SRCs Studies at the EIC

Florian Hauenstein, EMC/SRC Workshop 03/26/21

SRC at EIC: JLab on Steroids

- larger recoil momentum acceptance
- higher Q²
- A-2 detection?

Higher Q² Coverage

EIC **JLab** Events 10⁵ 800 $^{12}C(e, e'p)$ 600 10⁴ eC: 10x110 GeV, $\int L = 10 \text{ fb}^{-1}$ Counts 400 10^{3} 10² 200 10 0 2 20 0 18 4 8 12 16 6 10 14 2 3 Q^2 [GeV²/c⁴] Q^{2} [GeV²/ c^{2}]

- Schmidt, Nature 578, 540544 (2020)
 - Better understanding of reaction mechanism
 - Search for 3N-SRCs

Larger Recoil Momentum Acceptance

0.05

0.15

0.2 0.25 0.3 0.35

Recoil neutron momentum [GeV] Piasetzky, PRL 97, 162504 (2006)

0.45

0.4

0.5 0.55

Electron Ion Collider

- Electron: 5-18 GeV
- Proton up to 275 GeV
- lons
 - 41 GeV/A
 - 100-135 GeV/A
- 2 interaction points
- polarized beams

Tagged SRC Measurements at EIC

- Kinematics
 - DIS
 - Quasi-elastic (QE)
- Feasibility
 - Rates
 - Detector requirements (focus on forward ion direction)
 - Optimal beam energies
- Tools
 - GCF-SRC event generator
 - BeAGLE eA event generator
 - g4e Geant4 simulation for EIC
 - *ElCroot* Geant4 simulation for EIC

SRC Reaction Topologies

Recoil and A-2 distributions independent on photon interaction
 —> GCF-QE as a baseline for recoil tagging in DIS

GCF and BeAGLE

- GCF-DIS in development
- GCF-Quasielastic (QE) implemented
- (A-2)-system handled by BeAGLE's DPMJET3+FLUKA

QE Simulations

- Beam energies (``Standard settings")
 - 5 GeV e- x 41 GeV/A ions
 - 10 GeV e⁻ x 110 GeV/A ions
- lons
 - Deuterium
 - 12C
- 10fb⁻¹ luminosity = 1 year of EIC
- GCF event generator with $Q^2 = [2.5 \text{ GeV}^2 250 \text{ GeV}^2]$
- Analysis cuts
 - x > 1.2
 - Q² > 3 GeV²
- Acceptance study with g4e 1.3.8

Detectors for Far-Forward Hadrons

Angular Distributions

no crossing angle, **no FSI**, cuts: $x_B > 1.2$, $Q^2 > 3$ GeV²

5 x 41/A

10 x 110/A

- Leading and recoil nucleons well separated
- Similar for neutrons and protons

Hadron Kinematics: Leading and Recoil for e+C

5GeV x 41GeV/nucleon

A-2 Acceptance

eC - Recoil Nucleon Acceptances

	р	n
5 x 41/A	75 %	37 %
10 x 110/A	87 %	96 %

Recoil Momentum Distribution PIRF

Recoil Smearing and Resolutions at 10x110/A

Summary

- Recoil tagging at EIC
 - higher Q² reach
 - full recoil acceptance from SRC onset
- Tagging of SRC recoils feasible at EIC (YR Section 7.3)
 - clear separation of recoil and leading nucleons
 - good coverage of recoil momentum distribution
 - larger recoil acceptance for 110/A ions
- Tagging of A-2
 - direct measurement of pair cm momentum
 - detection challenging with Roman Pots due to low angles
- Next step:
 - publication
 - explore tagged SRC-DIS measurements

Backup slides

Electron Kinematics e+C

no crossing angle, no intra-nuclear cascading, cuts: $x_B > 1.2$, $Q^2 > 3$ GeV²

5 x 41/A, L =10fb⁻¹

10 x 110, L =10fb⁻¹

Q² Resolution

BeAGLE - Benchmark eA Generator for LEptoproduction

Mark Baker, E. Aschenauer, J.H. Lee, L. Zheng

https://wiki.bnl.gov/eic/index.php/BeAGLE

Merger of

- PYTHIA 6 (hard interaction)
- Energy loss of partons: PyQM
- Nuclear environment
 - DPMJET
 - nPDF from EPS09
- Nuclear evaporation by
 DPMJET3+FLUKA

Far-Forward Detectors

QE Simulation Results (no crossing angle, no FSI)

