How to do SRC calculations at low-RG resolution scales

Dick Furnstahl

Anthony Tropiano

Anderson, SKB, Furnstahl, PRC **82** (2010) SKB and Roscher, PRC **86** (2012) More, SKB, Furnstahl, PRC **96** (2017) Tropiano, SKB, Furnstahl PRC **102** (2020) Tropiano, SKB, Furnstahl, in prep

Scott Bogner

Facility for Rare Isotope Beams Michigan State University

(RG) Resolution Scale $H = H(\Lambda)$

High resolution picture:

max. momenta in low-energy wf's $\sim \Lambda$

(RG) Resolution Scale $H = H(\Lambda)$

High resolution picture:

correlated SRC pairs

Hard, local interactions AVI8 etc.

max. momenta in low-energy wf's $\sim \Lambda$

high-k tails (k $>> k_F$) present

(RG) Resolution Scale $H = H(\Lambda)$

Low resolution picture:

resembles "mean field" picture

chiral EFT/soft interactions/shell model/DFT

max. momenta in low-energy wf's $\sim \Lambda$

no high-k tails (k $>> k_F$)

SRC studies at high resolution

one-body current operators complicated wf's

SRC studies at high resolution

one-body current operators complicated wf's

SRC studies at low resolution

two-body current operators simple wf's

Same cross section (if done right), but different interpretations, split between structure/reaction, FSI's, etc..

'ution NA - 2ators

SRC stud[;]

'ution A - 2ators

Same cross section (if done right), but different interpretations, split between structure/reaction, FSI's, etc.. Here: How can SRC calculations at low RG scale be carried out in practice? Under what approximations?

onecomp

Connections to existing phenomenology (GCF/LCA)?

Similarity Renormalization Group

Evolve SRC physics from high to low RG resolution $(\lambda \leq q)$

Focus on phenomenology e.g., $n(\mathbf{q})$, $\rho(\mathbf{q}, \mathbf{Q})$ as first step But see earlier deuteron electrodisintegration studies More, SKB, Furnstahl PRC96 (2017)

Similarity Renormalization Group

Evolve SRC physics from high to low RG resolution $(\lambda \leq q)$

Focus on phenomenology e.g., $n(\mathbf{q})$, $\rho(\mathbf{q}, \mathbf{Q})$ as first step But see earlier deuteron electrodisintegration studies More, SKB, Furnstahl PRC96 (2017)

Unitary RG ("Similarity Renormalization Group" $H(\lambda) = U(\lambda)HU^{\dagger}(\lambda) \qquad O(\lambda) = U(\lambda)OU^{\dagger}(\lambda)$ preserves all physics (unitary) if no approximations

low E states => $k \gtrsim \lambda$ highly suppressed

Bogner, Furnstahl, Schwenk Prog. Part. Nucl. Phys. 2010

 \hat{O}_a^{hi} = operator that probes high-q components at high-RG resolution

 $\langle A^{\mathrm{hi}} | \hat{O}_q^{\mathrm{hi}} | A^{\mathrm{hi}} \rangle \neq 0$

e.g., $\hat{n}^{\text{hi}}(\mathbf{q}) = a_{\mathbf{q}}^{\dagger}a_{\mathbf{q}}, \ \hat{\rho}^{\text{hi}}(\mathbf{q}, \mathbf{Q}) = a_{\underline{\varrho}+q}^{\dagger}a_{\underline{\varrho}-q}^{\dagger}a_{\underline{\varrho}-q}a_{\underline{\varrho}+q}a_{\underline{\varrho}+q}$

 \hat{O}_a^{hi} = operator that probes high-q components at high-RG resolution

 $\langle A^{\rm hi} | \hat{O}_q^{\rm hi} | A^{\rm hi} \rangle$

SRG evolve to $\lambda \leq q$

 $\langle A^{\rm hi} | \hat{O}_a^{\rm hi} | A^{\rm hi} \rangle = \langle A^{\rm hi} | \hat{U}_{\lambda}^{\dagger} \hat{U}_{\lambda} \hat{O}_a^{\rm hi} \hat{U}_{\lambda}^{\dagger} \hat{U}_{\lambda} | A^{\rm hi} \rangle = \langle A^{\rm hi} \rangle$

$$\neq 0 \qquad \text{e.g.,} \quad \hat{n}^{\text{hi}}(\mathbf{q}) = a_{\mathbf{q}}^{\dagger}a_{\mathbf{q}}, \quad \hat{\rho}^{\text{hi}}(\mathbf{q}, \mathbf{Q}) = a_{\frac{Q}{2}+q}^{\dagger}a_{\frac{Q}{2}-q}^{\dagger}a_{\frac{Q}{2}-q}^{\dagger}$$

$$\begin{array}{l} |\hat{O}_{q}^{lo}|A^{lo}\rangle & \quad \text{wf's of soft} \ \hat{H}^{lo} = \hat{U}_{\lambda} \hat{H}^{hi} \ \hat{U}_{\lambda}^{\dagger} \\ \\ \langle A^{lo}|\hat{O}_{q}^{hi}|A^{lo}\rangle \approx 0 \end{array}$$

 \hat{O}_a^{hi} = operator that probes high-q components at high-RG resolution $\langle A^{\mathrm{hi}} | \hat{O}_{q}^{\mathrm{hi}} | A^{\mathrm{hi}} \rangle$

SRG evolve to $\lambda \leq q$

 $\langle A^{\rm hi} | \hat{O}_a^{\rm hi} | A^{\rm hi} \rangle = \langle A^{\rm hi} | \hat{U}_{\lambda}^{\dagger} \hat{U}_{\lambda} \hat{O}_a^{\rm hi} \hat{U}_{\lambda}^{\dagger} \hat{U}_{\lambda} | A^{\rm hi} \rangle = \langle A^{\rm hi} \rangle$

$$\hat{U}_{\lambda} = \hat{1} + \frac{1}{4} \sum_{K,k,k'} \delta U_{\lambda}^{(2)}(k,k') a_{\frac{K}{2}+k}^{\dagger} a_{\frac{K}{2}-k}^{\dagger} a_{\frac{K}{2}-k'} a_{\frac{K}{2}+k'} +$$

fixed from SRG evolution on A=2

$$\neq 0 \qquad \text{e.g.,} \quad \hat{n}^{\text{hi}}(\mathbf{q}) = a_{\mathbf{q}}^{\dagger}a_{\mathbf{q}}, \quad \hat{\rho}^{\text{hi}}(\mathbf{q}, \mathbf{Q}) = a_{\frac{Q}{2}+q}^{\dagger}a_{\frac{Q}{2}-q}^{\dagger}a_{\frac{Q}{2}-q}^{\dagger}$$

$$|\hat{O}_{q}^{\text{lo}}|A^{\text{lo}}\rangle \qquad \text{wf's of soft } \hat{H}^{\text{lo}} = \hat{U}_{\lambda} \hat{H}^{\text{hi}} \hat{U}_{\lambda}^{\dagger}$$
$$\langle A^{\text{lo}}|\hat{O}_{q}^{\text{hi}}|A^{\text{lo}}\rangle \approx 0$$

$$\frac{1}{36}\sum \delta U_{\lambda}^{(3)}a^{\dagger}a^{\dagger}a^{\dagger}aaa + \cdots$$

fixed from SRG evolution on A=3

 $\delta U_{\lambda}(\mathbf{k},\mathbf{k}')$ inherits symmetries of V_{NN} (Galilean, partial wave structure, etc.)

 \hat{O}_a^{hi} = operator that probes high-q components at high-RG resolution $\langle A^{\rm hi} | \hat{O}_a^{\rm hi} | A^{\rm hi} \rangle$

SRG evolve to $\lambda \leq q$

 $\langle A^{\mathrm{hi}} | \hat{O}_{a}^{\mathrm{hi}} | A^{\mathrm{hi}} \rangle = \langle A^{\mathrm{hi}} | \hat{U}_{2}^{\dagger} \hat{U}_{2} \hat{O}_{a}^{\mathrm{hi}} \hat{U}_{2}^{\dagger} \hat{U}_{2} | A^{\mathrm{hi}} \rangle = \langle A^{\mathrm{hi}} \rangle$

fixed from SRG evolution on A=2

Wick's theorem to evaluate $\hat{O}_a^{\rm lo} = \hat{U}_\lambda \hat{O}_a^{\rm hi} \hat{U}_\lambda^{\dagger}$

$$\neq 0 \qquad \text{e.g.,} \quad \hat{n}^{\text{hi}}(\mathbf{q}) = a_{\mathbf{q}}^{\dagger}a_{\mathbf{q}}, \quad \hat{\rho}^{\text{hi}}(\mathbf{q}, \mathbf{Q}) = a_{\frac{Q}{2}+q}^{\dagger}a_{\frac{Q}{2}-q}^{\dagger}a_{\frac{Q}{2}-q}^{\dagger}$$

$$|\hat{O}_{q}^{\text{lo}}|A^{\text{lo}}\rangle \qquad \text{wf's of soft } \hat{H}^{\text{lo}} = \hat{U}_{\lambda} \hat{H}^{\text{hi}} \hat{U}_{\lambda}^{\dagger}$$
$$\langle A^{\text{lo}}|\hat{O}_{q}^{\text{hi}}|A^{\text{lo}}\rangle \approx 0$$

$$\frac{1}{36}\sum \delta U_{\lambda}^{(3)}a^{\dagger}a^{\dagger}a^{\dagger}aaa + \cdots$$

fixed from SRG evolution on A=3

$$= \hat{O}_{1b}^{\text{lo}} + \hat{O}_{2b}^{\text{lo}} + \hat{O}_{3b}^{\text{lo}} + \cdots$$

 $\delta U_{\lambda}(\mathbf{k},\mathbf{k}')$ inherits symmetries of V_{NN} (Galilean, partial wave structure, etc.)

$$\hat{O}_q^{\text{hi}}$$
 = operator

SRG evol

$$\langle A^{\mathrm{hi}} | \hat{O}_q^{\mathrm{hi}} | A$$

SRG H_{λ}^{lo} a "cluster" hierarchy $V_{\lambda}^{2N} \gg V_{\lambda}^{3N} \gg V_{\lambda}^{4N}$...

cancellations of KE/PE "amplify" the importance of 3N for bulk energies

$$\hat{U}_{\lambda} = \hat{1}$$

Wick's

 $a_{\underline{Q}}^{\dagger} a_{\underline{Q}} a_{\underline{Q}} a_{\underline{Q}} a_{\underline{Q}} + q a_$

 $\hat{U}_{\lambda}\hat{H}^{\text{hi}}\hat{U}_{\lambda}^{\dagger}$

 ≈ 0

$$\hat{O}_{q}^{\text{hi}} = \text{operator}$$

$$SRG \ H_{\lambda}^{\text{lo}} \text{ a ``cluster'}$$

$$SRG \ evol`$$

$$cancellations \ of \ KE_{\lambda}$$

$$bulk \ energies$$

$$\langle A^{\text{hi}} | \ \hat{O}_{q}^{\text{hi}} | A$$
For high-q operator
$$\hat{O}_{q}^{1b}(\lambda) \ll \hat{O}_{q}^{2b}(\lambda) \quad \mathbf{BU}$$

$$\hat{U}_{\lambda} = \hat{1}$$

Wick's

hierarchy $V_{\lambda}^{2N} \gg V_{\lambda}^{3N} \gg V_{\lambda}^{4N}$...

/PE "amplify" the importance of 3N for

rs ($\lambda \leq q$), evidence that

UT $\hat{O}_{q}^{2b}(\lambda) \gg \hat{O}_{q}^{3b}(\lambda) \gg \cdots$

 $a_{\frac{Q}{2}-q}^{\dagger}a_{\frac{Q}{2}-q}a_{\frac{Q}{2}+q}$

 $\hat{U}_{\lambda}\hat{H}^{\mathrm{hi}}\hat{U}_{\lambda}^{\dagger}$

 ≈ 0

Can assess SRG truncations by varying λ (observables don't change if no approximation made)

Wick's

SRG H_{λ}^{10} a "cluster" hierarchy $V_{\lambda}^{2N} \gg V_{\lambda}^{3N} \gg V_{\lambda}^{4N}$...

cancellations of KE/PE "amplify" the importance of 3N for

 $a_{+q}^{\dagger}a_{\underline{Q}}a_{\underline{Q}}a_{\underline{Q}}a_{\underline{Q}}q_$

 $\hat{U}_{\lambda}\hat{H}^{\text{hi}}\hat{U}_{\lambda}^{\dagger}$

 ≈ 0

to induced 3-body

Wick's

 $\begin{vmatrix} a_{\underline{Q}}^{\dagger} & a_{\underline{Q}} \\ +q & \underline{Q} \\ -q & \underline{Q} \\ +q & \underline{Q} \\ -q & \underline{Q} \\$

 $\hat{U}_{\lambda}\hat{H}^{\text{hi}}\hat{U}_{\lambda}^{\dagger}$

 ≈ 0

Some λ -dependence for relative momentum dist. integral over sizable CM ==> non-SRC physics; sensitive

cf. LCA, GCF, leading-order Brueckner, ...

Wick's

 $\begin{vmatrix} a_{\underline{Q}}^{\dagger} & a_{\underline{Q}} \\ +q & \underline{Q} \\ -q & \underline{Q} \\$

9

NŚĆL

 $\hat{U}_{\lambda}\hat{H}^{\text{hi}}\hat{U}_{\lambda}^{\dagger}$

 ≈ 0

induced 3-body negligible <==> SRC pairs 2-body physics

momentum distribution

 $\hat{n}^{\text{hi}}(\mathbf{q}) = a_{\mathbf{q}}^{\dagger}a_{\mathbf{q}}$

 $\hat{n}^{\text{lo}}(\mathbf{q}) = \left(\hat{1} + \delta U_{\lambda}^{(2)}\right) a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}} \left(\hat{1} + \delta U_{\lambda}^{\dagger^{(2)}}\right)$

momentum distribution $\hat{n}^{\text{hi}}(\mathbf{q}) = a_{\mathbf{q}}^{\dagger}a_{\mathbf{q}}$

$$\hat{n}^{\text{lo}}(\mathbf{q}) = a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}} + \frac{1}{2} \sum_{\mathbf{k},\mathbf{k}'} \delta U_{\lambda}(\mathbf{k},$$

 $+\frac{1}{4}\sum_{\mathbf{K},\mathbf{k},\mathbf{k}'}\delta U_{\lambda}(\mathbf{k},\mathbf{q}-\mathbf{K}/2)\,\delta U_{\lambda}^{\dagger}(\mathbf{q}-\mathbf{K}/2,\mathbf{k}')\,a_{\frac{\mathbf{K}}{2}+\mathbf{k}}^{\dagger}a_{\frac{\mathbf{K}}{2}-\mathbf{k}'}a_{\frac{\mathbf{K}}{2}+\mathbf{k}'}^{\dagger}$

 $+(\cdots)a^{\dagger}a^{\dagger}a^{\dagger}aaa + (\cdots)a^{\dagger}a^{\dagger}a^{\dagger}a^{\dagger}aaaa \cdots$

 $\hat{n}^{\text{lo}}(\mathbf{q}) = \left(\hat{1} + \delta U_{\lambda}^{(2)}\right) a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}} \left(\hat{1} + \delta U_{\lambda}^{\dagger^{(2)}}\right)$

 $\mathbf{k}') a_{\mathbf{q}-\mathbf{k}+\mathbf{k}'}^{\dagger} a_{\mathbf{q}+\mathbf{k}-\mathbf{k}'}^{\dagger} a_{\mathbf{q}-\mathbf{2}\mathbf{k}'}^{\dagger} a_{\mathbf{q}} + h.c.$

7

 $\hat{n}^{\text{lo}}(\mathbf{q}) = \left(\hat{1} + \delta U_{\lambda}^{(2)}\right) a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}} \left(\hat{1} + \delta U_{\lambda}^{\dagger^{(2)}}\right)$

 $+ (\cdots) a^{\dagger} a^{\dagger} a^{\dagger} a a a + (\cdots) a^{\dagger} a^{\dagger} a^{\dagger} a^{\dagger} a a a \cdots$

 $\hat{n}^{\text{lo}}(\mathbf{q}) = \left(\hat{1} + \delta U_{\lambda}^{(2)}\right) a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}} \left(\hat{1} + \delta U_{\lambda}^{\dagger^{(2)}}\right)$

$\langle D^{\mathrm{hi}} | a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}} | D^{\mathrm{hi}} \rangle$

 $\hat{n}^{\text{lo}}(\mathbf{q}) = \left(\hat{1} + \delta U_{\lambda}^{(2)}\right) a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}} \left(\hat{1} + \delta U_{\lambda}^{\dagger^{(2)}}\right)$

 $\begin{array}{l} \left\langle D^{\mathrm{hi}} \, \left| \, a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}}^{} \, \right| \, D^{\mathrm{hi}} \right\rangle \\ \left\langle D^{\mathrm{lo}} \, \left| \, a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}}^{} \, \right| \, D^{\mathrm{lo}} \right\rangle \end{array}$

 $\hat{n}^{\text{lo}}(\mathbf{q}) = \left(\hat{1} + \delta U_{\lambda}^{(2)}\right) a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}} \left(\hat{1} + \delta U_{\lambda}^{\dagger^{(2)}}\right)$

 $\langle D^{\text{hi}} | a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}} | D^{\text{hi}} \rangle$ $\langle D^{\text{lo}} | a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}} | D^{\text{lo}} \rangle$ $\langle D^{\text{lo}} | \delta U a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}} + a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}} \delta U^{\dagger} | D^{\text{lo}} \rangle$

 $\hat{n}^{\text{lo}}(\mathbf{q}) = \left(\hat{1} + \delta U_{\lambda}^{(2)}\right) a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}} \left(\hat{1} + \delta U_{\lambda}^{\dagger^{(2)}}\right)$

 $\langle D^{\text{hi}} | a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}} | D^{\text{hi}} \rangle$ $\langle D^{\text{lo}} | a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}} | D^{\text{lo}} \rangle$ $\langle D^{\text{lo}} | \delta U a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}} + a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}} \delta U^{\dagger} | D^{\text{lo}} \rangle$ $\langle D^{\text{lo}} | \delta U a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}} \delta U^{\dagger} | D^{\text{lo}} \rangle$

Consider $\mathbf{q} \gg \lambda$

momenta $\gg \lambda$ absent in $|A^{lo}\rangle$

K,**k**,**k**′

 $n^{\text{lo}}(\mathbf{q}) \approx \sum \delta U_{\lambda}(\mathbf{k}, \mathbf{q} - \mathbf{K}/2) \, \delta U_{\lambda}^{\dagger}(\mathbf{q} - \mathbf{K}/2, \mathbf{k}') \, a_{\frac{\mathbf{K}}{2} + \mathbf{k}}^{\dagger} a_{\frac{\mathbf{K}}{2} - \mathbf{k}}^{\dagger} a_{\frac{\mathbf{K}}{2} - \mathbf{k}'}^{\dagger} a_{\frac{\mathbf{K}}{2} + \mathbf{k}'}^{\dagger}$

$$\mathbf{q} - \mathbf{K}/2) \, \delta U_{\lambda}^{\dagger}(\mathbf{q} - \mathbf{K}/2, \mathbf{k}') \, a_{\frac{\mathbf{K}}{2} + \mathbf{k}}^{\dagger} a_{\frac{\mathbf{K}}{2} - \mathbf{k}}^{\dagger} a_{\frac{\mathbf{K}}{2} - \mathbf{k}'}^{\dagger} a_{\frac{\mathbf{K}}{2} + \mathbf{k}'}^{\dagger}$$

Expectation value in $|A^{10}\rangle ==>$ only "soft" $\mathbf{K}, \mathbf{k}', \mathbf{k} \leq \lambda$ contribute

$$\mathbf{k}, \mathbf{q}) \, \delta U_{\lambda}^{\dagger}(\mathbf{q}, \mathbf{k}') \, a_{\frac{\mathbf{K}}{2} + \mathbf{k}}^{\dagger} a_{\frac{\mathbf{K}}{2} - \mathbf{k}}^{\dagger} a_{\frac{\mathbf{K}}{2} - \mathbf{k}'}^{\dagger} a_{\frac{\mathbf{K}}{2} + \mathbf{k}'}^{\dagger} \qquad \qquad \mathbf{K} \ll \mathbf{q}$$

Scale separation $k, k' \ll q$

$$\mathbf{q} - \mathbf{K}/2) \,\delta U_{\lambda}^{\dagger}(\mathbf{q} - \mathbf{K}/2, \mathbf{k}') \,a_{\frac{\mathbf{K}}{2} + \mathbf{k}}^{\dagger} a_{\frac{\mathbf{K}}{2} - \mathbf{k}}^{\dagger} a_{\frac{\mathbf{K}}{2} - \mathbf{k}'}^{\dagger} a_{\frac{\mathbf{K}}{2} + \mathbf{k}'}^{\dagger}$$

Expectation value in $|A^{10}\rangle ==>$ only "soft" K, k', k $\leq \lambda$ contribute

$$\mathbf{k}, \mathbf{q}) \, \delta U_{\lambda}^{\dagger}(\mathbf{q}, \mathbf{k}') \, a_{\frac{\mathbf{K}}{2} + \mathbf{k}}^{\dagger} a_{\frac{\mathbf{K}}{2} - \mathbf{k}}^{\dagger} a_{\frac{\mathbf{K}}{2} - \mathbf{k}'}^{\dagger} a_{\frac{\mathbf{K}}{2} + \mathbf{k}'}^{\dagger} \qquad \mathbf{K} \ll \mathbf{q}$$

$$\approx F_{\lambda}^{\rm lo}(k)F_{\lambda}^{\rm hi}(q)$$

 $\approx (F^{\mathrm{hi}}(q))^2$

$$\mathbf{q} - \mathbf{K}/2) \, \delta U_{\lambda}^{\dagger}(\mathbf{q} - \mathbf{K}/2, \mathbf{k}') \, a_{\frac{\mathbf{K}}{2} + \mathbf{k}}^{\dagger} a_{\frac{\mathbf{K}}{2} - \mathbf{k}}^{\dagger} a_{\frac{\mathbf{K}}{2} - \mathbf{k}'}^{\dagger} a_{\frac{\mathbf{K}}{2} + \mathbf{k}'}^{\dagger}$$

Expectation value in $|A^{10}\rangle ==>$ only "soft" K, k', k $\leq \lambda$ contribute

$$\mathbf{k}, \mathbf{q}) \, \delta U_{\lambda}^{\dagger}(\mathbf{q}, \mathbf{k}') \, a_{\frac{\mathbf{K}}{2} + \mathbf{k}}^{\dagger} a_{\frac{\mathbf{K}}{2} - \mathbf{k}}^{\dagger} a_{\frac{\mathbf{K}}{2} - \mathbf{k}'}^{\dagger} a_{\frac{\mathbf{K}}{2} + \mathbf{k}'}^{\dagger} \qquad \mathbf{K} \ll \mathbf{q}$$

$$\sum_{\mathbf{K},\mathbf{k},\mathbf{k}'}^{\lambda} F^{\mathrm{lo}}(\mathbf{k}) F^{\mathrm{lo}}(\mathbf{k}') a_{\frac{\mathbf{K}}{2}+\mathbf{k}}^{\dagger} a_{\frac{\mathbf{K}}{2}-\mathbf{k}'}^{\dagger} a_{\frac{\mathbf{K}}{2}+\mathbf{k}'}^{\dagger}$$

 $\approx \sum \delta U_{\lambda}(\mathbf{k})$ **K**,**k**,**k**′

Leading-order **Operator Product Expansion**

(F^{hi}((\mathbf{Y})

Universal (A-indep) Wilson Coeff, fixed by A=2 depends on operator

$$\mathbf{q} - \mathbf{K}/2) \, \delta U_{\lambda}^{\dagger}(\mathbf{q} - \mathbf{K}/2, \mathbf{k}') \, a_{\frac{\mathbf{K}}{2} + \mathbf{k}}^{\dagger} a_{\frac{\mathbf{K}}{2} - \mathbf{k}}^{\dagger} a_{\frac{\mathbf{K}}{2} - \mathbf{k}'}^{\dagger} a_{\frac{\mathbf{K}}{2} + \mathbf{k}'}^{\dagger}$$

Expectation value in $|A^{10}\rangle ==>$ only "soft" K, k', k $\leq \lambda$ contribute

$$\mathbf{k}, \mathbf{q}) \, \delta U_{\lambda}^{\dagger}(\mathbf{q}, \mathbf{k}') \, a_{\frac{\mathbf{K}}{2} + \mathbf{k}}^{\dagger} a_{\frac{\mathbf{K}}{2} - \mathbf{k}}^{\dagger} a_{\frac{\mathbf{K}}{2} - \mathbf{k}'}^{\dagger} a_{\frac{\mathbf{K}}{2} + \mathbf{k}'}^{\dagger} \qquad \mathbf{K} \ll \mathbf{q}$$

Similar factorized forms for other SRC operators

Similar factorized forms for other SRC operators

$$\hat{\rho}^{\text{hi}}(\mathbf{q}, \mathbf{Q}) = a_{\frac{\mathbf{Q}}{2}+\mathbf{q}}^{\dagger} a_{\frac{\mathbf{Q}}{2}-\mathbf{q}}^{\dagger} a_{\frac{\mathbf{Q}}{2}-\mathbf{q}}^{\dagger} a_{\frac{\mathbf{Q}}{2}+\mathbf{q}}^{\dagger}$$

Scaling of high-q tails

$$\frac{\langle A^{\mathrm{hi}} | a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}} | A^{\mathrm{hi}} \rangle}{\langle D^{\mathrm{hi}} | a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}} | D^{\mathrm{hi}} \rangle} \approx \frac{|F^{\mathrm{hi}}(q)|^{2}}{|F^{\mathrm{hi}}(q)|^{2}}$$

 $\mathbf{q} \gg \lambda$ $\mathbf{\sim} \quad (F^{\text{hi}}(q))^2 \sum_{\mathbf{k},\mathbf{k}'}^{\lambda} F^{\text{lo}}(\mathbf{k}) F^{\text{lo}}(\mathbf{k}') a_{\frac{\mathbf{Q}}{2}+\mathbf{k}}^{\dagger} a_{\frac{\mathbf{Q}}{2}-\mathbf{k}'}^{\dagger} a_{\frac{\mathbf{Q}}{2}+\mathbf{k}'}^{\dagger}$

 $\sum_{j=1}^{\lambda} \left| \frac{2}{2} \right|^{2} \times \frac{\sum_{\mathbf{K},\mathbf{k},\mathbf{k}'}^{\lambda} \langle A^{\mathrm{lo}} | a_{\frac{\mathbf{K}}{2}+\mathbf{k}}^{\dagger} a_{\frac{\mathbf{K}}{2}-\mathbf{k}'}^{\dagger} a_{\frac{\mathbf{K}}{2}-\mathbf{k}'}^{\dagger} a_{\frac{\mathbf{K}}{2}+\mathbf{k}'}^{\dagger} | A^{\mathrm{lo}} \rangle}{\sum_{\mathbf{K},\mathbf{k},\mathbf{k}'}^{\lambda} \langle D^{\mathrm{lo}} | a_{\frac{\mathbf{K}}{2}+\mathbf{k}}^{\dagger} a_{\frac{\mathbf{K}}{2}-\mathbf{k}'}^{\dagger} a_{\frac{\mathbf{K}}{2}-\mathbf{k}'}^{\dagger} a_{\frac{\mathbf{K}}{2}+\mathbf{k}'}^{\dagger} | D^{\mathrm{lo}} \rangle}$

Similar factorized forms for other SRC operators

$$\hat{\rho}^{\text{hi}}(\mathbf{q}, \mathbf{Q}) = a_{\frac{\mathbf{Q}}{2}+\mathbf{q}}^{\dagger} a_{\frac{\mathbf{Q}}{2}-\mathbf{q}}^{\dagger} a_{\frac{\mathbf{Q}}{2}-\mathbf{q}}^{\dagger} a_{\frac{\mathbf{Q}}{2}+\mathbf{q}}^{\dagger}$$

Scaling of high-q tails

$$\frac{\langle A^{\mathrm{hi}} | a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}} | A^{\mathrm{hi}} \rangle}{\langle D^{\mathrm{hi}} | a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}} | D^{\mathrm{hi}} \rangle} \approx \frac{|F^{\mathrm{hi}}(q)|^{2}}{|F^{\mathrm{hi}}(q)|^{2}}$$

 $F^{\rm hi}(\mathbf{q}) \propto \Psi^{\rm hi}_{A=2}(\mathbf{q})$

$$\mathbf{q} \gg \lambda$$

$$\Rightarrow (F^{\text{hi}}(q))^2 \sum_{\mathbf{k},\mathbf{k}'}^{\lambda} F^{\text{lo}}(\mathbf{k}) F^{\text{lo}}(\mathbf{k}') a_{\frac{\mathbf{Q}}{2}+\mathbf{k}}^{\dagger} a_{\frac{\mathbf{Q}}{2}-\mathbf{k}'}^{\dagger} a_{\frac{\mathbf{Q}}{2}+\mathbf{k}'}^{\dagger}$$

$$\sum_{2}^{\lambda} \times \frac{\sum_{\mathbf{K},\mathbf{k},\mathbf{k}'}^{\lambda} \langle A^{\mathrm{lo}} | a_{\frac{\mathbf{K}}{2}+\mathbf{k}}^{\dagger} a_{\frac{\mathbf{K}}{2}-\mathbf{k}'}^{\dagger} a_{\frac{\mathbf{K}}{2}+\mathbf{k}'} | A^{\mathrm{lo}} \rangle}{\sum_{\mathbf{K},\mathbf{k},\mathbf{k}'}^{\lambda} \langle D^{\mathrm{lo}} | a_{\frac{\mathbf{K}}{2}+\mathbf{k}}^{\dagger} a_{\frac{\mathbf{K}}{2}-\mathbf{k}'}^{\dagger} a_{\frac{\mathbf{K}}{2}-\mathbf{k}'}^{\dagger} a_{\frac{\mathbf{K}}{2}+\mathbf{k}'} | D^{\mathrm{lo}} \rangle }$$

ratio of (smeared) contacts only sensitive to low-k/mean-field physics approx. independent of resolution scale (see GCF talks of Diego/Ronan)

RG-evolved SRC operators

links few- and A-body systems (Operator Product Expansion) RG "derivation" of the GCF Correlations/scaling for 2 observables w/same leading OPE Subleading OPE ==> deviations from scaling calculable in principle?

Si

(see GCF talks of Diego/Ronan)

Options for treating wf's at low-RG resolutions

All the hard q physcis factorized in A-indep Wilson Coeffs

SRC calculations amount to computing matrix elements of

 $\sum_{k=1}^{n} F^{\mathrm{lo}}(\mathbf{k}) F^{\mathrm{lo}}(\mathbf{k}') \left\langle A^{\mathrm{lo}} \middle| a_{\frac{\mathbf{K}}{2}+\mathbf{k}}^{\dagger} a_{\frac{\mathbf{K}}{2}-\mathbf{k}'}^{\dagger} a_{\frac{\mathbf{K}}{2}-\mathbf{k}'}^{\dagger} a_{\frac{\mathbf{K}}{2}+\mathbf{k}'}^{\dagger} \middle| A^{\mathrm{lo}} \right\rangle$ **K**,**k**,**k**′

All the hard q physcis factorized in A-indep Wilson Coeffs

SRC calculations amount to computing matrix elements of

$$\sum_{\mathbf{K},\mathbf{k},\mathbf{k}'}^{\lambda} F^{\mathrm{lo}}(\mathbf{k}) F^{\mathrm{lo}}(\mathbf{k}') \left\langle A^{\mathrm{lo}} \middle| a_{\frac{\mathbf{K}}{2}+\mathbf{k}}^{\dagger} a_{\frac{\mathbf{K}}{2}-\mathbf{k}'}^{\dagger} a_{\frac{\mathbf{K}}{2}-\mathbf{k}'}^{\dagger} a_{\frac{\mathbf{K}}{2}+\mathbf{k}'} \middle| A^{\mathrm{lo}} \right\rangle$$

Figure 7. Reference (\bigcirc/\square) and second-order NCSM-PT (\bigcirc/\square) energies with $N_{\max}^{\text{ref}} = 0$ and 2, respectively, for the ground states of $^{11-20}$ C, $^{16-26}$ O and $^{17-31}$ F using the Hamiltonian described in Sec. 3. All calculations are performed using 13 oscillator shells and an oscillator frequency of $\hbar\omega = 20 \,\text{MeV}$. The SRG parameter is set to $\alpha = 0.08 \, \text{fm}^4$. Importance-truncated NCSM calculations (\blacktriangle) are shown for comparison. Experimental values are indicated by black bars. Figure taken from Ref. [36].

Simple methods "work"

- MBPT
- shell model
- polynomially scaling methods (IMSRG, CC, SCGF, etc.)

Ongoing developments:

saturation properties in medium mass

e.g., $\Delta NNLO_{GO}$ chiral EFT (with Δ 's)

Charge radii (top) and ground-state energies (bottom) of calcium isotopes with A nucleons computed with new potentials $\Delta NNLO_{GO}$.

- "soft" interactions w/good

Figure 7. Reference (\circ/\Box) and second-order NCSM-PT (\circ/\Box) energies with $N_{\text{max}}^{\text{ref}} = 0$ and 2, respectively, for the ground states of $^{11-20}$ C, $^{16-26}$ O and $^{17-31}$ F using the Hamiltonian described in Sec. 3. All calculations are performed using 13 oscillator shells and an oscillator frequency of $\hbar\omega = 20 \,\text{MeV}$. The SRG parameter is set to $\alpha = 0.08 \, \text{fm}^4$. Importance-truncated NCSM calculations (\blacktriangle) are shown for comparison. Experimental values are indicated by black bars. Figure taken from Ref. [36].

Need beyond HF for precision energetics/radii Can we use HF for SRC studies at low resolution? Or HF treated in LDA? Let's find out!...

Strategy for SRC calcs. at low-RG scales

$$\widehat{n}^{\text{lo}}(\mathbf{q}) \approx \sum_{\mathbf{K},\mathbf{k},\mathbf{k}'} \delta U_{\lambda}(\mathbf{k},\mathbf{q}-\mathbf{K}/2)$$

Figure 7. Referen respectively, for the All calculations are The SRG paramete comparison. Exper

2) $\delta U_{\lambda}^{\dagger}(\mathbf{k}', \mathbf{q} - \mathbf{K}/2) a_{\underline{\mathbf{K}}^{\dagger} + \mathbf{k}}^{\dagger} a_{\underline{\mathbf{K}}^{\dagger} - \mathbf{k}}^{\dagger} a_{\underline{\mathbf{K}}^{\dagger} - \mathbf{k}'}^{\dagger} a_{\underline{\mathbf{K}}^{\dagger} - \mathbf{k}'}^{\dagger} a_{\underline{\mathbf{K}}^{\dagger} + \mathbf{k}'}^{\dagger}$

adii lution? **Jut!...**

fixed from A=2

Figure 7. Referen respectively, for the All calculations are The SRG paramete comparison. Exper

adii lution? **Jut!...**

Figure 7. Referen respectively, for the All calculations are The SRG paramete comparison. Exper

1dii lution? **Jut!...**

Figure 7. Referen respectively, for the All calculations are The SRG paramete comparison. Exper

What SRC phenomenology can this (ridiculously) simple approach reproduce?

adii

lution?

Tropiano, SKB, Furnstahl (in progress)

Tropiano, SKB, Furnstahl (in progress)

np dominance => ratio should be ~ 1 irrespective of N/Z

Tropiano, SKB, Furnstahl (in progress)

np dominance => ratio should be ~ 1 irrespective of N/Z

transition towards scalar counting at higher relative q

Tropiano, SKB, Furnstahl (in progress)

np dominance => ratio should be ~ 1 irrespective of N/Z

Ratio of *evolved* high-mom. distributions in a low-mom. state (insensitive to details!)

Tropiano, SKB, Furnstahl (in progress)

Tropiano, SKB, Furnstahl (in progress)

np pair (tensor force) dominance

Tropiano, SKB, Furnstahl (in progress)

np pair (tensor force) dominance

weak nucleus dependence follows from factorization

Tropiano, SKB, Furnstahl (in progress)

np pair (tensor force) dominance

weak nucleus dependence follows from factorization

Ratio
$$\approx \frac{(F_{pp}^{hi}(q))^2 \left\langle A^{lo} \right| \sum_{\mathbf{k},\mathbf{k}'}^{\lambda} a_{\frac{\mathbf{Q}}{2}+\mathbf{k}}^{\dagger} a_{\frac{\mathbf{Q}}{2}-\mathbf{k}'}^{\dagger} a_{\frac{\mathbf{Q}}{2}+\mathbf{k}'}^{\dagger}}{(F_{np}^{hi}(q))^2 \left\langle A^{lo} \right| \sum_{\mathbf{k},\mathbf{k}'}^{\lambda} a_{\frac{\mathbf{Q}}{2}+\mathbf{k}}^{\dagger} a_{\frac{\mathbf{Q}}{2}-\mathbf{k}'}^{\dagger} a_{\frac{\mathbf{Q}}{2}+\mathbf{k}'}^{\dagger}}$$

Tropiano, SKB, Furnstahl (in progress)

np pair (tensor force) dominance

weak nucleus dependence follows from factorization

$$atio \approx \frac{(F_{pp}^{hi}(q))^2}{(F_{pp}^{hi}(q))^2}$$

Tropiano, SKB, Furnstahl (in progress)

Followed Ryckebusch et al. prescription

 $a_2(A) = \lim_{\text{high } p} \frac{P^A(p)}{P^d(p)} \approx \frac{\int_{\Delta p^{\text{high }}} dp P^A(p)}{\int_{\Delta \text{ which }} dp P^d(p)}.$

$$\Delta p^{\text{high}} = [3.8...4.5] \text{ fm}^{-1}$$

Decent agreement w/LCA calcs (flatter A-dependence)

But systematics need to be explored more!

Looking ahead

Can we use low-RG scale pictures to directly compute cross sections, etc?

reaction $\widehat{\hat{O}}(q) \quad |\psi_i\rangle = \langle \psi_f | U_\lambda U_\lambda^{\dagger} \widehat{O}(q) U_\lambda U_\lambda^{\dagger} | \psi_i \rangle = \langle \psi_f^{\lambda} | \psi_i \rangle$

structure

structure

 $\operatorname{structure}(\lambda)$

reaction(λ) $\widehat{O}^{\lambda}(q)$ $|\psi_i^\lambda
angle$ structure(λ)

Looking ahead

Can we use low-RG scale pictures to directly compute cross sections, etc?

cf deuteron electrodisintegration studies More, SKB, Furnstahl PRC96 (2017)

Looking ahead

Can we use low-RG scale pictures to directly compute cross sections, etc?

c deuteron electrodisintegration studies More, SKB, Furnstahl PRC96 (2017)

scale/scheme dependence of extracted properties? (e.g., SFs)

extract at one scale, evolve to another? (like PDFs)

how do FSIs, physical interpretations, etc. depend on RG scale?

Scale Dependence of Final State Interactions

Deuteron Electrodisintegration

 $x_B=1.64$, $Q^2=1.78$ GeV²

Scale Dependence of Final State Interactions

Deuteron Electrodisintegration

 $x_B=1.64$, $Q^2=1.78$ GeV²

FSI sizable at large λ but negligible at low-resolution!

Takeaway point:

Size of FSI depends on RG scale/scheme

Ditto physical interpretations

Other exclusive knock-out reactions [pictures from A. Gade]

Other exclusive knock-out reactions [pictures from A. Gade]

Summary

RG smoothly connects high- and low-resolution pictures. There is no "correct" picture in an absolute sense (e.g., can reproduce SRC phenom. in a low resolution picture, or can do manybody calculations in high-resolution picture)

Unexpected simplifications for calculating SRC quantities at low-RG resolution ($q \gg \lambda$)

- factorization of q-dependence into A-indep Wilson coeffs (few-body physics)
- simple many-body calculations due to low-k wf's
- SRC phenomenology

Natural connections to GCF/LCA approaches; RG/OPE machinery ==> corrections to scaling, 3N SRCs, etc. possible

Interpretations, FSIs, etc. depend on RG scale for deuteron electrodisintegration. Can we exploit this in more complicated knock-out reactions by treating structure/reaction consistently at the same resolution scale?


```
• LDA (free fermi gas) seems to be sufficient (a-la LCA ) at reproducing some of the usual
```


2) Kinematics of knocked-out nucleons

knocked out SRC nucleons fly out almost back-to-back (relative s-wave pairs)

Tropiano. SKB. Furnstahl (in progress)

measured (corrected)

Tropiano, SKB, Furnstahl (in progress)

90°

120°

2) Kin~ evolved pair momentum distribution ($\lambda \sim k_F < < q$)

$$\rho_{NN,\alpha}(Q,q) \sim \gamma_{\alpha}^{2}(q;\Lambda) \sum_{k,k'} |\langle \psi^{A}(\Lambda)| [c] \rangle$$

m.e. of smeared contact operator ==> high q pairs dominated relative s-waves

knd alm re

evolved $\psi(\Lambda)$ "soft", dominated by MFT configs ==> CM Q distribution smooth/gaussian with width $\sim k_F$

Tropiano, SKB, Furnstahl (in progress)

 $a_{\underline{Q}+k}^{\dagger}a_{\underline{Q}-k}^{\dagger}a_{\underline{Q}-k'}a_{\underline{Q}+k'}a_{\underline{Q}+k'}a_{\underline{Q}+k'}a_{\underline{Q}+k'}a_{\underline{Q}+k'}a_{\underline{Q}+k'}$

3) np dominance at intermediate (300-500 MeV) relative momenta

Fig. 3. The average fraction of nucleons in the various initial-state configurations of ¹²C.

R. Subedi et al., Science (2008)

20% of nucleons in SRC pairs but mostly neutron-proton

Tropiano, SKB, Furnstahl (in progress)

3) np dominance at intermediate (300-500 MeV) relative momenta

Fig. 3. The average fraction of nucleons in the various initial-state configurations of ¹²C.

R. Subedi et al., Science (2008)

20% of nucleons in SRC pairs but mostly neutron-proton

Tropiano, SKB, Furnstahl (in progress)

4) transition to scalar counting at higher relative momentum

3) np dominance at intermediate (300-500 MeV) relative momenta

Fig. 3. The average fraction of nucleons in the various initial-state configurations of ¹²C.

R. Subedi et al., Science (2008)

20% of nucleons in SRC pairs but mostly neutron-proton

4) transition to scalar counting at higher relative momentum

Tropiano, SKB, Furnstahl (in progress)

6) Generalized Contact Formalism (GCF)

Tropiano, SKB, Furnstahl (in progress)

6) Generalized Contact Formalism (GCr)

$$\rho_A^{NN,\alpha}(r) = C_A^{NN,\alpha} \times |\varphi_{NN}^{\alpha}(r)|^2$$
$$n_A^{NN,\alpha}(q) = C_A^{NN,\alpha} \times |\varphi_{NN}^{\alpha}(q)|^2$$

A-dep scale factors ("nuclear contacts") $C_A \sim \langle \chi | \chi \rangle$

Universal (same all A, **not** V_{NN}) shape from two-body zero energy wf ϕ

6) Generalized Contact Formalism (GCr)

$$\rho_A^{NN,\alpha}(r) = C_A^{NN,\alpha} \times |\varphi_{NN}^{\alpha}(r)|^2$$
$$n_A^{NN,\alpha}(q) = C_A^{NN,\alpha} \times |\varphi_{NN}^{\alpha}(q)|^2$$

A-dep scale factors ("nuclear contacts") $C_A \sim < \chi | \chi >$

Universal (same all A, **not** V_{NN}) shape from two-body zero energy wf ϕ

But φ_{NN} is scale and scheme dependent. Ratios are independent but only probe "mean field" part

SRC phenomenology revisite

6) Gene

Contacts **not** RG invariant $C_{A} = \sum_{K,k',k}^{\Lambda_{0}} \langle \psi_{\Lambda_{0}}^{A} | a_{\frac{K}{2}+k}^{\dagger} a_{\frac{K}{2}-k}^{\dagger} a_{\frac{K}{2}-k'} a_{\frac{K}{2}+k'} | \psi_{\Lambda_{0}}^{A} \rangle =$

A-dep scale

 $ho_A^{NN,lpha}$

 $n_A^{NN,\alpha}$

Universal (s two-body z

But schem are in probe

...But ratios in different A approx. RG invariant

 $\Rightarrow f(\Lambda) \sum_{K,k',k} \langle \psi_{\Lambda}^{A} | a_{\frac{K}{2}+k}^{\dagger} a_{\frac{K}{2}-k}^{\dagger} a_{\frac{K}{2}-k'} a_{\frac{K}{2}+k'} | \psi_{\Lambda}^{A} \rangle$

A-independent

Test ground: ²H(e,e'p)n

- Simplest knockout process (no induced 3N forces/currents)
- Focus on longitudinal structure function f_L

$$f_L \sim \sum_{m_s, m_J} \left| \langle \psi_f | J_0 | \psi_i \rangle \right|^2$$

•
$$f_L^{\lambda} \sim \left| \langle \underbrace{\psi_f | U_{\lambda}^{\dagger}}_{\psi_f^{\lambda}} \underbrace{U_{\lambda} J_0 U_{\lambda}^{\dagger}}_{J_0^{\lambda}} \underbrace{U_{\lambda} | \psi_i }_{\psi_i^{\lambda}} \right|^2; \quad U_{\lambda}^{\dagger} U_{\lambda}$$

- Components (deuteron wf, transition operator, FSI) scale-dependent, total is not.
- Are some resolutions "better" than others? E.g., in a given kinematics, can FSI be minimized with different choices of λ ?? How do interpretations change with scale?

reaction plane $(\omega_{ m lab}, {f q}_{ m lab})$ p ϕ_p SCOLUCTION OF TOUTO $=I; f_L^{\lambda}=f_L$

Deuteron wave function evolution

Folklore: Simple wave functions at low $\lambda <==>$ more complicated operators? especially for high-q processes?

 $k < \lambda$ components invariant <==> RG preserves long-distance physics

 $k > \lambda$ components suppressed <==> short-range correlations blurred out

Final-state wave function evolution

Final-state wave function evolution

High-k tail suppressed with evolution

• For $p' \gtrsim \lambda$, $\Delta \psi_f^{\lambda}(p';k)$ localized around outgoing p' "local decoupling" Dainton et al. PRC 89 (2014)

FSI

Current operator evolution

${}^{3}S_{1}$ channel $q^{2} = 36 \text{ fm}^{-2}$

Current operator evolution

Look at kinematics relevant to SRC studies

 $x_B=1.64$, $Q^2=1.78$ GeV²

Look at kinematics relevant to SRC studies

 $x_B=1.64$, $Q^2=1.78$ GeV²

FSI sizable at large λ but negligible at low-resolution!

Folklore:

shouldn't hard processes be complicated in low resolution $(\lambda << q)$ pictures?

Why are FSI so small at low λ in these kinematics ?

For $p' \ge \lambda$, interacting part of final state wf localized at $k \approx p'$

For $p' \ge \lambda$, interacting part of final state wf localized at $k \approx p'$

initial state (deuteron) wf

initial state (deuteron) wf 10^{1} $\langle {}^{3}S_{1}; k_{1} | J_{0}^{\lambda=1.5} | {}^{3}S_{1}; k_{2} \rangle q^{2} = 49 \, \text{fm}^{-2}$ 0.010 $\psi_{^3S_1}^{\lambda=\infty}$ 3 4 56 0.008 $\psi_{^{3}D_{1}}^{\lambda=\infty}$ 0.006 $\qquad \psi_{^3D_1}^{\lambda=2}$ 0.004 2 $k \,[{\rm fm}^{-1}]$ 0.0020.000 -0.002•• FSI ~ T(p',p') $\lambda = 1.5 \text{ fm}^{-1}$ -0.004(small!) -0.006-0.008 $k_2 \,[{\rm fm}^{-1}]$ -0.010

- E.g., sensitivity to D-state w.f. in large q² processes

Analysis/interpretation of a reaction involves understanding which part of wave functions probed (highly scale dependent!)

- E.g., sensitivity to D-state w.f. in large q² processes

Analysis/interpretation of a reaction involves understanding which part of wave functions probed (highly scale dependent!)

 Consider large q² near threshold (small p') for θ=0 in highresolution picture (COM frame of outgoing np)

photon only couples to proton

• Consider large q^2 near threshold (small p') for $\theta = 0$ in **highresolution** picture (COM frame of outgoing np)

photon only couples to proton

• proton has large momentum => initial large relative momentum (i.e., SRC pair)

• Consider large q^2 near threshold (small p') for $\theta = 0$ in **lowresolution** picture (COM frame of outgoing np)

Before

After

• Consider large q^2 near threshold (small p') for $\theta = 0$ in **lowresolution** picture (COM frame of outgoing np)

no large relative momentum in evolved deuteron wf

1-body current makes no contribution

After

. 2-body current mostly stops the low-relative momentum np pair

