ···)) ⇒ no theory bias

Networks constrained by dispersion relations

- Only imaginary part of CFFs and one subtraction constant $\Delta(t)$ are parametrized by neural nets
- Real parts are then fixed by dispersion relations

Introduction	Method	Results
00	0000000	•000000000000

Results

Fitting both models to JLab fixed target data

- [Čuić, K.K., Schäfer '20]
- First, using only proton data, and not attempting flavor separation
- NN = unconstrained neural nets, NNDR = neural nets + dispersion relations
- Values for $\chi^2/n_{
 m pts}$ are reasonable:

Observable	n _{pts}	KM20	NN20	NNDR20
# CFFs $+ \Delta s$		3 + 1	6	4 + 1
Total (harmonics)	277	1.3	1.6	1.7
CLAS [20] ALU	162	0.9	1.0	1.1
CLAS [20] A _{UL}	160	1.5	1.7	1.8
CLAS [20] A _{LL}	166	1.3	3.9	0.8
CLAS [21] $d\sigma$	1014	1.1	1.0	1.2
CLAS [21] $\Delta \sigma$	1012	0.9	0.9	1.0
Hall A [22] $d\sigma$	240	1.2	1.9	1.7
Hall A [22] $\Delta \sigma$	358	0.7	0.8	0.8
Hall A [23] $d\sigma$	450	1.5	1.6	1.7
Hall A [23] $\Delta \sigma$	360	1.6	2.2	2.2
Hall A [8] $d\sigma_n$	96			
Total (ϕ -space)	4018	1.1	1.3	1.3

Method 00000000 Results

Extraction of 6 (out of 8) CFFs

• Witness the power of dispersion relations:

Method

Results

Hall A neutron DVCS measurement

• [Benali et al. '20], DVCS off a deuterium target:

Method

Results

Hall A neutron DVCS measurement

• [Benali et al. '20], DVCS off a deuterium target:

 Idea: combine proton and neutron DVCS data using isospin symmetry and get separate results for up and down quark contributions to CFFs

Intro	du	cti	on
00			

Method 00000000 Results

Flavor separation of CFFs

• [Benali et al. '20] attempt local flavor separation — large uncertainties:

Method

Results

Can we do better?

Method 00000000

Can we do better?

Maybe, with the little help from

- **1** Global fit (instead of local)
- **2** Dispersion relations constraints

$$\mathfrak{Re} \mathcal{H}(\xi, t) = \Delta(t) + rac{1}{\pi} \mathrm{P.V.} \int_0^1 dx rac{2x}{\xi^2 - x^2} \, \mathfrak{Im} \, \mathcal{H}(x, t)$$

Can we do better?

Maybe, with the little help from

- **1** Global fit (instead of local)
- **2** Dispersion relations constraints

$$\mathfrak{Re} \mathcal{H}(\xi, t) = \Delta(t) + rac{1}{\pi} \mathrm{P.V.} \int_0^1 dx rac{2x}{\xi^2 - x^2} \, \mathfrak{Im} \, \mathcal{H}(x, t)$$

More constrained model generally leads to smaller uncertainties of the results. (*Bias-variance trade-off*)

Method 00000000 Results

Including the neutron DVCS data

- Separate model for each flavor: $\mathcal{H} \to \mathcal{H}_u, \ \mathcal{H}_d, \ \text{etc.}$
- Flavored models: fKM ("physical"), fNNDR (neural nets + dispersion relations)

Method

Results

Including the neutron DVCS data

• Values for $\chi^2/n_{\rm pts}$ are reasonable:

Observable	n _{pts}	KM2 0	NN20	NNDR20	£KM20	fNNDR20
# CFFs + Δs		3 + 1	6	4 + 1	5 + 2	8 + 2
Total (harmonics)	277	1.3	1.6	1.7	1.7	1.8
CLAS [20] A _{LU}	162	0.9	1.0	1.1	1.2	1.3
CLAS [20] A _{UL}	160	1.5	1.7	1.8	1.8	2.0
CLAS [20] A _{LL}	166	1.3	3.9	0.8	1.1	1.6
CLAS [21] $d\sigma$	1014	1.1	1.0	1.2	1.2	1.1
CLAS [21] $\Delta \sigma$	1012	0.9	0.9	1.0	0.9	1.1
Hall A [22] $d\sigma$	240	1.2	1.9	1.7	0.9	1.3
Hall A [22] $\Delta \sigma$	358	0.7	0.8	0.8	0.7	0.7
Hall A [23] $d\sigma$	450	1.5	1.6	1.7	1.9	2.0
Hall A [23] $\Delta \sigma$	360	1.6	2.2	2.2	1.9	1.7
Hall A [8] $d\sigma_n$	96				1.2	0.9
Total (ϕ -space)	4018	1.1	1.3	1.3	1.2	1.3

Intro	duct	tion
00		

Method 00000000 Results

Separating flavored CFFs

• Contributions of *u* and *d* quarks to CFF *H* are cleanly separated:

Introduction 00	Method 00000000	Results
Sanity check		

• For other CFFs, there is no visible separation. E. g. \mathcal{E} :

Outlook

- Further flavor decomposition will likely be possible with inclusion of DVMP data in the analysis work in progress
- Going from hybrid to complete conformal-space GPD model — work in progress
- All the components for the NLO analysis are available work in progress

Introduction	Method	Results
00	0000000	000000000000

The End