Study of ³He by polarization observables

S. Širca, U of Ljubljana

EMC/SRC Workshop, 26 March 2021

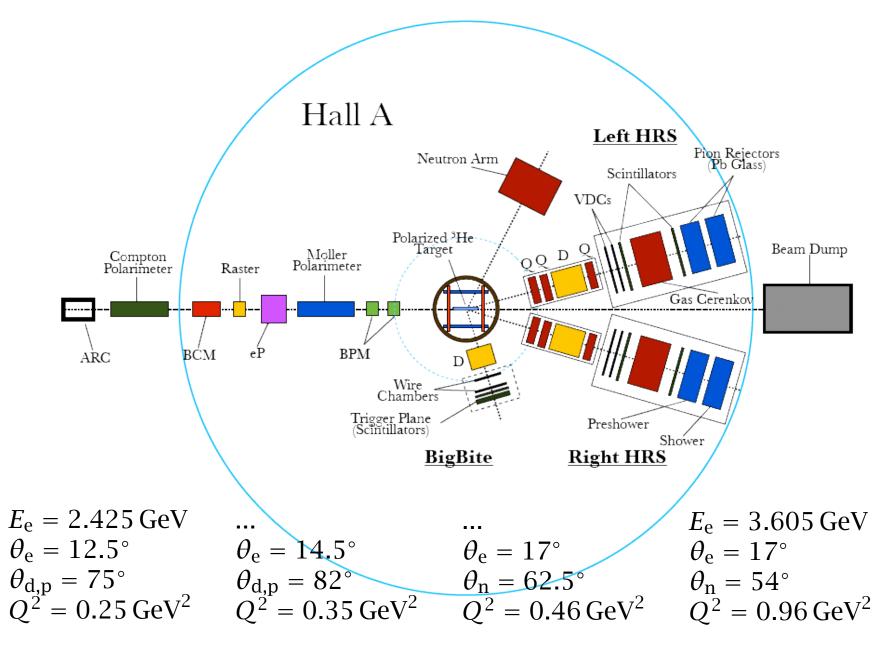
JLab Experiments covered in this talk

- E05–102 Double-spin asymmetries in quasi-elastic ³He(e, e'd)p
 - 3 He(e, e'p)d 3 He(e, e'p)pn

• E05-015

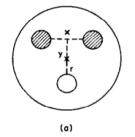
Target single-spin asymmetry in quasi-elastic ${}^{3}\text{He}^{\dagger}(e, e')$

• E08-005


Target single-spin asymmetry in quasi-elastic ${}^{3}\text{He}^{\dagger}(e, e'n)$ Double-spin asymmetries in quasi-elastic ${}^{3}\vec{\text{He}}(\vec{e}, e'n)$

Since then:

 "Tritium" group of experiment(s) / all unpolarized ALREADY PUBLISHED: Cross-sections for ³H and ³He(e, e'p)pn Proton momentum distributions via ²H, ³H and ³He(e, e'p)


Experimental Setup

ALL CHANNELS

Physics motivation for studying processes on ³He

- Knowledge of ground-state structure of ³He needed to extract information on the neutron from ³He(e, e'X) or ³He(e, e'). Examples: Gⁿ_E, Gⁿ_M, Aⁿ₁, gⁿ₁, gⁿ₂, GDH.
- Complications: protons in ³He partly polarized due to presence of *S*'- and *D*-state components.
- Addressing differences in $\sqrt{\langle \gamma^2 \rangle}$ (³H, ³He).
- Understanding (iso)spin dependence of reaction mechanisms (MEC, IC).

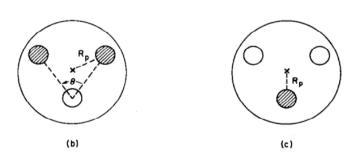
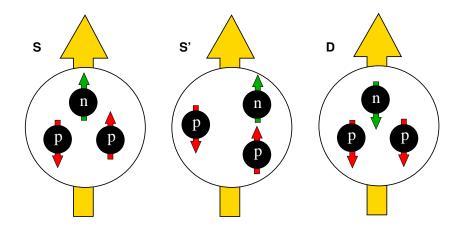



Fig. 1. Schematic picture of trinucleon when all forces are identical is shown in (a). The effect on ³He and ³H when the pp or nn force is weaker than the np force is illustrated in (b) and (c). $R_{\rm P}$ is the "charge radius". Shading indicates a proton.

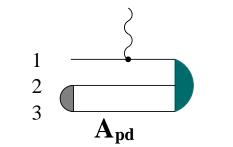
- Understanding role of *D* and *S'* states is one of key issues in **"Standard Model" of few-body theory**.
- Persistent discrepancies among theories regarding double-polarization observables most sensitive to ³He ground-state structure.

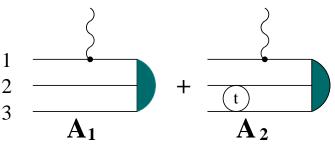
Polarized ³He: it is easy to draw the cartoon ...

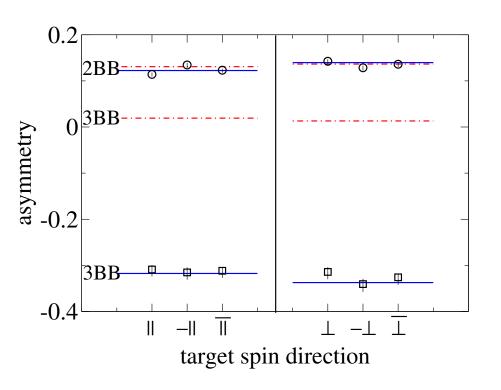
- S: spatially symmetric

 ≈ 90% of spin-averaged WF;
 "polarized neutron"
- *D*: generated by tensor part of NN force, $\approx 8.5\%$.
- *S*': mixed symmetry component; (spin-isospin)-space correlations, $\approx 1.5\%$. $P'_S \approx E_b^{-2.1}$.

• $P_{\mathrm{n}}^{\mathrm{eff}} pprox + \mathbf{0.86}$, $P_{\mathrm{p}}^{\mathrm{eff}} pprox - \mathbf{0.03}$


Hamiltonian	S	S'	Р	D
AV18	90.10	1.33	0.066	8.51
AV18/TM	89.96	1.09	0.155	8.80
AV18/UIX	89.51	1.05	0.130	9.31
CD-Bonn	91.62	1.34	0.046	6.99
CD-Bonn/TM	91.74	1.21	0.102	6.95
Nijm I	90.29	1.27	0.066	8.37
Nijm I/TM	90.25	1.08	0.148	8.53
Nijm II	90.31	1.27	0.065	8.35
Nijm II/TM	90.22	1.07	0.161	8.54
Reid93	90.21	1.28	0.067	8.44
Reid93/TM	90.09	1.07	0.162	8.68


Schiavilla++ PRC 58 (1998) 1263 TM = Tucson-Melbourne π - π exchange 3NF

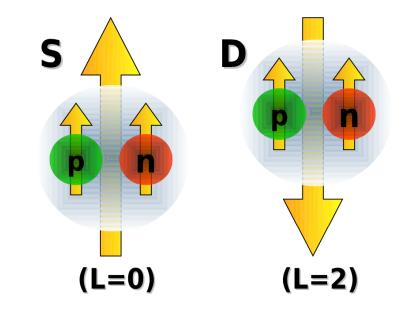

UIX = Urbana 3NF

... supported e. g. by data on ${}^{3}\vec{He}(\vec{e}, e'p)d/pn$...

- quasi-elastic ($Q^2 = 0.31$, $\omega = 135$, q = 570)
- 3NF, MEC negligible, FSI small in 2bbu, large in 3bbu

⊳ 2bbu

 $A_{PWIA} \approx A_{PWIA+FSI}$ || kinematics + small p_d \Rightarrow polarized p target, $P_p \approx -\frac{1}{3}P_{He}$


⊳ 3bbu

 $A_{PWIA} \approx 0 \ (p \uparrow p \downarrow)$ $A_{PWIA+FSI}$ large & negative not a polarized p target

PRC 72 (2005) 054005, EPJA 25 (2005) 177

... and which has a nice analogue in the deuteron ...

 $\vec{d}(\vec{e}, e'p)$ PWIA (S only) PWIA (S+D) 0.2 PWBA+FSI PWBA+FSI+MEC PWBA+FSI+MEC+IC FULL A_{ed}^{V} 0 S+D -0.2 S only 100 200 0 300 400 $p_m [MeV/c]$ $\sigma = \sigma_0 \left(1 + h P_1^{\mathsf{d}} A_{\mathsf{ed}}^{\mathsf{V}} \right)$ $P_z^{\mathrm{p}} = \sqrt{\frac{2}{3}} \left(P_S - \frac{1}{2} P_D \right) P_1^{\mathrm{d}}$

Passchier++ PRL **82** (1999) 4988 Passchier++ PRL **88** (2002) 102302

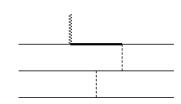
... but the true ground state of ³He is like lace

Channel number	L	S	lα	La	Р	K	Probability (%)
number	L						
1	0	0.5	0	0	A	1	87.44
2	0	0.5	0	0	M	2	0.74
3	0	0.5	1	1	M	1	0.74
4	0	0.5	2	2	A	1	1.20
5	0	0.5	2	2	M	2	0.06
6	1	0.5	1	1	M	1	0.01
7	1	0.5	2	2	A	1	0.01
8	1	0.5	2	2	M	2	0.01
9	1	1.5	1	1	M	1	0.01
10	1	1.5	2	2	M	2	0.01
11	2	1.5	0	2	M	2	1.08
12	2	1.5	1	1	M	1	2.63
13	2	1.5	1	3	M	1	1.05
14	2	1.5	2	0	\boldsymbol{M}	2	3.06
15	2	1.5	2	2	M	2	0.18
16	2	1.5	3	1	M	1	0.37

Blankleider, Woloshyn PRC **29** (1984) 538

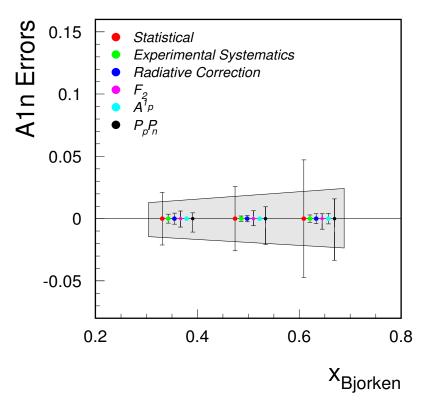
To handle this, one needs state-of-the-art calculations

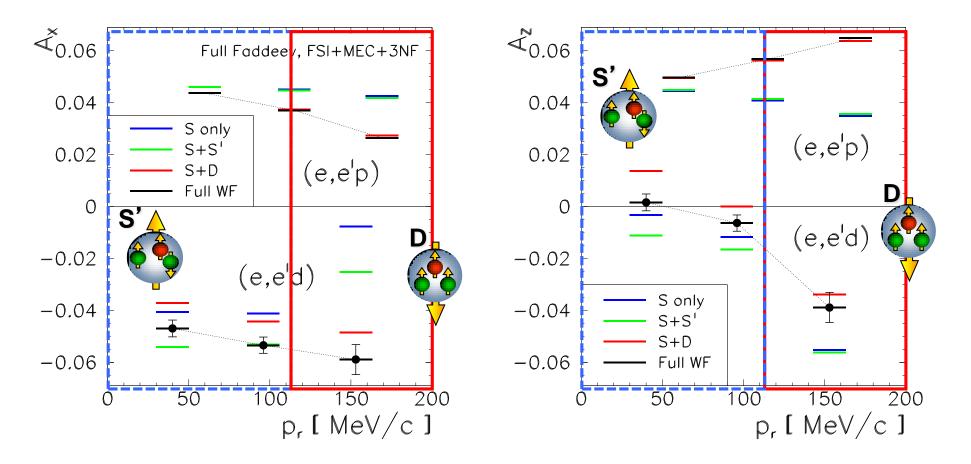
Krakow/Bochum (full Faddeev)


- AV18 NN-potential (+ Urbana IX 3NF, work in progress)
- Complete treatment of FSI, MEC

Hannover/Lisbon (→ Vilnius) (full Faddeev)

- CC extension and refit of CD-Bonn NN-potential
- Includes FSI, MEC
- Δ as active degree-of-freedom providing effective 3NF and 2-body currents
- Coulomb interaction for outgoing charged baryons


Pisa

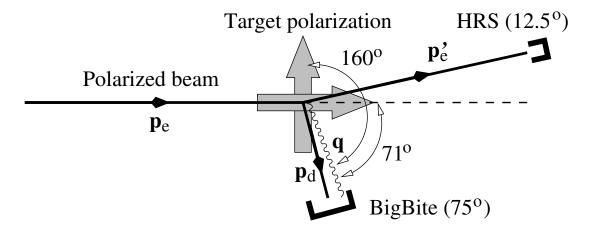

- AV18 + Urbana IX (or IL7)
- Inclusion of FSI by means of the variational PHH expansion and MEC
- Not Faddeev, but accuracy completely equivalent to it

The E05–102 and E08–005 experiments at JLab

- **Benchmark measurement** of A'_{χ} and A'_{z} asymmetries in ${}^{3}\vec{\text{He}}(\vec{e}, e'd)$, ${}^{3}\vec{\text{He}}(\vec{e}, e'p)$, and ${}^{3}\vec{\text{He}}(\vec{e}, e'n)$.
- Better understanding of ground-state spin structure of polarized ³He — *S*, *S'*, *D* wave-function components. Improve knowledge of ³He rather than using it as an effective neutron target. Direct consequences for all polarized ³He experiments.
- Distinct manifestations of S, D, S' with changing p_{miss} in (e, e'{p/d/n}).
- Data at (almost) identical Q² for (e, e'd), (e, e'p), and (e, e'n) simultaneously over a broad range of p_{miss} poses strong constraints on state-of-the-art calculations.

• *S'* state relevant at small p_r (= p_{miss})

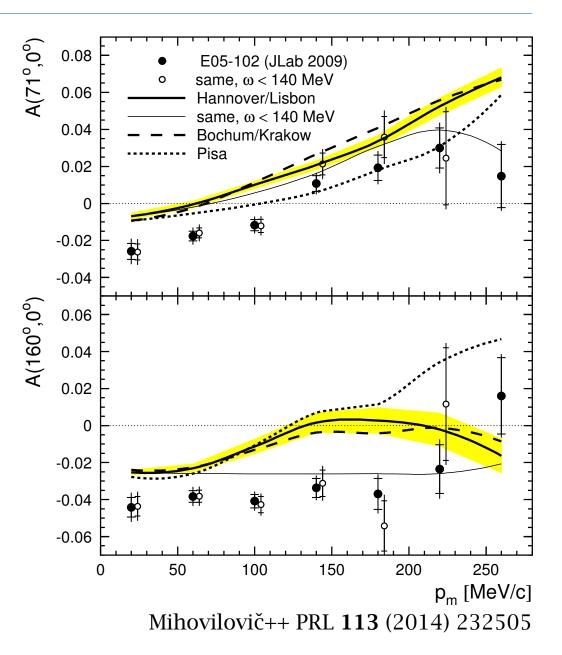
• *D* state governs variation of A_z at large p_r


Beam-target asymmetry in QE p/d knockout from 3 He

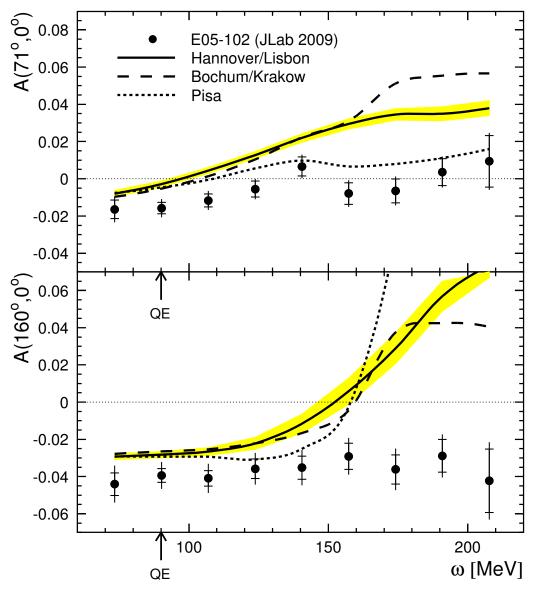
• Cannot disentangle effects of WF components (*S*, *D*, *S'*) by measurement of cross-sections alone: *need polarization observables*

$$\frac{\mathrm{d}\sigma(h,\vec{S})}{\mathrm{d}\Omega_{\mathrm{e}}\,\mathrm{d}E_{\mathrm{e}}\,\mathrm{d}\Omega_{\mathrm{d}}\,\mathrm{d}p_{\mathrm{d}}} = \frac{\mathrm{d}\sigma_{0}}{\cdots} \left[1 + \vec{S}\cdot\vec{A}^{0} + h(A_{\mathrm{e}} + \vec{S}\cdot\vec{A})\right]$$

$$A(\theta^*, \phi^*) = \vec{S}(\theta^*, \phi^*) \cdot \vec{A} = \frac{[d\sigma_{++} + d\sigma_{--}] - [d\sigma_{+-} + d\sigma_{-+}]}{[d\sigma_{++} + d\sigma_{--}] + [d\sigma_{+-} + d\sigma_{-+}]}$$

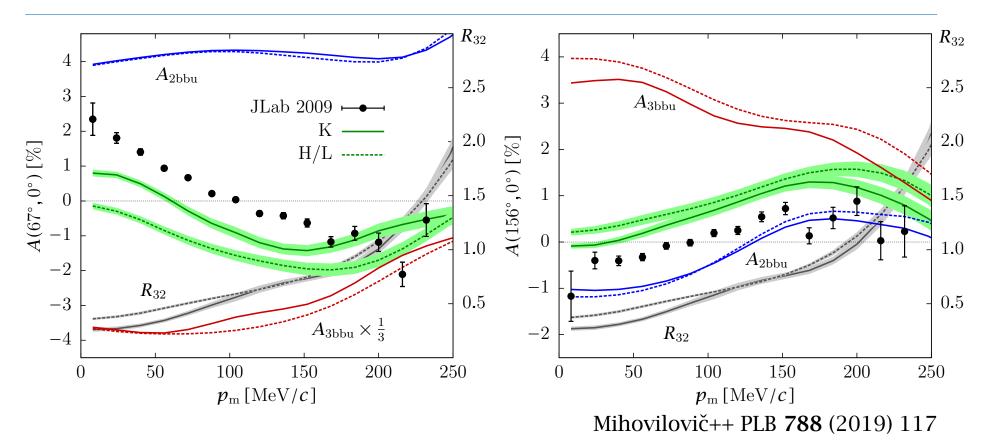

- Access to [effects of] small WF components (*D*, *S*')
- E05–102: simultaneous measurement of all break-up channels: ³He(e, e'd)p, ³He(e, e'p)d, ³He(e, e'p)pn ... and also ³He(e, e'n)pp

Results on ${}^{3}\vec{He}(\vec{e}, e'd)p$


*p*m**-dependence**

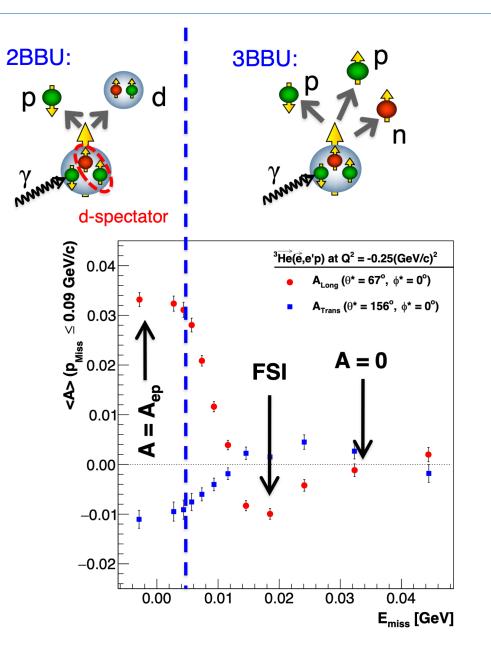
- Asymmetries are small (typically a few %), thus hard to reproduce theoretically (cancellations)
- Good agreement on the transverse asymmetry (71°)
- Worse for the longitudinal asymmetry (160°) ... but it improves when ω is restricted to QE peak
- Discrepancy due to
 - incomplete treatment of FSI (?)
 - unaccounted for 3NF (?)
 - underestimated S' component of g.s. WF (?)

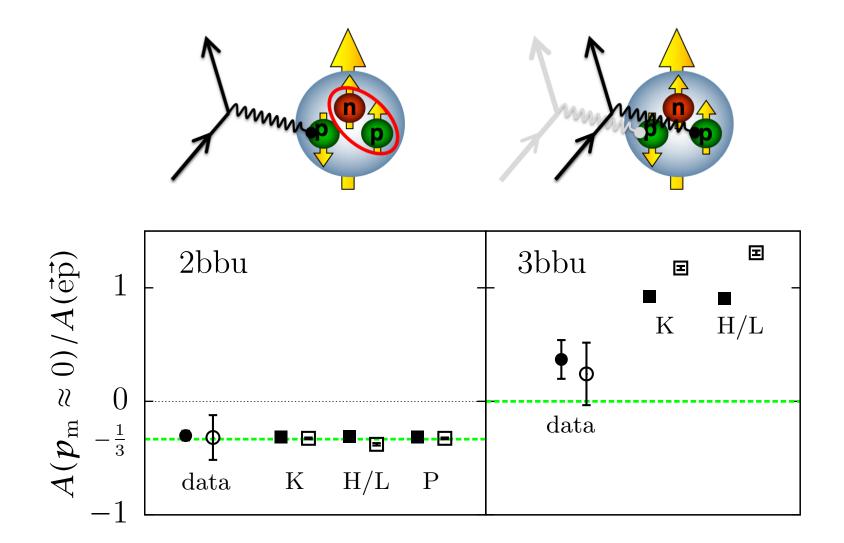
Results on ${}^{3}\vec{He}(\vec{e}, e'd)p$


ω -dependence

Mihovilovič++ PRL **113** (2014) 232505

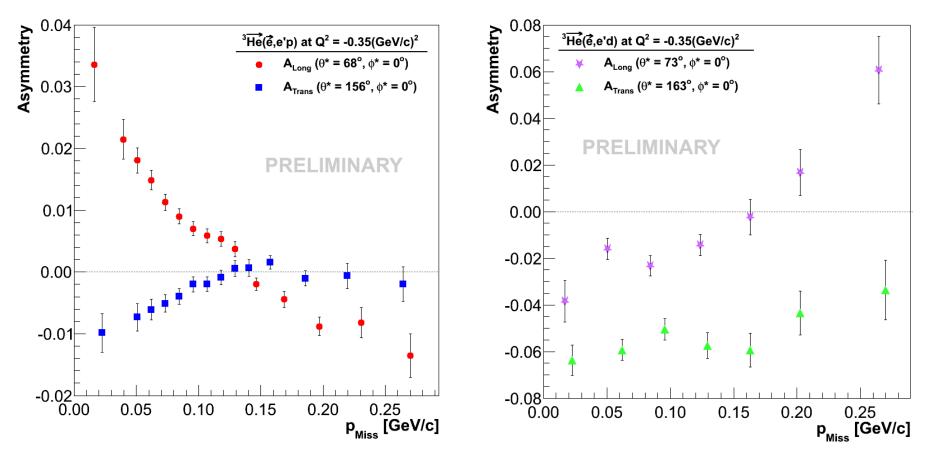
Results on ${}^{3}\vec{He}(\vec{e}, e'p)$


*p*m**-dependence**

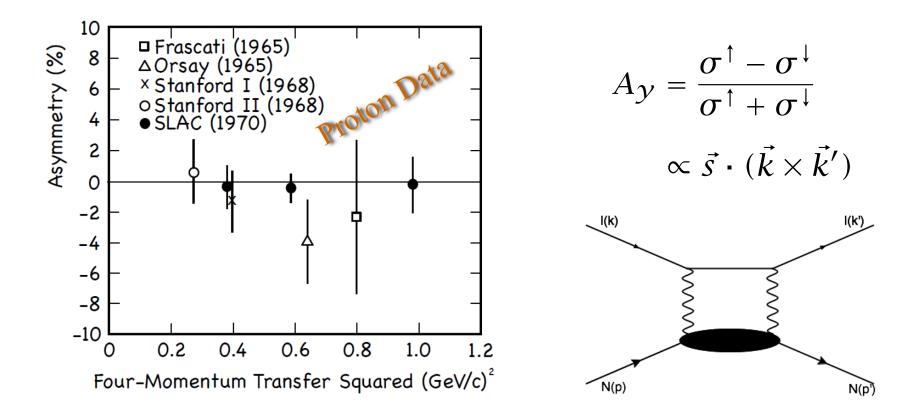

- No 2bbu/3bbu separation possible; rely on MC to disentangle A_{2bbu}/A_{3bbu} ▷ Unpolarized 2bbu and 3bbu XS as well as A_{2bbu} well established
- Only qualitative agreement of data with theory. Issues:
 - ▷ Cancellation of 2bbu and 3bbu contributions
 - ▷ 3bbu asymmetry dominant *possibly too much so*
 - ▷ Pertinent ingredients: Coulomb, RC, FSI, 3NF (?)

Simple interpretation of ${}^{3}\vec{He}(\vec{e}, e'p)$

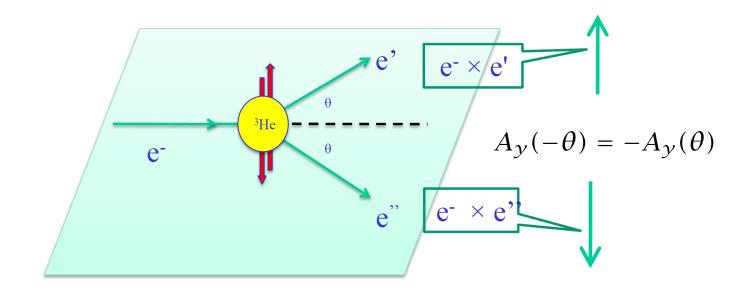
- Valid for $p_{\rm m} \approx 0$
- Assume PWIA
- S-state dominates
- Missing energy: $E_{\rm m} = \omega - T_{\rm p} - T_{\rm d}$
- Low- $E_{\rm m}$ region dominated by 2bbu: $A \approx A(\vec{e} - \vec{p} \text{ elastic})$
- High- $E_{\rm m}$ region dominated by 3bbu: $A \approx 0$
- Non-zero asymmetry in 3bbu probably caused by FSI


Message on 2bbu and 3bbu asymmetries in ${}^{3}\vec{He}(\vec{e}, e'p)$

Mihovilovič++ PLB **788** (2019) 117

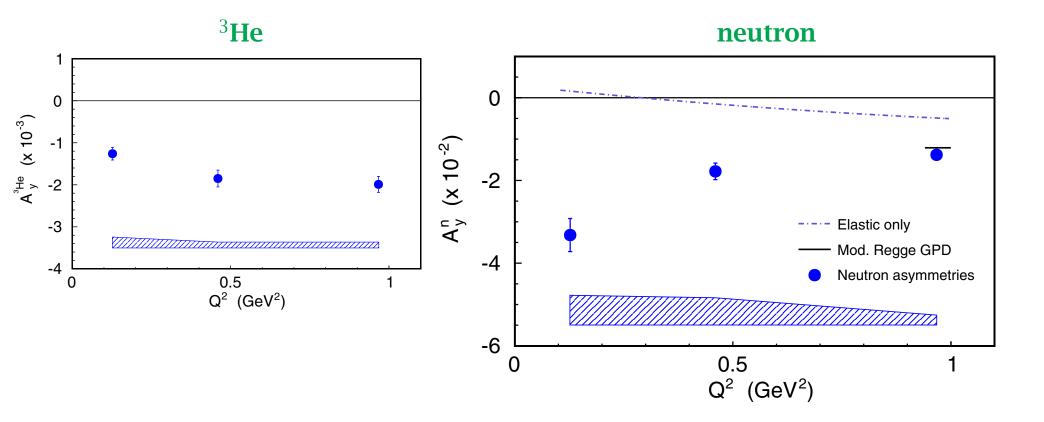

More ${}^3\vec{He}(\vec{e},e'd)$ and ${}^3\vec{He}(\vec{e},e'p)$...

• High-statistics data also available at $Q^2 \approx 0.35 \,\text{GeV}^2$ in all channels



- Opportunity to study Q^2 -dependence of asymmetries
- Final analysis / calculations pending

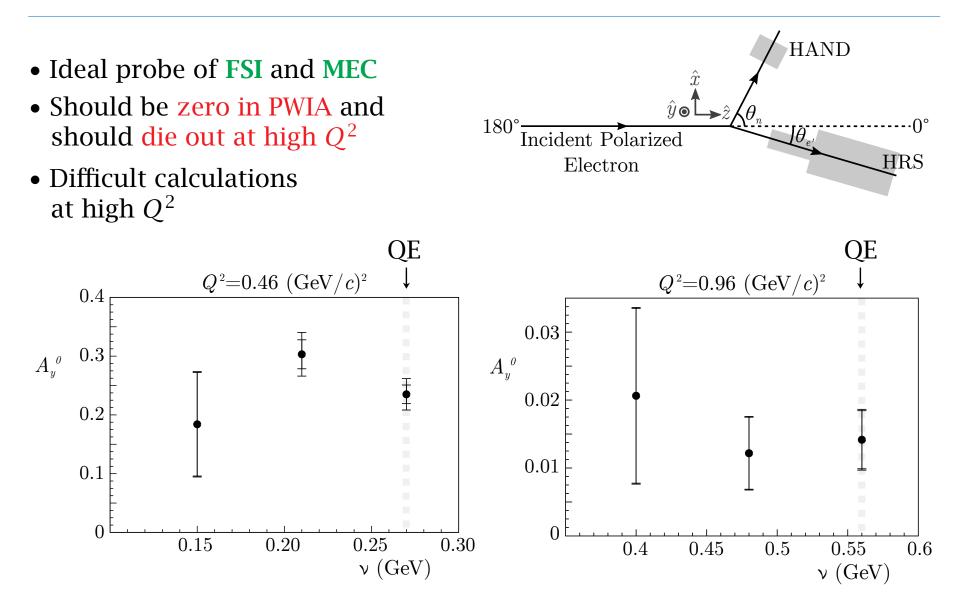
Single-spin asymmetry in QE ${}^{3}\text{He}^{\uparrow}(\mathbf{e},\mathbf{e}')$


- $A_{\gamma} = 0$ in Born approximation (*T*-invariance)
- $A_{\gamma} \neq 0$ indicative of 2γ effects, $\propto \text{Im}\{T_{1\gamma}T_{2\gamma}^*\}$ interference; relevant for $G_{\text{E}}^{\text{p}}/G_{\text{M}}^{\text{p}}$, GPDs
- no measurement of comparable precision on **neutron**

<i>E</i> ₀ [GeV]	<i>E</i> ' [GeV]	θ _{lab} [Deg]	Q ² [GeV] ²	<i>q</i> [GeV]	θ _q [Deg]
1.25	1.22	17	0.13	0.359	71
2.43	2.18	17	0.46	0.681	62
3.61	3.09	17	0.98	0.988	54

Figure & table courtesy of Yawei Zhang, Rutgers

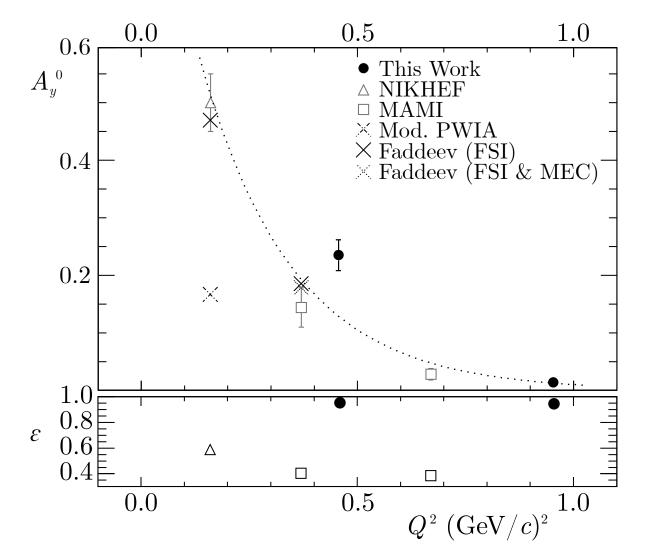
Single-spin asymmetry in QE ${}^{3}\text{He}^{\uparrow}(e, e')$



- First measurement of A_{γ}^{n} (extracted from transversely polarized $A_{\gamma}^{^{3}\text{He}}$)
- Uncertainty several times better than previous proton data
- Asymmetry clearly non-zero and negative

Zhang++ PRL 115 (2015) 172502

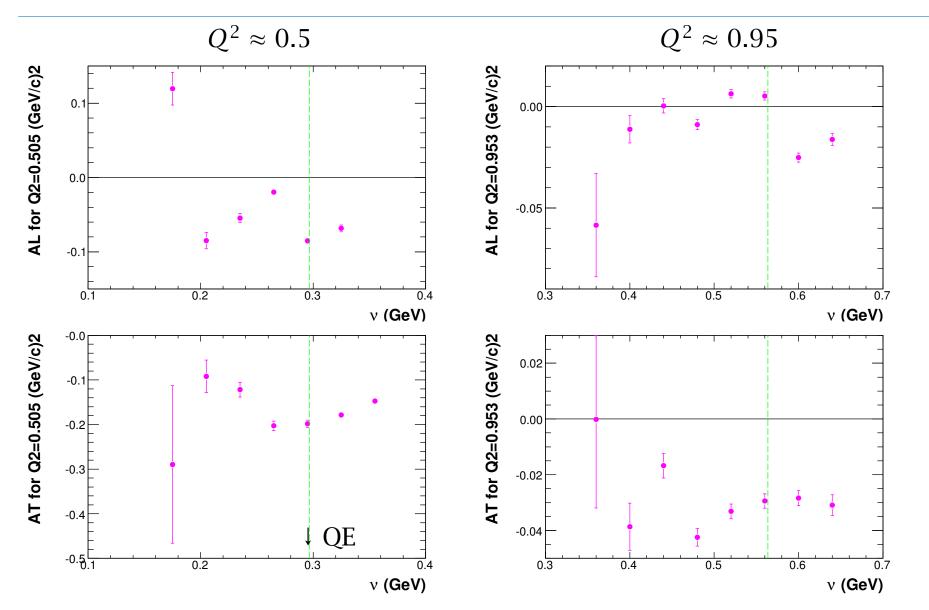
Single-spin asymmetries in QE ${}^{3}\text{He}^{\uparrow}(e, e'n)$


E08-005

Long++ PLB **797** (2019) 134875

Single-spin asymmetries in QE ${}^{3}\text{He}^{\uparrow}(e, e'n)$

E08-005



Long++ PLB **797** (2019) 134875

 \Rightarrow PWIA good enough for high- Q^2 experiments at JLab 12 GeV!

Double-spin asymmetries in QE 3 **H** $\vec{e}(\vec{e}, e'n)$

• Calculations?

*** **PRELIMINARY** *** Figures courtesy of Elena Long, UNH

Perspective instead of Conclusion

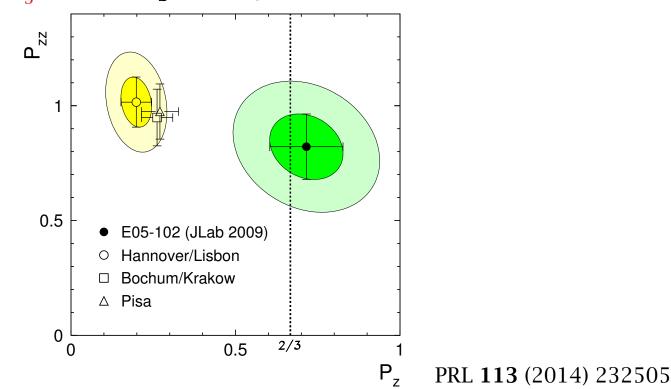
Date: Sun, 28 Aug 2005 04:35:13 +0200 (MEST) From: Eddy Jans <eddy@nikhef.nl> To: doug@jlab.org, gilad@mitlns.mit.edu, simon.sirca@fmf.uni-lj.si Subject: E05-102

Hi all,

[...] So now to you the nice task to make the community happy with three new nice datasets on 3He: (e,e'p), (e,e'd) and GEn. Good luck,

eddy jans

The data sets are here, but ... we still don't know [well enough]:

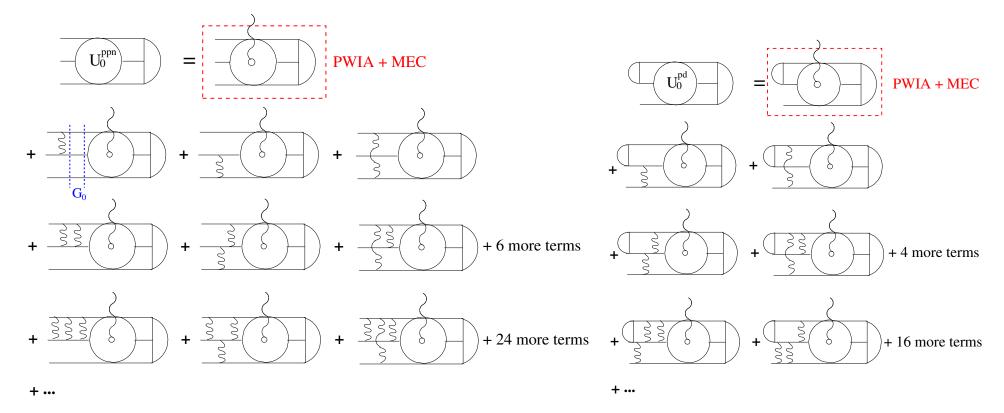

- the true nature of the ³He ground state (*S* vs. *D* vs. *S*');
- the effective neutron (deuteron, proton?) polarization in ³He.

It's not that we haven't tried \rightarrow

Toy model to evaluate *P*₂ **and** *P*₂₂

$^{3}\vec{He}(\vec{e},e'd)p$

- Assume 3 He(e, e'd)p at low p_{miss} is like elastic scattering off polarized d
- Use $A_x^{(^{3}\text{He})}$, $A_z^{(^{3}\text{He})}$ as if they were $A_x^{(\text{ed})}$, $A_z^{(\text{ed})}$ with appropriate deuteron FFs, and extract P_z and P_{zz}
- Toy model $|^{3}\text{He}\rangle = |d\rangle + |p\rangle$
- Spin decomposition $|{}^{3}\text{He}\rangle = \left|\frac{1}{2},\frac{1}{2}\right\rangle = \sqrt{\frac{2}{3}}|1,1\rangle \left|\frac{1}{2},-\frac{1}{2}\right\rangle \sqrt{\frac{1}{3}}|1,0\rangle \left|\frac{1}{2},\frac{1}{2}\right\rangle$ gives $P_{z} = \langle I_{z} \rangle_{^{3}\text{He}} = \frac{2}{3}$, $P_{zz} = \langle 3I_{z}^{2} - 2 \rangle_{^{3}\text{He}} = 0$


Perspective cont'd

- Polarized ³He target (e.g. at CLAS12) still has work to do!
- ³He(e, e'd) remains "golden channel" as 2bbu/3bbu separation likely impossible at 12 GeV
- Asymmetries hint at zero-crossings at high p_{miss} Indication of *D*-state kicking in as in the deuteron case? \Rightarrow Extend measurements to higher p_{miss}
- Failure of theories away from the QE peak (dip and above) Could be due to anything: tails of Δ, MEC, FSI, 3NF.
 ⇒ Measure at several Q² to capture appropriate evolution
- Still unable to quantify the role of ground-state WF components
 - \Rightarrow Need calculations that will be able to tune or switch on/off individual components ... which is a problem \rightarrow
 - \Rightarrow Need calculations capable of handling high(er) energies

• Similar show-stoppers with high- Q^2 single-spin asymmetries etc.

Strange final slide: Faddeev calculations

Nuclear transition current for breakup of ³He: $J^{\mu} = \left\langle \Psi_{\rm f} \mid \hat{\mathcal{O}}^{\mu} \mid \Psi_{^{3}{\rm He}}(\theta^{*}, \phi^{*}) \right\rangle$ Photon absorption operator: $\hat{\mathcal{O}}^{\mu} = \sum_{i=1}^{3} \left[\hat{J}_{\rm SN}(i) + \hat{J}_{\rm MEC}(i) \right]$ Final-state interactions (auxiliary states): $\left\langle \Psi_{\rm f} \mid \hat{\mathcal{O}}^{\mu} \mid \Psi_{^{3}{\rm He}}(\theta^{*}, \phi^{*}) \right\rangle \longrightarrow \left\langle \Psi_{\rm f} \mid U_{\rm f}^{\mu} \right\rangle$

Golak++ Phys Rep 415 (2005) 89

This is it ...

