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(RG) Resolution Scale    H = H(Λ) max. momenta in low-energy wf’s ~  Λ

High resolution picture:
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2

(RG) Resolution Scale    H = H(Λ) max. momenta in low-energy wf’s ~  Λ

High resolution picture:

high-k tails (k >> kF) present

correlated SRC pairs


Hard, local interactions

AV18 etc. 



Low and High RG Resolution Scale Pictures

3

(RG) Resolution Scale    H = H(Λ) max. momenta in low-energy wf’s ~  Λ

Low resolution picture:

no high-k tails (k >> kF)

resembles “mean field” picture


chiral EFT/soft interactions/shell model/DFT
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SRC studies at high resolution

one-body current operators

complicated wf’s
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SRC studies at high resolution

one-body current operators

complicated wf’s

SRC studies at low resolution

two-body current operators

simple wf’s

Connected by

RG evolution
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SRC studies at high resolution

one-body current operators

complicated wf’s

SRC studies at low resolution

two-body current operators

simple wf’s

Same cross section (if done right), but different 

interpretations, split between structure/reaction, 

FSI’s, etc..



Low and High RG Resolution Scale Pictures
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SRC studies at high resolution

one-body current operators

complicated wf’s

SRC studies at low resolution

two-body current operators

simple wf’s

Same cross section (if done right), but different 

interpretations, split between structure/reaction, 

FSI’s, etc..

Here: 


How can SRC calculations at low RG scale

be carried out in practice? 


Under what approximations?  


Connections to existing phenomenology (GCF/LCA)? 




Similarity Renormalization Group 

5

SRG

Evolve SRC physics from high to low RG resolution (λ ≲ q)

Focus on phenomenology e.g.,  as first step

But see earlier deuteron electrodisintegration studies More,SKB,Furnstahl PRC96 (2017) 

n(q) , ρ(q, Q)



Similarity Renormalization Group 

5

SRG

Bogner, Furnstahl, Schwenk Prog. Part. Nucl. Phys. 2010  

Evolve SRC physics from high to low RG resolution (λ ≲ q)

Focus on phenomenology e.g.,  as first step

But see earlier deuteron electrodisintegration studies More,SKB,Furnstahl PRC96 (2017) 

n(q) , ρ(q, Q)

Unitary RG  (“Similarity Renormalization Group” 


       


preserves all physics (unitary) if no approximations 


low E states =>    highly suppressed 


H(λ) = U(λ)HU†(λ) O(λ) = U(λ)OU†(λ)

k ≳ λ λ
0

λ
1

λ
2

k’

k

SRG



Computing SRC operators at low-RG resolutions
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 = operator that probes high-q components at high-RG resolution Ôhi
q

⟨Ahi | Ôhi
q |Ahi⟩ ≠ 0 ̂nhi(q) = a†

qaq , ̂ρhi(q, Q) = a†
Q
2 +q

a†
Q
2 −q

a Q
2 −q

a Q
2 +q

e.g.,



Computing SRC operators at low-RG resolutions
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wf’s of soft 

 

Ĥlo = ̂Uλ Ĥhi Û†
λ

⟨Alo | Ôhi
q |Alo⟩ ≈ 0

⟨Ahi | Ôhi
q |Ahi⟩ = ⟨Ahi | Û†

λÛλÔ
hi
q Û†

λÛλ |Ahi⟩ = ⟨Alo | Ôlo
q |Alo⟩

SRG evolve to  λ ≲ q

 = operator that probes high-q components at high-RG resolution Ôhi
q

⟨Ahi | Ôhi
q |Ahi⟩ ≠ 0 ̂nhi(q) = a†

qaq , ̂ρhi(q, Q) = a†
Q
2 +q

a†
Q
2 −q

a Q
2 −q

a Q
2 +q

e.g.,
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wf’s of soft 

 

Ĥlo = ̂Uλ Ĥhi Û†
λ

⟨Alo | Ôhi
q |Alo⟩ ≈ 0

Ûλ = 1̂ +
1
4 ∑

K,k,k′￼

δU(2)
λ (k, k′￼) a†

K
2 +k

a†
K
2 −k

a K
2 −k′￼

a K
2 +k′￼

+
1
36 ∑ δU(3)

λ a†a†a†aaa + ⋯

fixed from SRG evolution

on A=2 

fixed from SRG evolution

on A=3

⟨Ahi | Ôhi
q |Ahi⟩ = ⟨Ahi | Û†

λÛλÔ
hi
q Û†

λÛλ |Ahi⟩ = ⟨Alo | Ôlo
q |Alo⟩

SRG evolve to  λ ≲ q

 = operator that probes high-q components at high-RG resolution Ôhi
q

⟨Ahi | Ôhi
q |Ahi⟩ ≠ 0 ̂nhi(q) = a†

qaq , ̂ρhi(q, Q) = a†
Q
2 +q

a†
Q
2 −q

a Q
2 −q

a Q
2 +q

e.g.,

 inherits 

symmetries of  

(Galilean, partial wave

 structure, etc.)

δUλ(k, k′￼)
VNN
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2b + Ôlo
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 = operator that probes high-q components at high-RG resolution Ôhi
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⟨Ahi | Ôhi
q |Ahi⟩ ≠ 0 ̂nhi(q) = a†

qaq , ̂ρhi(q, Q) = a†
Q
2 +q

a†
Q
2 −q

a Q
2 −q

a Q
2 +q

e.g.,
SRG  a “cluster” hierarchy  

cancellations of KE/PE “amplify” the importance of 3N for

bulk energies 

Hlo
λ V2N

λ ≫ V3N
λ ≫ V4N

λ …
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q = ÛλÔhi
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λÛλÔ
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For high-q operators ( ),  evidence that


   BUT  

λ ≲ q

Ô1b
q (λ) ≪ Ô2b

q (λ) Ô2b
q (λ) ≫ Ô3b

q (λ) ≫ ⋯
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q = ÛλÔhi
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λÛλÔ
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λ ≫ V3N
λ ≫ V4N
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For high-q operators ( ),  evidence that


   BUT  

λ ≲ q

Ô1b
q (λ) ≪ Ô2b

q (λ) Ô2b
q (λ) ≫ Ô3b

q (λ) ≫ ⋯

Can assess SRG truncations by varying  (observables don’t

change if no approximation made) 

λ
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Ĥlo = ̂Uλ Ĥhi Û†
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⟨Alo | Ôhi
q |Alo⟩ ≈ 0
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⟨Ahi | Ôhi
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qaq , ̂ρhi(q, Q) = a†
Q
2 +q

a†
Q
2 −q
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a Q
2 +q

e.g.,

Some -dependence for relative momentum dist.

integral over sizable CM ==> non-SRC physics; sensitive 

to induced 3-body 

λ

Neff, Feldmeier, Horiuchi PRC 92 (2015)
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Ĥlo = ̂Uλ Ĥhi Û†
λ

⟨Alo | Ôhi
q |Alo⟩ ≈ 0
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1
4 ∑

K,k,k′￼

δU(2)
λ (k, k′￼) a†

K
2 +k

a†
K
2 −k

a K
2 −k′￼

a K
2 +k′￼

+
1
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fixed from SRG evolution

on A=2 
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Wick’s theorem to evaluate  Ôlo
q = ÛλÔhi

q Û†
λ = Ôlo

1b + Ôlo
2b + Ôlo

3b + ⋯

⟨Ahi | Ôhi
q |Ahi⟩ = ⟨Ahi | Û†

λÛλÔ
hi
q Û†

λÛλ |Ahi⟩ = ⟨Alo | Ôlo
q |Alo⟩

SRG evolve to  λ ≲ q

 = operator that probes high-q components at high-RG resolution Ôhi
q

⟨Ahi | Ôhi
q |Ahi⟩ ≠ 0 ̂nhi(q) = a†

qaq , ̂ρhi(q, Q) = a†
Q
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a†
Q
2 −q

a Q
2 −q

a Q
2 +q

e.g.,

Neff, Feldmeier, Horiuchi PRC 92 (2015)

reduced -dependence for K=0 pair momentum dist.

induced 3-body negligible <==> SRC pairs 2-body physics

λ

cf. LCA, GCF, leading-order Brueckner, … 
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momentum distribution ̂nhi(q) = a†
qaq

̂nlo(q) = (1̂ + δU(2)
λ ) a†

qaq (1̂ + δU†(2)

λ )
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momentum distribution ̂nhi(q) = a†
qaq

̂nlo(q) = (1̂ + δU(2)
λ ) a†

qaq (1̂ + δU†(2)

λ )

̂nlo(q) = a†
qaq +

1
2 ∑

k,k′￼

δUλ(k, k′￼) a†
q−k+k′￼

a†
q+k−k′￼

aq−2k′￼
aq + h . c .

+
1
4 ∑

K,k,k′￼

δUλ(k, q − K/2) δU†
λ (q − K/2,k′￼) a†

K
2 +k

a†
K
2 −k

a K
2 −k′￼

a K
2 +k′￼

+ (⋯) a†a†a†aaa + (⋯)a†a†a†a†aaaa ⋯
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momentum distribution ̂nhi(q) = a†
qaq

̂nlo(q) = (1̂ + δU(2)
λ ) a†

qaq (1̂ + δU†(2)

λ )

̂nlo(q) = a†
qaq +

1
2 ∑

k,k′￼

δUλ(k, k′￼) a†
q−k+k′￼

a†
q+k−k′￼

aq−2k′￼
aq + h . c .

+
1
4 ∑

K,k,k′￼

δUλ(k, q − K/2) δU†
λ (q − K/2,k′￼) a†

K
2 +k

a†
K
2 −k

a K
2 −k′￼

a K
2 +k′￼

+ (⋯) a†a†a†aaa + (⋯)a†a†a†a†aaaa ⋯

Consider 


momenta  

absent in 

q ≫ λ

≫ λ
|Alo⟩
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Deuteron illustration ̂nlo(q) = (1̂ + δU(2)
λ ) a†

qaq (1̂ + δU†(2)

λ )

⟨Dhi |a†
qaq |Dhi⟩
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Deuteron illustration ̂nlo(q) = (1̂ + δU(2)
λ ) a†

qaq (1̂ + δU†(2)

λ )

⟨Dhi |a†
qaq |Dhi⟩

⟨Dlo |a†
qaq |Dlo⟩
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Deuteron illustration ̂nlo(q) = (1̂ + δU(2)
λ ) a†

qaq (1̂ + δU†(2)

λ )

⟨Dhi |a†
qaq |Dhi⟩

⟨Dlo |a†
qaq |Dlo⟩

⟨Dlo |δUa†
qaq + a†

qaqδU† |Dlo⟩
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Deuteron illustration ̂nlo(q) = (1̂ + δU(2)
λ ) a†

qaq (1̂ + δU†(2)

λ )

⟨Dhi |a†
qaq |Dhi⟩

⟨Dlo |a†
qaq |Dlo⟩

⟨Dlo |δUa†
qaq + a†

qaqδU† |Dlo⟩

⟨Dlo |δUa†
qaqδU† |Dlo⟩
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Consider 


momenta  

absent in 

q ≫ λ

≫ λ
|Alo⟩

nlo(q) ≈ ∑
K,k,k′￼

δUλ(k, q − K/2) δU†
λ (q − K/2,k′￼) a†

K
2 +k

a†
K
2 −k

a K
2 −k′￼

a K
2 +k′￼
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Consider 


momenta  

absent in 

q ≫ λ

≫ λ
|Alo⟩

nlo(q) ≈ ∑
K,k,k′￼

δUλ(k, q − K/2) δU†
λ (q − K/2,k′￼) a†

K
2 +k

a†
K
2 −k

a K
2 −k′￼

a K
2 +k′￼

Expectation value in  ==> only “soft”     contribute |Alo⟩ K, k′￼, k ≲ λ

≈ ∑
K,k,k′￼

δUλ(k, q) δU†
λ (q, k′￼) a†

K
2 +k

a†
K
2 −k

a K
2 −k′￼

a K
2 +k′￼ K ≪ q
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Consider 


momenta  

absent in 

q ≫ λ

≫ λ
|Alo⟩

nlo(q) ≈ ∑
K,k,k′￼

δUλ(k, q − K/2) δU†
λ (q − K/2,k′￼) a†

K
2 +k

a†
K
2 −k

a K
2 −k′￼

a K
2 +k′￼

Expectation value in  ==> only “soft”     contribute |Alo⟩ K, k′￼, k ≲ λ

≈ ∑
K,k,k′￼

δUλ(k, q) δU†
λ (q, k′￼) a†

K
2 +k

a†
K
2 −k

a K
2 −k′￼

a K
2 +k′￼ K ≪ q

δUλ(k, q) ≈ Flo
λ (k)Fhi

λ (q)
Scale separation

k, k′￼ ≪ q
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Consider 
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absent in 

q ≫ λ

≫ λ
|Alo⟩

nlo(q) ≈ ∑
K,k,k′￼

δUλ(k, q − K/2) δU†
λ (q − K/2,k′￼) a†

K
2 +k

a†
K
2 −k

a K
2 −k′￼

a K
2 +k′￼

Expectation value in  ==> only “soft”     contribute |Alo⟩ K, k′￼, k ≲ λ

≈ ∑
K,k,k′￼

δUλ(k, q) δU†
λ (q, k′￼) a†

K
2 +k

a†
K
2 −k

a K
2 −k′￼

a K
2 +k′￼ K ≪ q

≈ (Fhi(q))2
λ

∑
K,k,k′￼

Flo(k)Flo(k′￼) a†
K
2 +k

a†
K
2 −k

a K
2 −k′￼

a K
2 +k′￼
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Consider 


momenta  

absent in 

q ≫ λ

≫ λ
|Alo⟩

nlo(q) ≈ ∑
K,k,k′￼

δUλ(k, q − K/2) δU†
λ (q − K/2,k′￼) a†

K
2 +k

a†
K
2 −k

a K
2 −k′￼

a K
2 +k′￼

Expectation value in  ==> only “soft”     contribute |Alo⟩ K, k′￼, k ≲ λ

≈ ∑
K,k,k′￼

δUλ(k, q) δU†
λ (q, k′￼) a†

K
2 +k

a†
K
2 −k

a K
2 −k′￼

a K
2 +k′￼ K ≪ q

≈ (Fhi(q))2
λ

∑
K,k,k′￼

Flo(k)Flo(k′￼) a†
K
2 +k

a†
K
2 −k

a K
2 −k′￼

a K
2 +k′￼

Universal (A-indep)

Wilson Coeff, fixed by A=2


depends on operator 

smeared local operator

low-k physics

A-dependence in ME’s


Leading-order

Operator Product Expansion
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Similar factorized forms for other SRC operators 

̂ρhi(q, Q) = a†
Q
2 +q

a†
Q
2 −q

a Q
2 −q

a Q
2 +q

q ≫ λ
≈ (Fhi(q))2

λ

∑
k,k′￼

Flo(k)Flo(k′￼) a†
Q
2 +k

a†
Q
2 −k

a Q
2 −k′￼

a Q
2 +k′￼
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Similar factorized forms for other SRC operators 

̂ρhi(q, Q) = a†
Q
2 +q

a†
Q
2 −q

a Q
2 −q

a Q
2 +q

q ≫ λ
≈ (Fhi(q))2

λ

∑
k,k′￼

Flo(k)Flo(k′￼) a†
Q
2 +k

a†
Q
2 −k

a Q
2 −k′￼

a Q
2 +k′￼

Scaling of high-q tails

⟨Ahi |a†
qaq |Ahi⟩

⟨Dhi |a†
qaq |Dhi⟩

≈
|Fhi(q) |2

|Fhi(q) |2 ×
∑λ

K,k,k′￼
⟨Alo | a†

K
2 +ka†

K
2 −ka K

2 −k′￼
a K

2 +k′￼
|Alo⟩

∑λ
K,k,k′￼

⟨Dlo | a†
K
2 +ka†

K
2 −ka K

2 −k′￼
a K

2 +k′￼
|Dlo⟩



Computing SRC operators at low-RG resolutions

10

Similar factorized forms for other SRC operators 

̂ρhi(q, Q) = a†
Q
2 +q

a†
Q
2 −q

a Q
2 −q

a Q
2 +q

q ≫ λ
≈ (Fhi(q))2

λ

∑
k,k′￼

Flo(k)Flo(k′￼) a†
Q
2 +k

a†
Q
2 −k

a Q
2 −k′￼

a Q
2 +k′￼

Scaling of high-q tails

⟨Ahi |a†
qaq |Ahi⟩

⟨Dhi |a†
qaq |Dhi⟩

≈
|Fhi(q) |2

|Fhi(q) |2 ×
∑λ

K,k,k′￼
⟨Alo | a†

K
2 +ka†

K
2 −ka K

2 −k′￼
a K

2 +k′￼
|Alo⟩

∑λ
K,k,k′￼

⟨Dlo | a†
K
2 +ka†

K
2 −ka K

2 −k′￼
a K

2 +k′￼
|Dlo⟩

ratio of (smeared) contacts

only sensitive to low-k/mean-field physics

approx. independent of resolution scale
(see GCF talks of Diego/Ronan)

Fhi(q) ∝ Ψhi
A=2(q)



Computing SRC operators at low-RG resolutions

10

Similar factorized forms for other SRC operators 

̂ρhi(q, Q) = a†
Q
2 +q

a†
Q
2 −q

a Q
2 −q

a Q
2 +q

q ≫ λ
≈ (Fhi(q))2

λ

∑
k,k′￼

Flo(k)Flo(k′￼) a†
Q
2 +k

a†
Q
2 −k

a Q
2 −k′￼

a Q
2 +k′￼

Scaling of high-q tails

⟨Ahi |a†
qaq |Ahi⟩

⟨Dhi |a†
qaq |Dhi⟩

≈
|Fhi(q) |2

|Fhi(q) |2 ×
∑λ

K,k,k′￼
⟨Alo | a†

K
2 +ka†

K
2 −ka K

2 −k′￼
a K

2 +k′￼
|Alo⟩

∑λ
K,k,k′￼

⟨Dlo | a†
K
2 +ka†

K
2 −ka K

2 −k′￼
a K

2 +k′￼
|Dlo⟩

ratio of (smeared) contacts

only sensitive to low-k/mean-field physics

approx. independent of resolution scale
(see GCF talks of Diego/Ronan)

Fhi(q) ∝ Ψhi
A=2(q)

links few- and A-body systems  (Operator Product Expansion) 


RG “derivation” of the GCF  


Correlations/scaling for 2 observables w/same leading OPE


Subleading OPE ==> deviations from scaling calculable in principle?

RG-evolved SRC operators
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Simple methods “work"


• MBPT

• shell model

• polynomially scaling 

methods (IMSRG, CC, 
SCGF, etc.)Tichai et al., Frontiers in Physics (2021)
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Ongoing developments:


“soft” interactions w/good

saturation properties in

medium mass 


e.g., NNLOGO chiral EFT 

(with ’s)   

Δ
Δ



Options for treating wf’s at low-RG resolutions

11

Need beyond HF for precision energetics/radii


Can we use HF for SRC studies at low resolution?


Or HF treated in LDA? Let’s find out!…



Options for treating wf’s at low-RG resolutions

11

Need beyond HF for precision energetics/radii


Can we use HF for SRC studies at low resolution?


Or HF treated in LDA? Let’s find out!…

̂n lo(q) ≈ ∑
K,k,k′￼

δUλ(k, q − K/2) δU†
λ (k′￼, q − K/2) a†

K
2 +k

a†
K
2 −k

a K
2 −k′￼

a K
2 +k′￼

Strategy for SRC calcs. at low-RG scales λ ≪ q



Options for treating wf’s at low-RG resolutions

11

Need beyond HF for precision energetics/radii


Can we use HF for SRC studies at low resolution?


Or HF treated in LDA? Let’s find out!…

̂n lo(q) ≈ ∑
K,k,k′￼

δUλ(k, q − K/2) δU†
λ (k′￼, q − K/2) a†

K
2 +k

a†
K
2 −k

a K
2 −k′￼

a K
2 +k′￼

Strategy for SRC calcs. at low-RG scales λ ≪ q

fixed from A=2 



Options for treating wf’s at low-RG resolutions

11

Need beyond HF for precision energetics/radii


Can we use HF for SRC studies at low resolution?


Or HF treated in LDA? Let’s find out!…

̂n lo(q) ≈ ∑
K,k,k′￼

δUλ(k, q − K/2) δU†
λ (k′￼, q − K/2) a†

K
2 +k

a†
K
2 −k

a K
2 −k′￼

a K
2 +k′￼

Strategy for SRC calcs. at low-RG scales λ ≪ q

fixed from A=2 

evaluate matrix

elements in A-body

states using LDA

(free fermi gas)



Options for treating wf’s at low-RG resolutions

11

Need beyond HF for precision energetics/radii


Can we use HF for SRC studies at low resolution?


Or HF treated in LDA? Let’s find out!…

̂n lo(q) ≈ ∑
K,k,k′￼

δUλ(k, q − K/2) δU†
λ (k′￼, q − K/2) a†

K
2 +k

a†
K
2 −k

a K
2 −k′￼

a K
2 +k′￼

Strategy for SRC calcs. at low-RG scales λ ≪ q

fixed from A=2 

evaluate matrix
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states using LDA
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What SRC phenomenology

can this (ridiculously) simple

approach reproduce?
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Preliminary SRC low-resolution LDA calculations 

np dominance => ratio should

be ~ 1  irrespective of N/Z

transition towards scalar counting

at higher relative q


Ratio of evolved high-mom. distributions
in a low-mom. state (insensitive to details!)



13

Tropiano, SKB, Furnstahl (in progress)

Preliminary SRC low-resolution LDA calculations 



13

Tropiano, SKB, Furnstahl (in progress)

Preliminary SRC low-resolution LDA calculations 

np pair (tensor force) dominance



13

Tropiano, SKB, Furnstahl (in progress)

Preliminary SRC low-resolution LDA calculations 

np pair (tensor force) dominance

weak nucleus dependence follows from 

factorization 



13

Tropiano, SKB, Furnstahl (in progress)

Preliminary SRC low-resolution LDA calculations 

np pair (tensor force) dominance

weak nucleus dependence follows from 

factorization 

Ratio ≈
(Fhi

pp(q))2 ⟨Alo ∑λ
k,k′￼

a†
Q
2 +k

a†
Q
2 −k

a Q
2 −k′￼

a Q
2 +k′￼

Alo⟩
(Fhi

np(q))2 ⟨Alo ∑λ
k,k′￼

a†
Q
2 +k

a†
Q
2 −k

a Q
2 −k′￼

a Q
2 +k′￼

Alo⟩



13

Tropiano, SKB, Furnstahl (in progress)

Preliminary SRC low-resolution LDA calculations 

np pair (tensor force) dominance

weak nucleus dependence follows from 

factorization 

Ratio ≈
(Fhi

pp(q))2 ⟨Alo ∑λ
k,k′￼

a†
Q
2 +k

a†
Q
2 −k

a Q
2 −k′￼

a Q
2 +k′￼

Alo⟩
(Fhi

np(q))2 ⟨Alo ∑λ
k,k′￼

a†
Q
2 +k

a†
Q
2 −k

a Q
2 −k′￼

a Q
2 +k′￼

Alo⟩



14

Tropiano, SKB, Furnstahl (in progress)

Preliminary SRC low-resolution LDA calculations 

Followed Ryckebusch et al. prescription

Δphigh = [3.8…4.5] fm-1

Decent agreement w/LCA calcs

(flatter A-dependence)


But systematics need to be explored more!
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Looking ahead

Can we use low-RG scale pictures to directly compute cross sections, etc?

h f ||{z}
structure

reactionz}|{
bO(q) | ii|{z}
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cf deuteron electrodisintegration studies More,SKB,Furnstahl PRC96 (2017) 

scale/scheme dependence of extracted properties? (e.g., SFs)


extract at one scale, evolve to another? (like PDFs)


how do FSIs, physical interpretations, etc. depend on RG scale?
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FSI sizable at large λ
but negligible at low-resolution!


Takeaway point:

 

Size of FSI depends on RG scale/scheme


Ditto physical interpretations
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Strongly-bound systems

Shell M

A. Gade et al., Phys. Rev. C 77, 044306 (2008) 

Other exclusive knock-out reactions [pictures from A. Gade]

Exclusive reactions, theory vs. experiment

One-nucleon knockout

residue moment distribution 
Æ ℓ-value of knocked-out n

• More than 50MeV/nucleon:
sudden approximation + eikonal approach (J.A. Tostevin, Surrey)

• Spectroscopic strengths
determined from the population of the residue with A-1

ℓ=0ℓ=2

P ||
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Cross sections for the 
population of final states
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Compare measured to 
calculated cross sections 

Origin and systematics of R = σexp / σth < 1 
are not understood (includes e,e’p results)
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Structure theory

Reaction theoryN
Theoretical cross section:

CoM correction – needed 
for CI SM with HO basis

A. E. L. Dieperink and T. de Forest, PRC 10, 533 (1974)
P.G. Hansen and J. A. Tostevin, 
Annu. Rev. Nucl. Sci. 53, 219 
(2003)

J. A. Tosetvin, J. Phys. G. 25, 
735 (1999)

diffrstrip ),(),(),( NspNspNsp SjSjSj
� spectator-core approximation to many-body eikonal theory
� (A-1) residue: at most elastically scattered
� S matrices as function of impact parameter from double-

folding approach to Glauber multiple-scattering theory (free 
nn np cross sections with Gaussian range parameters nn= 

np=0.5 fm. Real-to-imaginary ratios interpolated from tables 
in L. Ray, PRC 20, 1875 (1979) . 

� nucleon-residue relative wave functions: eigenfunctions of  
effective 2-body Hamiltonian containing a local potential with 
the depth adjusted to reproduce the separation energy
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� = reaction ⌦|{z}
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structure
�
= 0

<latexit sha1_base64="dcwF4P/yOmbTplncqd6upB/Qkpc="></latexit>

Scale-dependent (RG) view of how these reactions are treated

• Analysis mixes a high-resolution reaction mechanism (single-
particle) with a low-resolution structure description.

• Theory is greater than experiment because missing induced 
current (e.g., 2-body for e−) does not exclude flux.

• Plan: use SRG on reaction operator here and exploit factorization



Summary 
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RG smoothly connects high- and low-resolution pictures. There is no “correct” picture in an 
absolute sense (e.g., can reproduce SRC phenom. in a low resolution picture, or can do many-
body calculations in high-resolution picture)


Unexpected simplifications for calculating SRC quantities at low-RG resolution ( ) 

• factorization of q-dependence into A-indep Wilson coeffs (few-body physics)

• simple many-body calculations due to low-k wf’s

• LDA (free fermi gas) seems to be sufficient (a-la LCA ) at reproducing some of the usual 

SRC phenomenology 


Natural connections to GCF/LCA approaches; RG/OPE machinery ==> corrections to scaling, 3N 
SRCs, etc. possible


Interpretations, FSIs, etc. depend on RG scale for deuteron electrodisintegration. Can we exploit 
this in more complicated knock-out reactions by treating structure/reaction consistently at the 
same resolution scale?


q ≫ λ
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Tropiano, SKB, Furnstahl (in progress)

SRC phenomenology revisited (low-res picture)

2) Kinematics of knocked-out nucleons

~pmiss is anti-parallel to ~q
for C, Al, Fe, Pb.

Missing Momentum
         = p1 - q

0

200

400

600

180�150�120�90�
C

ou
nt

s
(n

or
m

al
iz

ed
to

C
)

cos ✓pm,q

C
Al
Fe
Pb

FSI peak

27

knocked out SRC nucleons fly out 

almost back-to-back 

(relative s-wave pairs)

pair CM momentum distribution

gaussian of width ~ kF



20

Tropiano, SKB, Furnstahl (in progress)

SRC phenomenology revisited (low-res picture)

2) Kinematics of knocked-out nucleons

~pmiss is anti-parallel to ~q
for C, Al, Fe, Pb.

Missing Momentum
         = p1 - q

0

200

400

600

180�150�120�90�
C

ou
nt

s
(n

or
m

al
iz

ed
to

C
)

cos ✓pm,q

C
Al
Fe
Pb

FSI peak

27

knocked out SRC nucleons fly out 

almost back-to-back 

(relative s-wave pairs)

pair CM momentum distribution

gaussian of width ~ kF

ρNN,α(Q, q) ∼ γ2
α(q; Λ) ∑

k,k′￼

|⟨ψ A(Λ) |[a†
Q
2 +k

a†
Q
2 −k

a
Q
2 −k′￼

a
Q
2 +k′￼

]α
|ψ A(Λ)⟩

evolved pair momentum distribution (λ ∼ kF < < q)



20

Tropiano, SKB, Furnstahl (in progress)

SRC phenomenology revisited (low-res picture)

2) Kinematics of knocked-out nucleons

~pmiss is anti-parallel to ~q
for C, Al, Fe, Pb.

Missing Momentum
         = p1 - q

0

200

400

600

180�150�120�90�
C

ou
nt

s
(n

or
m

al
iz

ed
to

C
)

cos ✓pm,q

C
Al
Fe
Pb

FSI peak

27

knocked out SRC nucleons fly out 

almost back-to-back 

(relative s-wave pairs)

pair CM momentum distribution

gaussian of width ~ kF

ρNN,α(Q, q) ∼ γ2
α(q; Λ) ∑

k,k′￼

|⟨ψ A(Λ) |[a†
Q
2 +k

a†
Q
2 −k

a
Q
2 −k′￼

a
Q
2 +k′￼

]α
|ψ A(Λ)⟩

evolved pair momentum distribution (λ ∼ kF < < q)

m.e. of smeared contact operator ==> 
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evolved  “soft”, dominated by MFT configs ==>
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Tropiano, SKB, Furnstahl (in progress)

SRC phenomenology revisited (low-res picture)

3) np dominance at intermediate (300-500 MeV) relative momenta

These kinematic settings covered (e,e'p) missing
momenta, which is the momentum of the
undetected particles, in the range from 300 to
600 MeV/c, with overlap between the different
settings. For highly correlated pairs, the missing
momentum of the (e,e'p) reaction is balanced
almost entirely by a single recoiling nucleon,
whereas for a typical uncorrelated (e,e'p) event,
themissingmomentum is balanced by the sum of
many recoiling nucleons. In a partonic picture, xB
is the fraction of the nucleon momentum carried
by the struck quark. Hence, when xB > 1, the
struck quark has more momentum than the entire
nucleon, which points to nucleon correlation. To
detect correlated recoiling protons, a large
acceptance spectrometer (“BigBite”) was placed
at an angle of 99° to the beam direction and 1.1
m from the target. To detect correlated recoiling
neutrons, a neutron array was placed directly
behind the BigBite spectrometer at a distance of 6
m from the target. Details of these custom proton
and neutron detectors can be found in the
supporting online material (16).

The electronics for the experiment were set
up so that for every 12C(e,e'p) event in the HRS
spectrometers, we read out the BigBite and
neutron-detector electronics; thus, we could deter-
mine the 12C(e,e'pp)/12C(e,e'p) and the 12C(e,e'pn)/
12C(e,e'p) ratios. For the 12C(e,e'pp)/12C(e,e'p)
ratio, we found that 9.5 ± 2% of the (e,e'p) events
had an associated recoiling proton, as reported in
(12). Taking into account the finite acceptance of
the neutron detector [using the same procedure
as with the proton detector (12)] and the neutron
detection efficency, we found that 96 ± 22% of
the (e,e'p) events with a missing momentum above
300 MeV/c had a recoiling neutron. This result
agrees with a hadron beam measurement of
(p,2pn)/(p,2p), in which 92 ± 18% of the (p,2p)
events with a missing momentum above the Fermi

momentum of 275 MeV/c were found to have a
single recoilingneutroncarrying themomentum(11).

Because we collected the recoiling proton
12C(e,e'pp) and neutron 12C(e,e'pn) data simulta-
neously with detection systems covering nearly
identical solid angles, we could also directly
determine the ratio of 12C(e,e'pn)/12C(e,e'pp). In
this scheme, many of the systematic factors
needed to compare the rates of the 12C(e,e'pn)
and 12C(e,e'pp) reactions canceled out. Correct-
ing only for detector efficiencies, we determined
that this ratio was 8.1 ± 2.2. To estimate the effect
of final-state interactions (that is, reactions that
happen after the initial scattering), we assumed
that the attenuations of the recoiling protons and
neutrons were almost equal. In this case, the only
correction related to final-state interactions of the
measured 12C(e,e'pn)/12C(e,e'pp) ratio is due to a
single-charge exchange. Because the measured
(e,e'pn) rate is about an order of magnitude larger
than the (e,e'pp) rate, (e,e'pn) reactions followed
by a single-charge exchange [and hence detected
as (e,e'pp)] dominated and reduced the measured
12C(e,e'pn)/12C(e,e'pp) ratio. Using the Glauber
approximation (17), we estimated that this effect
was 11%. Taking this into account, the corrected
experimental ratio for 12C(e,e'pn)/12C(e,e'pp) was
9.0 ± 2.5.

To deduce the ratio of p-n to p-p SRC pairs in
the ground state of 12C, we used the measured
12C(e,e'pn)/12C(e,e'pp) ratio. Because we used
(e,e'p) events to search for SRC nucleon pairs, the
probability of detecting p-p pairs was twice that
of p-n pairs; thus, we conclude that the ratio of
p-n/p-p pairs in the 12C ground state is 18 ± 5
(Fig. 2). To get a comprehensive picture of the
structure of 12C, we combined the pair faction
results with the inclusive 12C(e,e') measurements
(4, 5, 14) and found that approximately 20% of
the nucleons in 12C form SRC pairs, consistent

with the depletion seen in the spectroscopy ex-
periments (1, 2). As shown in Fig. 3, the com-
bined results indicate that 80% of the nucleons in
the 12C nucleus acted independently or as de-
scribed within the shell model, whereas for the
20% of correlated pairs, 90 ± 10% were in the
form of p-n SRC pairs; 5 ± 1.5%were in the form
of p-p SRC pairs; and, by isospin symmetry, we
inferred that 5 ± 1.5% were in the form of SRC
n-n pairs. The dominance of the p-n over p-p
SRC pairs is a clear consequence of the nucleon-
nucleon tensor force. Calculations of this effect
(18,19) indicate that it is robust anddoes not depend
on the exact parameterization of the nucleon-
nucleon force, the type of the nucleus, or the
exact ground-state wave function used to de-
scribe the nucleons.

If neutron stars consisted only of neutrons, the
relatively weak n-n short-range interaction would
mean that they could be reasonably well approxi-
mated as an ideal Fermi gas, with only perturba-
tive corrections. However, theoretical analysis of
neutrino cooling data indicates that neutron stars
contain about 5 to 10% protons and electrons in
the first central layers (20–22). The strong p-n
short-range interaction reported here suggests
that momentum distribution for the protons and
neutrons in neutron stars will be substantially
different from that characteristic of an ideal Fermi
gas. A theoretical calculation that takes into
account the p-n correlation effect at relevant
neutron star densities and realistic proton concen-
tration shows the correlation effect on the mo-
mentum distribution of the protons and the
neutrons (23). We therefore speculate that the
small concentration of protons inside neutron
stars might have a disproportionately large effect
that needs to be addressed in realistic descriptions
of neutron stars.
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Fig. 2. The fractions of correlated pair combinations in carbon as obtained from the (e,e'pp) and (e,e'pn)
reactions, as well as from previous (p,2pn) data. The results and references are listed in table S1.

Fig. 3. The average fraction of nucleons in the
various initial-state configurations of 12C.
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These kinematic settings covered (e,e'p) missing
momenta, which is the momentum of the
undetected particles, in the range from 300 to
600 MeV/c, with overlap between the different
settings. For highly correlated pairs, the missing
momentum of the (e,e'p) reaction is balanced
almost entirely by a single recoiling nucleon,
whereas for a typical uncorrelated (e,e'p) event,
themissingmomentum is balanced by the sum of
many recoiling nucleons. In a partonic picture, xB
is the fraction of the nucleon momentum carried
by the struck quark. Hence, when xB > 1, the
struck quark has more momentum than the entire
nucleon, which points to nucleon correlation. To
detect correlated recoiling protons, a large
acceptance spectrometer (“BigBite”) was placed
at an angle of 99° to the beam direction and 1.1
m from the target. To detect correlated recoiling
neutrons, a neutron array was placed directly
behind the BigBite spectrometer at a distance of 6
m from the target. Details of these custom proton
and neutron detectors can be found in the
supporting online material (16).

The electronics for the experiment were set
up so that for every 12C(e,e'p) event in the HRS
spectrometers, we read out the BigBite and
neutron-detector electronics; thus, we could deter-
mine the 12C(e,e'pp)/12C(e,e'p) and the 12C(e,e'pn)/
12C(e,e'p) ratios. For the 12C(e,e'pp)/12C(e,e'p)
ratio, we found that 9.5 ± 2% of the (e,e'p) events
had an associated recoiling proton, as reported in
(12). Taking into account the finite acceptance of
the neutron detector [using the same procedure
as with the proton detector (12)] and the neutron
detection efficency, we found that 96 ± 22% of
the (e,e'p) events with a missing momentum above
300 MeV/c had a recoiling neutron. This result
agrees with a hadron beam measurement of
(p,2pn)/(p,2p), in which 92 ± 18% of the (p,2p)
events with a missing momentum above the Fermi

momentum of 275 MeV/c were found to have a
single recoilingneutroncarrying themomentum(11).

Because we collected the recoiling proton
12C(e,e'pp) and neutron 12C(e,e'pn) data simulta-
neously with detection systems covering nearly
identical solid angles, we could also directly
determine the ratio of 12C(e,e'pn)/12C(e,e'pp). In
this scheme, many of the systematic factors
needed to compare the rates of the 12C(e,e'pn)
and 12C(e,e'pp) reactions canceled out. Correct-
ing only for detector efficiencies, we determined
that this ratio was 8.1 ± 2.2. To estimate the effect
of final-state interactions (that is, reactions that
happen after the initial scattering), we assumed
that the attenuations of the recoiling protons and
neutrons were almost equal. In this case, the only
correction related to final-state interactions of the
measured 12C(e,e'pn)/12C(e,e'pp) ratio is due to a
single-charge exchange. Because the measured
(e,e'pn) rate is about an order of magnitude larger
than the (e,e'pp) rate, (e,e'pn) reactions followed
by a single-charge exchange [and hence detected
as (e,e'pp)] dominated and reduced the measured
12C(e,e'pn)/12C(e,e'pp) ratio. Using the Glauber
approximation (17), we estimated that this effect
was 11%. Taking this into account, the corrected
experimental ratio for 12C(e,e'pn)/12C(e,e'pp) was
9.0 ± 2.5.

To deduce the ratio of p-n to p-p SRC pairs in
the ground state of 12C, we used the measured
12C(e,e'pn)/12C(e,e'pp) ratio. Because we used
(e,e'p) events to search for SRC nucleon pairs, the
probability of detecting p-p pairs was twice that
of p-n pairs; thus, we conclude that the ratio of
p-n/p-p pairs in the 12C ground state is 18 ± 5
(Fig. 2). To get a comprehensive picture of the
structure of 12C, we combined the pair faction
results with the inclusive 12C(e,e') measurements
(4, 5, 14) and found that approximately 20% of
the nucleons in 12C form SRC pairs, consistent

with the depletion seen in the spectroscopy ex-
periments (1, 2). As shown in Fig. 3, the com-
bined results indicate that 80% of the nucleons in
the 12C nucleus acted independently or as de-
scribed within the shell model, whereas for the
20% of correlated pairs, 90 ± 10% were in the
form of p-n SRC pairs; 5 ± 1.5%were in the form
of p-p SRC pairs; and, by isospin symmetry, we
inferred that 5 ± 1.5% were in the form of SRC
n-n pairs. The dominance of the p-n over p-p
SRC pairs is a clear consequence of the nucleon-
nucleon tensor force. Calculations of this effect
(18,19) indicate that it is robust anddoes not depend
on the exact parameterization of the nucleon-
nucleon force, the type of the nucleus, or the
exact ground-state wave function used to de-
scribe the nucleons.

If neutron stars consisted only of neutrons, the
relatively weak n-n short-range interaction would
mean that they could be reasonably well approxi-
mated as an ideal Fermi gas, with only perturba-
tive corrections. However, theoretical analysis of
neutrino cooling data indicates that neutron stars
contain about 5 to 10% protons and electrons in
the first central layers (20–22). The strong p-n
short-range interaction reported here suggests
that momentum distribution for the protons and
neutrons in neutron stars will be substantially
different from that characteristic of an ideal Fermi
gas. A theoretical calculation that takes into
account the p-n correlation effect at relevant
neutron star densities and realistic proton concen-
tration shows the correlation effect on the mo-
mentum distribution of the protons and the
neutrons (23). We therefore speculate that the
small concentration of protons inside neutron
stars might have a disproportionately large effect
that needs to be addressed in realistic descriptions
of neutron stars.
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Fig. 3. The average fraction of nucleons in the
various initial-state configurations of 12C.
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FIG. 3: Left: The measured fractions of triple coincidence events (C(e, e0pN)/C(e, e0p)), compared with GCF predictions
accounting for the variety of e↵ects that influence the measurement (e.g. CLAS detector acceptance, e�ciency, and resolution,
FSIs including SCX, and the event-selection procedure). The C(e, e0pp)/C(e, e0p) data (blue triangles) are taken from Ref. [10],
while the C(e, e0pn)/C(e, e0p) data (red circles) are from this work. Right: The GCF prediction for the ground-state fractions
of pn and pp pairs as a function of pair relative momentum, calculated using the AV18 and N2LO NN interactions. The dashed
line marks the scalar limit, see text for details. The width of the GCF calculation bands shows their 68% confidence interval
due to uncertainties on the model parameters.

e�ciency, and momentum reconstruction resolution.

Similar to previous SRC studies [6–10], we considered
events with scattered electron kinematics of Q2 ⌘ |~q|2 �
!2 > 1.5 GeV2/c2 and xB ⌘ Q2/2mN! > 1.1, wheremN

is the nucleon mass, while ~q and ! are the 3-momentum
and energy transferred to the nucleus by the electron,
respectively. Assuming the electron scatters from a single
nucleon that does not reinteract as it leaves the nucleus
with momentum ~pf , the initial nucleon momentum ~pi
can be approximated as equal to the measured missing-
momentum: ~pi ⇡ ~pmiss ⌘ ~pf � ~q.

If the struck nucleon is part of a 2N -SRC pair, we
interpret the reaction through the SRC break-up model
where a correlated partner nucleon is assumed to exist
as an on-shell spectator carrying momentum ~precoil. For
an SRC pair with center-of-mass momentum ~pCM ⌘ ~pi+
~precoil, the residual A � 2 system will carry momentum
�~pCM , and may carry excitation energy denoted here by
E⇤. We also define the missing energy, Emiss ⌘ mN �
mA +

p
(! +mA � Ef )2 � p2miss, where mA is the mass

of the target nucleus and Ef is the energy of the leading
proton detected in the final state.

Following previous works [6–10], we selected 12C(e, e0p)
events in kinematics where the dominant reaction is
the scattering o↵ SRC pairs. Specifically, 12C(e, e0p)
events were required to have xB > 1.1 which sup-
presses contributions from isobar currents, 300 < pmiss <
1000 MeV/c that enhances contributions from interac-
tions with high initial momentum nucleons, an angle be-
tween ~pf and ~q smaller than 25�, 0.62 < |~pf |/|~q| < 0.96
that allows identifying a leading nucleon, and Mmiss ⌘

q
(qµ � pµf + 2mN )2 < 1.1 GeV/c2 that suppress reso-

nance productions.

Triple coincidence 12C(e, e0pn) events were selected
from the 12C(e, e0p) event sample by requiring a neu-
tron candidate in the TOF counters. We only considered
neutrons with momentum between 300 and 1000 MeV/c.
The triple coincidence signal sits on top of a similar-size
uncorrelated random background. This background is
uniformly random in neutron hit time, allowing it to be
estimated from o↵-time neutrons and subtracted. More
details on the event selection and background subtraction
can be found in the online supplementary materials.

Figure 1 shows the cosine of the angle between ~pmiss

and ~precoil for 12C(e, e0pn) events after random coinci-
dence background subtraction. While the recoil neutron
selection criteria do not place any angular requirements,
the measured distribution shows the back-to-back corre-
lation characteristic of SRC breakup events.

The measured distributions are compared to theoret-
ical predictions based on the GCF [37, 38, 42, 49] us-
ing the local AV18 [57] and N2LO(1.0) [58] NN interac-
tion models. The GCF assumes scale-separation between
the short-distance interactions within an SRC pair, and
the long-range interactions between the pair and the rest
of the nucleus, as well as their mutual separation from
the ultra-short distance scale associated with the high-
energy virtual photon probe. This scale separation per-
mits a factorized approximation for describing the scat-
tering cross-section, in which the hard break-up of an
SRC pair proceeds via a reaction in which the virtual
photon is absorbed by a single nucleon in an SRC pair,
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These kinematic settings covered (e,e'p) missing
momenta, which is the momentum of the
undetected particles, in the range from 300 to
600 MeV/c, with overlap between the different
settings. For highly correlated pairs, the missing
momentum of the (e,e'p) reaction is balanced
almost entirely by a single recoiling nucleon,
whereas for a typical uncorrelated (e,e'p) event,
themissingmomentum is balanced by the sum of
many recoiling nucleons. In a partonic picture, xB
is the fraction of the nucleon momentum carried
by the struck quark. Hence, when xB > 1, the
struck quark has more momentum than the entire
nucleon, which points to nucleon correlation. To
detect correlated recoiling protons, a large
acceptance spectrometer (“BigBite”) was placed
at an angle of 99° to the beam direction and 1.1
m from the target. To detect correlated recoiling
neutrons, a neutron array was placed directly
behind the BigBite spectrometer at a distance of 6
m from the target. Details of these custom proton
and neutron detectors can be found in the
supporting online material (16).

The electronics for the experiment were set
up so that for every 12C(e,e'p) event in the HRS
spectrometers, we read out the BigBite and
neutron-detector electronics; thus, we could deter-
mine the 12C(e,e'pp)/12C(e,e'p) and the 12C(e,e'pn)/
12C(e,e'p) ratios. For the 12C(e,e'pp)/12C(e,e'p)
ratio, we found that 9.5 ± 2% of the (e,e'p) events
had an associated recoiling proton, as reported in
(12). Taking into account the finite acceptance of
the neutron detector [using the same procedure
as with the proton detector (12)] and the neutron
detection efficency, we found that 96 ± 22% of
the (e,e'p) events with a missing momentum above
300 MeV/c had a recoiling neutron. This result
agrees with a hadron beam measurement of
(p,2pn)/(p,2p), in which 92 ± 18% of the (p,2p)
events with a missing momentum above the Fermi

momentum of 275 MeV/c were found to have a
single recoilingneutroncarrying themomentum(11).

Because we collected the recoiling proton
12C(e,e'pp) and neutron 12C(e,e'pn) data simulta-
neously with detection systems covering nearly
identical solid angles, we could also directly
determine the ratio of 12C(e,e'pn)/12C(e,e'pp). In
this scheme, many of the systematic factors
needed to compare the rates of the 12C(e,e'pn)
and 12C(e,e'pp) reactions canceled out. Correct-
ing only for detector efficiencies, we determined
that this ratio was 8.1 ± 2.2. To estimate the effect
of final-state interactions (that is, reactions that
happen after the initial scattering), we assumed
that the attenuations of the recoiling protons and
neutrons were almost equal. In this case, the only
correction related to final-state interactions of the
measured 12C(e,e'pn)/12C(e,e'pp) ratio is due to a
single-charge exchange. Because the measured
(e,e'pn) rate is about an order of magnitude larger
than the (e,e'pp) rate, (e,e'pn) reactions followed
by a single-charge exchange [and hence detected
as (e,e'pp)] dominated and reduced the measured
12C(e,e'pn)/12C(e,e'pp) ratio. Using the Glauber
approximation (17), we estimated that this effect
was 11%. Taking this into account, the corrected
experimental ratio for 12C(e,e'pn)/12C(e,e'pp) was
9.0 ± 2.5.

To deduce the ratio of p-n to p-p SRC pairs in
the ground state of 12C, we used the measured
12C(e,e'pn)/12C(e,e'pp) ratio. Because we used
(e,e'p) events to search for SRC nucleon pairs, the
probability of detecting p-p pairs was twice that
of p-n pairs; thus, we conclude that the ratio of
p-n/p-p pairs in the 12C ground state is 18 ± 5
(Fig. 2). To get a comprehensive picture of the
structure of 12C, we combined the pair faction
results with the inclusive 12C(e,e') measurements
(4, 5, 14) and found that approximately 20% of
the nucleons in 12C form SRC pairs, consistent

with the depletion seen in the spectroscopy ex-
periments (1, 2). As shown in Fig. 3, the com-
bined results indicate that 80% of the nucleons in
the 12C nucleus acted independently or as de-
scribed within the shell model, whereas for the
20% of correlated pairs, 90 ± 10% were in the
form of p-n SRC pairs; 5 ± 1.5%were in the form
of p-p SRC pairs; and, by isospin symmetry, we
inferred that 5 ± 1.5% were in the form of SRC
n-n pairs. The dominance of the p-n over p-p
SRC pairs is a clear consequence of the nucleon-
nucleon tensor force. Calculations of this effect
(18,19) indicate that it is robust anddoes not depend
on the exact parameterization of the nucleon-
nucleon force, the type of the nucleus, or the
exact ground-state wave function used to de-
scribe the nucleons.

If neutron stars consisted only of neutrons, the
relatively weak n-n short-range interaction would
mean that they could be reasonably well approxi-
mated as an ideal Fermi gas, with only perturba-
tive corrections. However, theoretical analysis of
neutrino cooling data indicates that neutron stars
contain about 5 to 10% protons and electrons in
the first central layers (20–22). The strong p-n
short-range interaction reported here suggests
that momentum distribution for the protons and
neutrons in neutron stars will be substantially
different from that characteristic of an ideal Fermi
gas. A theoretical calculation that takes into
account the p-n correlation effect at relevant
neutron star densities and realistic proton concen-
tration shows the correlation effect on the mo-
mentum distribution of the protons and the
neutrons (23). We therefore speculate that the
small concentration of protons inside neutron
stars might have a disproportionately large effect
that needs to be addressed in realistic descriptions
of neutron stars.
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Fig. 2. The fractions of correlated pair combinations in carbon as obtained from the (e,e'pp) and (e,e'pn)
reactions, as well as from previous (p,2pn) data. The results and references are listed in table S1.

Fig. 3. The average fraction of nucleons in the
various initial-state configurations of 12C.
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FIG. 3: Left: The measured fractions of triple coincidence events (C(e, e0pN)/C(e, e0p)), compared with GCF predictions
accounting for the variety of e↵ects that influence the measurement (e.g. CLAS detector acceptance, e�ciency, and resolution,
FSIs including SCX, and the event-selection procedure). The C(e, e0pp)/C(e, e0p) data (blue triangles) are taken from Ref. [10],
while the C(e, e0pn)/C(e, e0p) data (red circles) are from this work. Right: The GCF prediction for the ground-state fractions
of pn and pp pairs as a function of pair relative momentum, calculated using the AV18 and N2LO NN interactions. The dashed
line marks the scalar limit, see text for details. The width of the GCF calculation bands shows their 68% confidence interval
due to uncertainties on the model parameters.

e�ciency, and momentum reconstruction resolution.

Similar to previous SRC studies [6–10], we considered
events with scattered electron kinematics of Q2 ⌘ |~q|2 �
!2 > 1.5 GeV2/c2 and xB ⌘ Q2/2mN! > 1.1, wheremN

is the nucleon mass, while ~q and ! are the 3-momentum
and energy transferred to the nucleus by the electron,
respectively. Assuming the electron scatters from a single
nucleon that does not reinteract as it leaves the nucleus
with momentum ~pf , the initial nucleon momentum ~pi
can be approximated as equal to the measured missing-
momentum: ~pi ⇡ ~pmiss ⌘ ~pf � ~q.

If the struck nucleon is part of a 2N -SRC pair, we
interpret the reaction through the SRC break-up model
where a correlated partner nucleon is assumed to exist
as an on-shell spectator carrying momentum ~precoil. For
an SRC pair with center-of-mass momentum ~pCM ⌘ ~pi+
~precoil, the residual A � 2 system will carry momentum
�~pCM , and may carry excitation energy denoted here by
E⇤. We also define the missing energy, Emiss ⌘ mN �
mA +

p
(! +mA � Ef )2 � p2miss, where mA is the mass

of the target nucleus and Ef is the energy of the leading
proton detected in the final state.

Following previous works [6–10], we selected 12C(e, e0p)
events in kinematics where the dominant reaction is
the scattering o↵ SRC pairs. Specifically, 12C(e, e0p)
events were required to have xB > 1.1 which sup-
presses contributions from isobar currents, 300 < pmiss <
1000 MeV/c that enhances contributions from interac-
tions with high initial momentum nucleons, an angle be-
tween ~pf and ~q smaller than 25�, 0.62 < |~pf |/|~q| < 0.96
that allows identifying a leading nucleon, and Mmiss ⌘

q
(qµ � pµf + 2mN )2 < 1.1 GeV/c2 that suppress reso-

nance productions.

Triple coincidence 12C(e, e0pn) events were selected
from the 12C(e, e0p) event sample by requiring a neu-
tron candidate in the TOF counters. We only considered
neutrons with momentum between 300 and 1000 MeV/c.
The triple coincidence signal sits on top of a similar-size
uncorrelated random background. This background is
uniformly random in neutron hit time, allowing it to be
estimated from o↵-time neutrons and subtracted. More
details on the event selection and background subtraction
can be found in the online supplementary materials.

Figure 1 shows the cosine of the angle between ~pmiss

and ~precoil for 12C(e, e0pn) events after random coinci-
dence background subtraction. While the recoil neutron
selection criteria do not place any angular requirements,
the measured distribution shows the back-to-back corre-
lation characteristic of SRC breakup events.

The measured distributions are compared to theoret-
ical predictions based on the GCF [37, 38, 42, 49] us-
ing the local AV18 [57] and N2LO(1.0) [58] NN interac-
tion models. The GCF assumes scale-separation between
the short-distance interactions within an SRC pair, and
the long-range interactions between the pair and the rest
of the nucleus, as well as their mutual separation from
the ultra-short distance scale associated with the high-
energy virtual photon probe. This scale separation per-
mits a factorized approximation for describing the scat-
tering cross-section, in which the hard break-up of an
SRC pair proceeds via a reaction in which the virtual
photon is absorbed by a single nucleon in an SRC pair,

Ratio of evolved high-mom. distributions
in a low-mom. state (insensitive to details!)
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GENERALIZED CONTACT FORMALISM AND
QUANTUM MONTE CARLO CALCULATIONS

The GCF is an effective model that provides a fac-
torized approximation for the short-distance (small-r)
and high-momentum (large-k) components of the nuclear
many-body wave function. Its derivation is rooted in the
scale separation between the strong relative interaction of
nucleons in SRC pairs and their weaker interaction with
the residual A� 2 nuclear system [32, 33, 48]. Using this
scale separation, the two-nucleon density in either coordi-
nate or momentum space (i.e., the probability of finding
two nucleons with separation r or relative momentum q)
can be expressed at small separation or high momentum
as [33]:

⇢NN,↵
A (r) = CNN,↵

A ⇥ |'↵
NN (r)|2,

nNN,↵
A (q) = CNN,↵

A ⇥ |'↵
NN (q)|2, (1)

where A denotes the nucleus, NN denotes the nucleon
pair being considered (pn, pp, nn), and ↵ stands for the
nucleon-pair quantum state (spin 0 or 1). CNN,↵

A are
nucleus-dependent scaling coefficients, referred to as “nu-
clear contact terms”, and '↵

NN are universal two-body
wave functions that are given by the zero-energy solution
of the two-body Schrödinger equation for the NN pair
in the state ↵. '↵

NN are universal in the sense that they
are nucleus independent, but they do strongly depend on
the NN interaction model, see Fig. 1.

While the normalizations of two-nucleon densities are
well defined by the total number of nucleons in the
nucleus, the individual normalizations of CNN,↵

A and
|'↵

NN |2 are not. We therefore choose to normalize
|'↵

NN (q)|2 such that its integral above 1.3 fm�1
(⇡ kF)

equals unity [33]. '↵
NN (r) is the Fourier transform of

'↵
NN (q). Thus, the normalization of one function auto-

matically defines the normalization of the other.
We note that an important feature of the GCF is the

equivalence between short distance and high momentum.
This is built into Eq. (1) by the use of the same contact
terms CNN,↵

A for both densities.
Previous studies of the GCF [33] showed the valid-

ity of Eq. (1) using QMC calculations of ⇢NN,↵
A (r) and

nNN,↵
A (q) for A = 2 to 40 using the AV18+UX interac-

tion. More recently, the authors of Refs. [40, 49] ana-
lyzed QMC calculations of ⇢NN

A (r) using the same four
interactions studied here (although without separating
them into different spin-isospin channels), and showed
the first evidence for scale-and-scheme independence of
⇢NN
A (r)/⇢NN

d (r) ratios for short distances.
Here we extend these previous studies using new QMC

calculations of two-nucleon distributions in both coor-
dinate and momentum space, projected into different
spin-isospin channels, for different nuclei and using differ-
ent NN+3N potentials (AV18+UX, AV4’+UIXc, N2LO
(1.0 fm) and N2LO (1.2 fm)), see Table I.
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Figure 1: Universal two-body functions |'↵
NN |2 for spin-1 pn

(top) and spin-0 pp (bottom) pairs calculated in both coor-
dinate (left) and momentum (right) space for four different
NN potentials. See text for details.

The phenomenological AV18 [42] and AV4’ [44] poten-
tials are “hard interactions”, with a significant probabil-
ity for nucleons to have high momentum (k > 3 fm�1,
see Fig. 1). Their derivation is similar with AV4’ be-
ing a reprojection of AV18 onto the first four channels
that does not include the tensor interaction. Both po-
tentials are supported by 3N forces (UX [43] and the
central component of UIX, UIXc [35], respectively), that
provide a good description of all nuclei considered in this
work [30, 35, 37].

The N2LO interactions are fundamentally different, as
they are based on a chiral perturbation expansion up
to third order with local coordinate-space regulators at
distances of 1.0 and 1.2 fm [39, 45–47]. These regula-

Table I: QMC-calculated two-nucleon distributions for differ-
ent nuclei and NN+3N potentials. Checkmarks indicate cal-
culations used in the current study. All calculations are avail-
able for both coordinate and momentum space, except for
16O and 40Ca with AV18 (labeled with an asterisk below), for
which the UIX potential is used and results are only available
in coordinate space [37]. Calculations with the N2LO (1.2 fm)
potential for heavier systems are not considered in this work
due to the large regulator artifacts found for A � 12 (see
Ref. [39]).

AZ AV18+UX AV4’+UIXc N2LO(1.0fm) N2LO(1.2fm)

d
3H
3He
4He
6Li
12C –
16O ⇤ –
40Ca ⇤ – –

A-dep scale factors (“nuclear contacts”)  CA ∼ < χ |χ >

Universal (same all A, not VNN) shape from

two-body zero energy wf ϕ
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Ref. [35] showed that the relative abundance of short-
distance NN pairs in nucleus A relative to deuterium
(i.e., ⇢A(r)/⇢d(r) for r ! 0, where ⇢A(r) includes all
NN pairs) is insensitive to the nuclear interaction, and
is numerically consistent with the experimental values
of a2(A/d) for all nuclei considered. This raised doubts
about the sensitivity of a2(A/d) measurements to the
NN+3N interaction. However, the assumed connection
between the a2(A/d) data analyzed in momentum space
and the calculated pair-distance distributions needed to
be justified.

We bolster and extend these observations by showing
that the calculated contact ratios are independent of the
NN+3N interaction in both coordinate and momentum
space and for each pair quantum state separately. This is
consistent with previous calculations that found the rela-
tive abundance of SRC pairs to be a mean-field property
of the nuclear medium, with only their specific proper-
ties (isospin structure, relative momentum distribution,
etc.) being determined by the short distance part of the
NN interaction [56–60]. Thus our results raise even more
doubts about the connection between the a2(A/d) mea-
surements and the NN+3N interaction.

An alternate method for probing SRCs is by measuring
exclusive two-nucleon knockout reactions A(e, e0NN) [1,
3–10]. Fig. 5 shows the ratio of pp to pn pairs in 4

He, as
a function of the pair relative momenta, extracted from
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Figure 4: Ratios of spin-1 pn contact terms for different nu-
clei to deuterium (top) or 4He (middle), and of spin-0 pp con-
tact terms for different nuclei to 4He (bottom). The contact
terms ratios were extracted using different NN+3N poten-
tials in both coordinate (squares) and momentum (circles)
space. The contact values for 3H in the spin-0 pp panel corre-
sponds to Cs=0

nn , as there are no pp pairs in this nucleus. See
text for details.
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Figure 5: Ratio of pp-to-pn back-to-back pairs in 4He
as a function of pair relative momentum q, npp

A (q,Q =
0)/npn

A (q,Q = 0), for different NN+3N potentials, compared
with the experimental extractions of Ref. [7] using (e, e0pp)
and (e, e0pn) data. See text for details.

(e, e0pp) and (e, e0pn) data [7]. The data are compared
with two-nucleon distribution ratios npp

4He
(q)/npn

4He
(q) cal-

culated at zero c.m. pair momentum (Q = 0) using differ-
ent interaction models. Requiring low or zero c.m. mo-
mentum (back-to-back pairs) reduces contributions from
uncorrelated pairs [33], allowing to meaningfully compare
SRC calculations and measurements. The pp to pn ratio
calculated with the AV4’+UIXc interaction is inconsis-
tent with the other calculations and with the experimen-
tal data, due to its lack of a tensor force. Thus, exclusive
observables can be sensitive to short-distance properties
of the nuclear interaction.

Lastly, Refs. [61, 62] claimed there exists a difference
between the scaling of SRC pairs with small separation
and high relative momenta, and that of pairs with small
separation but any relative momenta. The fact that both
coordinate- and momentum-space contacts exhibit the
same scaling shows that these speculations are inconsis-
tent with QMC wave functions [63].

ABSOLUTE CONTACTS

Having observed that the ratio of contact terms for
heavier to light nuclei is both scale and scheme inde-
pendent, and is the same for both small-separation and
high-momentum pairs, we now examine the individual
contacts.

Fig. 6 (top panel) shows the contacts extracted by fit-
ting Eq. (1) to the individual two-nucleon QMC densi-
ties for different nuclei in either coordinate or momentum
space. In contrast to the contact ratios, here the univer-
sal functions do not cancel, so we fixed the normalization
of |'↵

NN (q)|2 so that its integral above 1.3 fm�1
(⇡ kF)

equals one. This defines the normalization of |'↵
NN (r)|2

via a Fourier transform, leaving CNN,↵
A as the only free

2

GENERALIZED CONTACT FORMALISM AND
QUANTUM MONTE CARLO CALCULATIONS

The GCF is an effective model that provides a fac-
torized approximation for the short-distance (small-r)
and high-momentum (large-k) components of the nuclear
many-body wave function. Its derivation is rooted in the
scale separation between the strong relative interaction of
nucleons in SRC pairs and their weaker interaction with
the residual A� 2 nuclear system [32, 33, 48]. Using this
scale separation, the two-nucleon density in either coordi-
nate or momentum space (i.e., the probability of finding
two nucleons with separation r or relative momentum q)
can be expressed at small separation or high momentum
as [33]:

⇢NN,↵
A (r) = CNN,↵

A ⇥ |'↵
NN (r)|2,

nNN,↵
A (q) = CNN,↵

A ⇥ |'↵
NN (q)|2, (1)

where A denotes the nucleus, NN denotes the nucleon
pair being considered (pn, pp, nn), and ↵ stands for the
nucleon-pair quantum state (spin 0 or 1). CNN,↵

A are
nucleus-dependent scaling coefficients, referred to as “nu-
clear contact terms”, and '↵

NN are universal two-body
wave functions that are given by the zero-energy solution
of the two-body Schrödinger equation for the NN pair
in the state ↵. '↵

NN are universal in the sense that they
are nucleus independent, but they do strongly depend on
the NN interaction model, see Fig. 1.

While the normalizations of two-nucleon densities are
well defined by the total number of nucleons in the
nucleus, the individual normalizations of CNN,↵

A and
|'↵

NN |2 are not. We therefore choose to normalize
|'↵

NN (q)|2 such that its integral above 1.3 fm�1
(⇡ kF)

equals unity [33]. '↵
NN (r) is the Fourier transform of

'↵
NN (q). Thus, the normalization of one function auto-

matically defines the normalization of the other.
We note that an important feature of the GCF is the

equivalence between short distance and high momentum.
This is built into Eq. (1) by the use of the same contact
terms CNN,↵

A for both densities.
Previous studies of the GCF [33] showed the valid-

ity of Eq. (1) using QMC calculations of ⇢NN,↵
A (r) and

nNN,↵
A (q) for A = 2 to 40 using the AV18+UX interac-

tion. More recently, the authors of Refs. [40, 49] ana-
lyzed QMC calculations of ⇢NN

A (r) using the same four
interactions studied here (although without separating
them into different spin-isospin channels), and showed
the first evidence for scale-and-scheme independence of
⇢NN
A (r)/⇢NN

d (r) ratios for short distances.
Here we extend these previous studies using new QMC

calculations of two-nucleon distributions in both coor-
dinate and momentum space, projected into different
spin-isospin channels, for different nuclei and using differ-
ent NN+3N potentials (AV18+UX, AV4’+UIXc, N2LO
(1.0 fm) and N2LO (1.2 fm)), see Table I.
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Figure 1: Universal two-body functions |'↵
NN |2 for spin-1 pn

(top) and spin-0 pp (bottom) pairs calculated in both coor-
dinate (left) and momentum (right) space for four different
NN potentials. See text for details.

The phenomenological AV18 [42] and AV4’ [44] poten-
tials are “hard interactions”, with a significant probabil-
ity for nucleons to have high momentum (k > 3 fm�1,
see Fig. 1). Their derivation is similar with AV4’ be-
ing a reprojection of AV18 onto the first four channels
that does not include the tensor interaction. Both po-
tentials are supported by 3N forces (UX [43] and the
central component of UIX, UIXc [35], respectively), that
provide a good description of all nuclei considered in this
work [30, 35, 37].

The N2LO interactions are fundamentally different, as
they are based on a chiral perturbation expansion up
to third order with local coordinate-space regulators at
distances of 1.0 and 1.2 fm [39, 45–47]. These regula-

Table I: QMC-calculated two-nucleon distributions for differ-
ent nuclei and NN+3N potentials. Checkmarks indicate cal-
culations used in the current study. All calculations are avail-
able for both coordinate and momentum space, except for
16O and 40Ca with AV18 (labeled with an asterisk below), for
which the UIX potential is used and results are only available
in coordinate space [37]. Calculations with the N2LO (1.2 fm)
potential for heavier systems are not considered in this work
due to the large regulator artifacts found for A � 12 (see
Ref. [39]).

AZ AV18+UX AV4’+UIXc N2LO(1.0fm) N2LO(1.2fm)

d
3H
3He
4He
6Li
12C –
16O ⇤ –
40Ca ⇤ – –

A-dep scale factors (“nuclear contacts”)  CA ∼ < χ |χ >

Universal (same all A, not VNN) shape from

two-body zero energy wf ϕ

But !NN is scale and 
scheme dependent. Ratios 
are independent but only 
probe “mean field” part
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Ref. [35] showed that the relative abundance of short-
distance NN pairs in nucleus A relative to deuterium
(i.e., ⇢A(r)/⇢d(r) for r ! 0, where ⇢A(r) includes all
NN pairs) is insensitive to the nuclear interaction, and
is numerically consistent with the experimental values
of a2(A/d) for all nuclei considered. This raised doubts
about the sensitivity of a2(A/d) measurements to the
NN+3N interaction. However, the assumed connection
between the a2(A/d) data analyzed in momentum space
and the calculated pair-distance distributions needed to
be justified.

We bolster and extend these observations by showing
that the calculated contact ratios are independent of the
NN+3N interaction in both coordinate and momentum
space and for each pair quantum state separately. This is
consistent with previous calculations that found the rela-
tive abundance of SRC pairs to be a mean-field property
of the nuclear medium, with only their specific proper-
ties (isospin structure, relative momentum distribution,
etc.) being determined by the short distance part of the
NN interaction [56–60]. Thus our results raise even more
doubts about the connection between the a2(A/d) mea-
surements and the NN+3N interaction.

An alternate method for probing SRCs is by measuring
exclusive two-nucleon knockout reactions A(e, e0NN) [1,
3–10]. Fig. 5 shows the ratio of pp to pn pairs in 4

He, as
a function of the pair relative momenta, extracted from
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Figure 4: Ratios of spin-1 pn contact terms for different nu-
clei to deuterium (top) or 4He (middle), and of spin-0 pp con-
tact terms for different nuclei to 4He (bottom). The contact
terms ratios were extracted using different NN+3N poten-
tials in both coordinate (squares) and momentum (circles)
space. The contact values for 3H in the spin-0 pp panel corre-
sponds to Cs=0

nn , as there are no pp pairs in this nucleus. See
text for details.
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Figure 5: Ratio of pp-to-pn back-to-back pairs in 4He
as a function of pair relative momentum q, npp

A (q,Q =
0)/npn

A (q,Q = 0), for different NN+3N potentials, compared
with the experimental extractions of Ref. [7] using (e, e0pp)
and (e, e0pn) data. See text for details.

(e, e0pp) and (e, e0pn) data [7]. The data are compared
with two-nucleon distribution ratios npp

4He
(q)/npn

4He
(q) cal-

culated at zero c.m. pair momentum (Q = 0) using differ-
ent interaction models. Requiring low or zero c.m. mo-
mentum (back-to-back pairs) reduces contributions from
uncorrelated pairs [33], allowing to meaningfully compare
SRC calculations and measurements. The pp to pn ratio
calculated with the AV4’+UIXc interaction is inconsis-
tent with the other calculations and with the experimen-
tal data, due to its lack of a tensor force. Thus, exclusive
observables can be sensitive to short-distance properties
of the nuclear interaction.

Lastly, Refs. [61, 62] claimed there exists a difference
between the scaling of SRC pairs with small separation
and high relative momenta, and that of pairs with small
separation but any relative momenta. The fact that both
coordinate- and momentum-space contacts exhibit the
same scaling shows that these speculations are inconsis-
tent with QMC wave functions [63].

ABSOLUTE CONTACTS

Having observed that the ratio of contact terms for
heavier to light nuclei is both scale and scheme inde-
pendent, and is the same for both small-separation and
high-momentum pairs, we now examine the individual
contacts.

Fig. 6 (top panel) shows the contacts extracted by fit-
ting Eq. (1) to the individual two-nucleon QMC densi-
ties for different nuclei in either coordinate or momentum
space. In contrast to the contact ratios, here the univer-
sal functions do not cancel, so we fixed the normalization
of |'↵

NN (q)|2 so that its integral above 1.3 fm�1
(⇡ kF)

equals one. This defines the normalization of |'↵
NN (r)|2

via a Fourier transform, leaving CNN,↵
A as the only free

2

GENERALIZED CONTACT FORMALISM AND
QUANTUM MONTE CARLO CALCULATIONS

The GCF is an effective model that provides a fac-
torized approximation for the short-distance (small-r)
and high-momentum (large-k) components of the nuclear
many-body wave function. Its derivation is rooted in the
scale separation between the strong relative interaction of
nucleons in SRC pairs and their weaker interaction with
the residual A� 2 nuclear system [32, 33, 48]. Using this
scale separation, the two-nucleon density in either coordi-
nate or momentum space (i.e., the probability of finding
two nucleons with separation r or relative momentum q)
can be expressed at small separation or high momentum
as [33]:

⇢NN,↵
A (r) = CNN,↵

A ⇥ |'↵
NN (r)|2,

nNN,↵
A (q) = CNN,↵

A ⇥ |'↵
NN (q)|2, (1)

where A denotes the nucleus, NN denotes the nucleon
pair being considered (pn, pp, nn), and ↵ stands for the
nucleon-pair quantum state (spin 0 or 1). CNN,↵

A are
nucleus-dependent scaling coefficients, referred to as “nu-
clear contact terms”, and '↵

NN are universal two-body
wave functions that are given by the zero-energy solution
of the two-body Schrödinger equation for the NN pair
in the state ↵. '↵

NN are universal in the sense that they
are nucleus independent, but they do strongly depend on
the NN interaction model, see Fig. 1.

While the normalizations of two-nucleon densities are
well defined by the total number of nucleons in the
nucleus, the individual normalizations of CNN,↵

A and
|'↵

NN |2 are not. We therefore choose to normalize
|'↵

NN (q)|2 such that its integral above 1.3 fm�1
(⇡ kF)

equals unity [33]. '↵
NN (r) is the Fourier transform of

'↵
NN (q). Thus, the normalization of one function auto-

matically defines the normalization of the other.
We note that an important feature of the GCF is the

equivalence between short distance and high momentum.
This is built into Eq. (1) by the use of the same contact
terms CNN,↵

A for both densities.
Previous studies of the GCF [33] showed the valid-

ity of Eq. (1) using QMC calculations of ⇢NN,↵
A (r) and

nNN,↵
A (q) for A = 2 to 40 using the AV18+UX interac-

tion. More recently, the authors of Refs. [40, 49] ana-
lyzed QMC calculations of ⇢NN

A (r) using the same four
interactions studied here (although without separating
them into different spin-isospin channels), and showed
the first evidence for scale-and-scheme independence of
⇢NN
A (r)/⇢NN

d (r) ratios for short distances.
Here we extend these previous studies using new QMC

calculations of two-nucleon distributions in both coor-
dinate and momentum space, projected into different
spin-isospin channels, for different nuclei and using differ-
ent NN+3N potentials (AV18+UX, AV4’+UIXc, N2LO
(1.0 fm) and N2LO (1.2 fm)), see Table I.
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Figure 1: Universal two-body functions |'↵
NN |2 for spin-1 pn

(top) and spin-0 pp (bottom) pairs calculated in both coor-
dinate (left) and momentum (right) space for four different
NN potentials. See text for details.

The phenomenological AV18 [42] and AV4’ [44] poten-
tials are “hard interactions”, with a significant probabil-
ity for nucleons to have high momentum (k > 3 fm�1,
see Fig. 1). Their derivation is similar with AV4’ be-
ing a reprojection of AV18 onto the first four channels
that does not include the tensor interaction. Both po-
tentials are supported by 3N forces (UX [43] and the
central component of UIX, UIXc [35], respectively), that
provide a good description of all nuclei considered in this
work [30, 35, 37].

The N2LO interactions are fundamentally different, as
they are based on a chiral perturbation expansion up
to third order with local coordinate-space regulators at
distances of 1.0 and 1.2 fm [39, 45–47]. These regula-

Table I: QMC-calculated two-nucleon distributions for differ-
ent nuclei and NN+3N potentials. Checkmarks indicate cal-
culations used in the current study. All calculations are avail-
able for both coordinate and momentum space, except for
16O and 40Ca with AV18 (labeled with an asterisk below), for
which the UIX potential is used and results are only available
in coordinate space [37]. Calculations with the N2LO (1.2 fm)
potential for heavier systems are not considered in this work
due to the large regulator artifacts found for A � 12 (see
Ref. [39]).

AZ AV18+UX AV4’+UIXc N2LO(1.0fm) N2LO(1.2fm)

d
3H
3He
4He
6Li
12C –
16O ⇤ –
40Ca ⇤ – –

A-dep scale factors (“nuclear contacts”)  CA ∼ < χ |χ >

Universal (same all A, not VNN) shape from

two-body zero energy wf ϕ

But !NN is scale and 
scheme dependent. Ratios 
are independent but only 
probe “mean field” part

Contacts not RG invariant

CA =
Λ0

∑
K,k′￼,k

⟨ψ A
Λ0

|a†
K
2 +k

a†
K
2 −k

aK
2 −k′￼

aK
2 +k′￼

ψ A
Λ0

⟩ ⇒ f(Λ)
Λ

∑
K,k′￼,k

⟨ψ A
Λ |a†

K
2 +k

a†
K
2 −k

aK
2 −k′￼

aK
2 +k′￼

ψ A
Λ⟩

A-independent

…But ratios in different A approx. RG invariant



Test ground: 2H(e,e′p)n
• Simplest knockout process (no induced 3N forces/currents) dd


• Focus on longitudinal structure function fL


• ss


• Components (deuteron wf, transition operator, FSI) scale-dependent, 
total is not. 


• Are some resolutions “better” than others? E.g., in a given kinematics, 
can FSI be minimized with different choices of λ?? How do 
interpretations change with scale?
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Deuteron wave function evolution
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k < λ components invariant <==> RG preserves long-distance physics


k > λ components suppressed <==> short-range correlations blurred out


Folklore: Simple wave functions at low λ  <==> more complicated operators?

                                                                      especially for high-q processes?



Final-state wave function evolution
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Final-state wave function evolution
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• High-k tail suppressed with evolution


• For                              localized around outgoing p′
 “local decoupling” Dainton et al. PRC 89 (2014) 



Current operator evolution
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Current operator evolution
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high resolution

one-body current
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Scale Dependence of Final State Interactions
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Scale Dependence of Final State Interactions
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FSI sizable at large λ
but negligible at low-resolution!


Folklore:

 

shouldn’t hard processes

be complicated in low resolution

(λ << q) pictures?


Why are FSI so small at low λ
in these kinematics ?0 30 60 90 120 150 180
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Scale Dependence of Final State Interactions
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λ = 1.5 fm-1



Scale Dependence of Interpretations
• Analysis/interpretation of a reaction involves understanding 

which part of wave functions probed (highly scale dependent!)


• E.g., sensitivity to D-state w.f. in large q2 processes
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Scale Dependence of Interpretations
• Analysis/interpretation of a reaction involves understanding 

which part of wave functions probed (highly scale dependent!)


• E.g., sensitivity to D-state w.f. in large q2 processes
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Scale Dependence of SRC Interpretation
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• Consider large q2 near threshold (small p′) for θ=0 in high-
resolution picture (COM frame of outgoing np)

Before After

photon only couples to proton

kp	kn	

q	

kn	

kp	
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• Consider large q2 near threshold (small p′) for θ=0 in high-
resolution picture (COM frame of outgoing np)

Before After

photon only couples to proton

kp	kn	

q	

kn	

kp	

∴ proton has large momentum  => initial large relative momentum


                                          (i.e., SRC pair) 



Scale Dependence of SRC Interpretation
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• Consider large q2 near threshold (small p′) for θ=0 in low-
resolution picture (COM frame of outgoing np)

Before After

kp	kn	
q	 kp	

kn	
two-
body	



Scale Dependence of SRC Interpretation
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• Consider large q2 near threshold (small p′) for θ=0 in low-
resolution picture (COM frame of outgoing np)

Before After

no large relative momentum in evolved deuteron wf


1-body current makes no contribution


∴ 2-body current mostly stops the low-relative momentum np pair  

kp	kn	
q	 kp	

kn	
two-
body	


