

# Nuclear effects in the deuteron: model-independent constraints from QCD global analysis

Wally Melnitchouk

— Jefferson Lab —

Chris Cocuzza (Temple U), Nobuo Sato (JLab), and JAM (Jefferson Lab Angular Momentum) Collaboration



https://www.jlab.org/jam

# Overview

- Nucleon structure and global QCD analysis of PDFs
- Nuclear effects in DIS from the deuteron
- $\blacksquare d/u \text{ PDF ratio at large } x$
- JAM Monte Carlo analysis
- Outlook

# Parton distributions in the nucleon

Inclusive high-energy particle production  $AB \rightarrow CX$ 



Collins, Soper, Sterman (1980s)

→ <u>QCD factorization</u>: separation of hard (perturbative, calculable) from soft (nonperturbative, parametrized) physics

$$\sigma_{AB\to CX}(p_A, p_B) = \sum_{a,b} \int dx_a \, dx_b \, \underbrace{f_{a/A}(x_a, \mu)}_{\dots} \underbrace{f_{b/B}(x_b, \mu)}_{\dots} \times \sum_n \alpha_s^n(\mu) \, \hat{\sigma}_{ab\to CX}^{(n)} \left(x_a p_A, x_b p_B, Q/\mu\right)$$

→ process-independent parton distribution functions  $f_{a/A}$  characterizing structure of bound state A



# Parton distributions in the nucleon

Ubiquity of proton  $F_2$  data (SLAC, EMC, NMC, BCDMS, HERA, JLab, ...) provides strong constraints on *u*-quark PDF over large *x* range



$$F_2^p \sim \frac{4}{9}xu + \frac{1}{9}xd + \cdots$$

- Absence of free-neutron data and smaller  $|e_q|$  of d quarks limit precision of d-quark PDF, especially at high x
  - → <u>nuclear effects in deuteron</u> obscure free-neutron structure

- Approximate scattering from weakly-bound nuclei at  $x \gg 0$  in terms of incoherent scattering from bound nucleons
  - → generalized convolution in "weak binding approximation" (WBA)

$$F_2^A(x,Q^2) = \sum_N \int \frac{d^4p}{(2\pi)^4} \mathcal{F}_0^N(\varepsilon,\mathbf{p}) \left(1 + \frac{\gamma p_z}{M}\right) \mathcal{C}_{22} \, \widetilde{F}_2^N(x/y,Q^2,p^2)$$
  
nuclear spectral function

bound nucleon momentum  $p = (p_0; \mathbf{p}) = (M + \varepsilon; \mathbf{p}_{\perp}, p_z)$ 

kinematic factor 
$$C_{22} = \frac{1}{\gamma^2} \left[ 1 + \frac{(\gamma^2 - 1)}{2y^2 M^2} (2p^2 + 3\mathbf{p}_{\perp}^2) \right] \qquad \gamma^2 = 1 + \frac{4M^2 x^2}{Q^2}$$

nuclear momentum fraction  $y = \frac{M_A}{M} \frac{p \cdot q}{P \cdot q} = \frac{p_0 + \gamma p_z}{M}$ 

 $\rightarrow$  factorized formula valid up to  $\mathcal{O}(\mathbf{p}^2/M^2)$  corrections

WM, Schreiber, Thomas (1994) Kulagin et al. (1994)

- Approximate scattering from weakly-bound nuclei at  $x \gg 0$  in terms of incoherent scattering from bound nucleons
  - → generalized convolution in "weak binding approximation" (WBA)

$$F_2^A(x,Q^2) = \sum_N \int \frac{d^4p}{(2\pi)^4} \mathcal{F}_0^N(\varepsilon,\mathbf{p}) \left(1 + \frac{\gamma p_z}{M}\right) \mathcal{C}_{22} \widetilde{F}_2^N(x/y,Q^2,p^2)$$
off-shell nucleon structure function

 $\rightarrow$  expand to lowest order in nucleon virtuality  $(p^2 - M^2)$ 

$$\widetilde{F}_{2}^{N}(x,Q^{2},p^{2}) = F_{2}^{N}(x,Q^{2}) \left(1 + \frac{p^{2} - M^{2}}{M^{2}} \delta f^{N}(x)\right)$$

on-shell structure function

off-shell correction

$$\delta f^N = \frac{\partial \log \widetilde{F}_2^N}{\partial \log(p^2/M^2)} \bigg|_{p^2 = M^2}$$

Write total nuclear structure function as a sum of nucleon on-shell and off-shell contributions

$$F_2^A(x,Q^2) = F_2^{A(\text{on})}(x,Q^2) + F_2^{A(\text{off})}(x,Q^2)$$

where

$$F_2^{A(\text{on})}(x,Q^2) = \sum_N \int dy \, f^{N/A}(y,\gamma) \, F_2^N(x/y,Q^2)$$
$$F_2^{A(\text{off})}(x,Q^2) = \sum_N \int dy \left[ \tilde{f}^{N/A}(y,\gamma) \, F_2^N(x/y,Q^2) \right] \delta f^N(x/y)$$

Nucleon "smearing functions" (light-cone momentum distributions)

on-shell 
$$f^{N/A}(y,\gamma) = \int \frac{d^4p}{(2\pi)^4} \mathcal{F}_0^N(\varepsilon,\mathbf{p}) \left(1 + \frac{\gamma p_z}{M}\right) \mathcal{C}_{22} \,\delta\left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right)$$

off-shell 
$$\tilde{f}^{N/A}(y,\gamma) = \int \frac{d^4p}{(2\pi)^4} \mathcal{F}_0^N(\varepsilon,\mathbf{p}) \left(1 + \frac{\gamma p_z}{M}\right) \mathcal{C}_{22} \frac{(p^2 - M^2)}{M^2} \delta\left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{C}_{22} \left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \mathcal{$$



→ off-shell smearing functions  $\ll$  on-shell smearing functions for most kinematics of interest, strongly peaked around y = 1, opposite sign

→ for deuteron, 
$$f^{p/D}(y) = f^{n/D}(y) \equiv f^{N/D}(y)$$

**For** A = D off-shell part of structure function can be written

$$F_2^{D(\text{off})}(x,Q^2) = \int dy \,\tilde{f}^{N/D}(y) \,F_2^{p+n}(x/y,Q^2) \,\delta f^D(x/y)$$

where

$$\delta f^{D}(x) \equiv \delta f^{0}(x) = \frac{\delta f^{p/D}(x)F_{2}^{p}(x) + \delta f^{n/D}(x)F_{2}^{n}(x)}{F_{2}^{p}(x) + F_{2}^{n}(x)}$$

 $\rightarrow$  deuteron not sensitive to possible differences  $\delta f^{p/D} \stackrel{?}{\neq} \delta f^{n/D}$ 

To ensure conservation of valence quark (baryon) number in the deuteron, off-shell function is normalized

$$\int_0^1 dx \, q_v(x) \, \delta f^{N/D}(x) = 0$$

for q = u, d and N = p, n

CJ (CTEQ-JLab) Collaboration has performed global QCD studies focusing in particular on the high-x, low-W region, to better constrain PDFs at large x

|                 |                            |          |      |           |           | $\chi^2$      |                  |
|-----------------|----------------------------|----------|------|-----------|-----------|---------------|------------------|
| Observable      | Experiment                 | # points | LO   | NLO       | NLO (OCS) | NLO (no nucl) | NLO (no nucl/D0) |
| IS $F_2$        | BCDMS (p) [81]             | 351      | 426  | 438       | 436       | 440           | 427              |
| 2               | BCDMS $(d)$ [81]           | 254      | 292  | 292       | 289       | 301           | 301              |
|                 | SLAC $(p)$ [82]            | 564      | 480  | 434       | 435       | 441           | 440              |
|                 | SLAC $(d)$ [82]            | 582      | 415  | 376       | 380       | 507           | 466              |
|                 | NMC $(p)$ [83]             | 275      | 416  | 405       | 404       | 405           | 403              |
|                 | NMC $(d/p)$ [84]           | 189      | 181  | 172       | 173       | 174           | 173              |
|                 | HERMES $(p)$ [86]          | 37       | 57   | 42        | 43        | 44            | 44               |
|                 | HERMES $(d)$ [86]          | 37       | 52   | 37        | 38        | 36            | 37               |
|                 | Jefferson Lab (p) [87]     | 136      | 172  | 166       | 167       | 177           | 166              |
|                 | Jefferson Lab (d) [87]     | 136      | 131  | 123       | 124       | 126           | 130              |
| $F_2$ tagged    | Jefferson Lab $(n/d)$ [21] | 191      | 216  | 214       | 213       | 219           | 219              |
| Sσ              | HERA (NC $e^{-}p$ ) [85]   | 159      | 315  | 241       | 240       | 247           | 244              |
|                 | HERA (NC $e^+p$ 1) [85]    | 402      | 952  | 580       | 579       | 588           | 585              |
|                 | HERA (NC $e^+p$ 2) [85]    | 75       | 177  | 94        | 94        | 94            | 93               |
|                 | HERA (NC $e^+p$ 3) [85]    | 259      | 311  | 249       | 249       | 248           | 248              |
|                 | HERA (NC $e^+p$ 4) [85]    | 209      | 352  | 228       | 228       | 228           | 228              |
|                 | HERA (CC $e^-p$ ) [85]     | 42       | 42   | <b>48</b> | 48        | 45            | 49               |
|                 | HERA (CC $e^+p$ ) [85]     | 39       | 53   | 50        | 50        | 51            | 51               |
| Drell-Yan       | E866 $(pp)$ [29]           | 121      | 148  | 139       | 139       | 145           | 143              |
|                 | E866 (pd) [29]             | 129      | 202  | 145       | 143       | 158           | 157              |
| harge asymmetry | CDF (e) [88]               | 11       | 11   | 12        | 12        | 13            | 14               |
|                 | $DØ(\mu)$ [17]             | 10       | 18   | 20        | 19        | 29            | 28               |
|                 | DO(e) [18]                 | 13       | 49   | 29        | 29        | 14            | 14               |
|                 | CDF (W) [89]               | 13       | 16   | 16        | 16        | 14            | 14               |
|                 | DØ (W) [19]                | 14       | 35   | 14        | 15        | 82            | _                |
| apidity         | CDF (Z) [90]               | 28       | 108  | 27        | 27        | 26            | 26               |
| 1 2             | DØ(Z)[91]                  | 28       | 26   | 16        | 16        | 16            | 16               |
| et              | CDF (run 2) [92]           | 72       | 29   | 15        | 15        | 23            | 25               |
|                 | DØ (run 2) [93]            | 110      | 87   | 21        | 21        | 14            | 14               |
| jet             | DØ 1 [94]                  | 16       | 16   | 7         | 7         | 7             | 7                |
| -               | DØ 2 [94]                  | 16       | 34   | 16        | 16        | 17            | 17               |
|                 | DØ 3 [94]                  | 12       | 35   | 25        | 25        | 24            | 25               |
|                 | DØ 4 [94]                  | 12       | 79   | 13        | 13        | 13            | 13               |
| l               |                            | 4542     | 5935 | 4700      | 4702      | 4964          | 4817             |
| al + norm       |                            |          | 6058 | 4708      | 4710      | 4972          | 4826             |
| datum           |                            |          | 1.33 | 1.04      | 1.04      | 1.09          | 1.07             |



Accardi, Brady, WM, Owens, Sato (2016)

CJ (CTEQ-JLab) Collaboration has performed global QCD studies focusing in particular on the high-x, low-W region, to better constrain PDFs at large x



- → off-shell effects are correlated with nuclear wave function, but best fit is for AV18 model
- $\rightarrow$  gives small negative (positive) shift in d/N at low x (high x)

- Valence *d/u* ratio at high *x* of particular interest
  - → testing ground for nucleon models in  $x \rightarrow 1$  limit
    - $d/u \rightarrow 1/2$ SU(6) symmetry
    - $d/u \rightarrow 0$   $S = 0 \ qq$  dominance (color-hyperfine interaction)
    - $d/u \rightarrow 1/5$

 $S_z = 0$  qq dominance (perturbative gluon exchange)

•  $d/u \to 0.18 - 0.28$ 

DSE with qq correlations



 $\rightarrow$  considerable uncertainty at high x from deuterium corrections

- Valence *d/u* ratio at high *x* of particular interest
  - → significant reduction of PDF errors with new JLab tagged neutron & FNAL W-asymmetry data







- → extrapolated ratio at x = 1 $d/u \rightarrow 0.09 \pm 0.03$ does not match any model...
- → experiments at JLab (MARATHON, BONUS, SoLID) will determine d/u up to  $x \sim 0.8-0.85$

Previous analyses — AKP17

- Similar global analysis was performed by Alekhin, Kulagin, Petti (AKP17) — similar data sets & cuts (earlier analyses used data on heavy nuclei), similar nuclear theory...
  - → find qualitatively different behavior for off-shell function, and EMC ratio shape that resembles ratio for heavy nuclei!



Previous analyses — AKP17

- Similar global analysis was performed by Alekhin, Kulagin, Petti (AKP17) — similar data sets & cuts (earlier analyses used data on heavy nuclei), similar nuclear theory...
  - $\rightarrow$  correspondingly larger n/p ratio at large x



Previous analyses — AKP17

- Similar global analysis was performed by Alekhin, Kulagin, Petti (AKP17) — similar data sets & cuts (earlier analyses used data on heavy nuclei), similar nuclear theory...
  - $\rightarrow$  correspondingly larger n/p ratio at large x



 $\rightarrow$  ... but curiously smaller d/u at  $x \gtrsim 0.75$ 

#### Previous analyses — AKP17 vs. CJ15

- Which (if any) is correct?
  - → benchmarking efforts by Accardi & Alekhin/Kulagin...



Both use a lot of data, have a lot of phenomenological experience, but rely on single-fit technology, which can sometimes be problematic...

... is there a more robust analysis?



- JAM iterative, multi-step Monte Carlo
  - $\rightarrow$  traditional functional form for distributions

$$f(x) = N x^{\alpha} (1-x)^{\beta} P(x)$$

but <u>sample large parameter space</u>



→ robust determination of <u>PDF uncertainties</u>





polynomial, neural net, ...

Analysis of data requires estimating expectation values E and variances V of "observables" O (functions of PDFs) which are functions of parameters

$$E[\mathcal{O}] = \int d^n a \,\mathcal{P}(\vec{a}|\text{data}) \,\mathcal{O}(\vec{a})$$
$$V[\mathcal{O}] = \int d^n a \,\mathcal{P}(\vec{a}|\text{data}) \left[\mathcal{O}(\vec{a}) - E[\mathcal{O}]\right]^2$$

"Bayesian master formulas"

■ Using Bayes' theorem, probability distribution  $\mathcal{P}$  given by  $\mathcal{P}(\vec{a}|\text{data}) = \frac{1}{Z} \mathcal{L}(\text{data}|\vec{a}) \pi(\vec{a})$ 

in terms of the likelihood function  ${\cal L}$  and priors  $\pi$ 

Likelihood function

$$\mathcal{L}(\text{data}|\vec{a}) = \exp\left(-\frac{1}{2}\chi^2(\vec{a})\right)$$

is a Gaussian form in the data, with  $\chi^2$  function

$$\chi^{2}(\vec{a}) = \sum_{i} \left( \frac{\text{data}_{i} - \text{theory}_{i}(\vec{a})}{\delta(\text{data})} \right)^{2}$$

with priors  $\pi(\vec{a})$  and evidence Z

$$Z = \int d^n a \, \mathcal{L}(\text{data}|\vec{a}) \, \pi(\vec{a})$$

 $\rightarrow$  Z tests if *e.g.* an *n*-parameter fit is statistically different from (*n*+1)-parameter fit

|                 |                         | Step:                 | 01 (Start) | 02 (+HERA) | 03 (W2 cut -> 4) | 0     | 4 (+JLab) | (+test nuc. | . smearin | g)    | 05 (+ | TMCs) | 06 (+DY) | 09(OS++) | 10 (+Z) | 11 (+W) | 12 (+       | +PCs)      | 13 (+Tevatron) | 14 (+LHC)   | 15 (+offshell) | 16 (PCs p≠n) | 17 (+mix par.) | 18 (+par. range) | 19 (W2 cut -> 3) | 22 (+Jets)  | CJ15        |
|-----------------|-------------------------|-----------------------|------------|------------|------------------|-------|-----------|-------------|-----------|-------|-------|-------|----------|----------|---------|---------|-------------|------------|----------------|-------------|----------------|--------------|----------------|------------------|------------------|-------------|-------------|
|                 |                         | W2 cut :              | 10         | 10         | 4                | 4     | 4         | 4           | 4         | 4     | 4     | 4     | 4        | 4        | 4       | 4       | 4           | 4          | 4              | 3.5         | 3.5            | 3.5          | 3.5            | 3.5              | 3                | 3           | 3           |
|                 |                         | TMCs:                 |            |            |                  |       |           |             |           |       | GP    | AOT   | AOT      | AOT      | AOT     | AOT     | AOT         | AOT        | AOT            | AOT         | AOT            | AOT          | AOT            | AOT              | AOT              | AOT         | GP          |
| v7 <sup>-</sup> | [ahle                   | Power Corrections:    |            |            |                  |       |           |             |           |       |       |       |          |          |         |         | Mult. (p=n) | Add. (p=n) | Mult. (p=n)    | Mult. (p=n) | Mult. (p=n)    | Mult. (p≠n)  | Mult. (p≠n)    | Mult. (p≠n)      | Mult. (p≠n)      | Mult. (p≠n) | Mult. (p=n) |
| Λ-              | abic                    | Offshell Corrections: |            |            |                  |       |           |             |           |       |       |       |          |          |         |         |             |            |                |             | Yes            | Yes          | Yes            | Yes              | Yes              | Yes         | Yes         |
|                 |                         | Deuteron Smearing:    | Paris      | Paris      | Paris            | Paris | AV18      | CD-Bonn     | WJC-1     | WJC-2 | Paris | Paris | Paris    | Paris    | Paris   | Paris   | Paris       | Paris      | Paris          | Paris       | Paris          | Paris        | Paris          | Paris            | Paris            | Paris       | AV18        |
|                 |                         | # Data Points/# Runs: | 50         | 50         | 50               | 50    | 50        | 50          | 50        | 50    | 50    | 50    | 50       | 50       | 50      | 50      | 50          | 50         | 50             | 50          | 50             | 50           | 50             | 50               | 50               | 176         | 1           |
|                 | BCDMS (p)               | 351                   | 1.11       | 1.10       | 1.70             | 1.72  | 1.73      | 1.74        | 1.73      | 1.73  | 1.24  | 1.15  | 1.08     | 1.18     | 1.18    | 1.20    | 1.15        | 1.16       | 1.20           | 1.18        | 1.17           | 1.17         | 1.17           | 1.13             | 1.13             | 1.14        | 1.25        |
|                 | BCDMS (d)               | 254                   | 1.03       | 1.12       | 1.73             | 1.74  | 1.73      | 1.78        | 1.71      | 1.73  | 1.26  | 1.13  | 1.09     | 1.11     | 1.10    | 1.10    | 1.05        | 1.05       | 1.07           | 1.09        | 1.08           | 1.08         | 1.07           | 1.06             | 1.06             | 1.06        | 1.15        |
|                 | NMC (p)                 | 275                   | 1.32       | 1.77       | 1.75             | 1.72  | 1.72      | 1.76        | 1.71      | 1.72  | 1.78  | 1.76  | 1.90     | 1.65     | 1.65    | 1.66    | 1.64        | 1.62       | 1.64           | 1.64        | 1.64           | 1.64         | 1.64           | 1.63             | 1.63             | 1.64        | 1.47        |
|                 | NMC (d/p)               | 189                   | 0.94       | 0.95       | 0.90             | 0.91  | 0.91      | 0.93        | 0.91      | 0.91  | 0.96  | 0.94  | 1.04     | 0.89     | 0.89    | 0.88    | 0.88        | 0.87       | 0.89           | 0.93        | 0.93           | 0.91         | 0.91           | 0.90             | 0.90             | 0.90        | 0.91        |
|                 | SLAC (p)                | 564                   | 0.85       | 1.20       | 1.67             | 1.66  | 1.66      | 1.70        | 1.67      | 1.66  | 1.19  | 1.07  | 1.28     | 0.97     | 0.97    | 0.95    | 0.78        | 0.80       | 0.76           | 0.78        | 0.78           | 0.79         | 0.79           | 0.80             | 0.80             | 0.78        | 0.77        |
|                 | SLAC (d)                | 582                   | 0.61       | 0.88       | 1.42             | 1.42  | 1.42      | 1.48        | 1.45      | 1.43  | 0.88  | 0.81  | 1.00     | 0.77     | 0.77    | 0.78    | 0.62        | 0.61       | 0.61           | 0.64        | 0.63           | 0.63         | 0.63           | 0.64             | 0.65             | 0.65        | 0.65        |
|                 | HERA (NC e+p 1)         | 402                   |            | 1.57       | 1.75             | 1.83  | 1.83      | 1.78        | 1.82      | 1.82  | 1.64  | 1.60  | 1.64     | 1.47     | 1.48    | 1.48    | 1.46        | 1.44       | 1.46           | 1.49        | 1.48           | 1.48         | 1.48           | 1.48             | 1.47             | 1.51        | 1.44        |
| DIS             | HERA (NC e+p 2)         | 75                    |            | 1.20       | 1.23             | 1.25  | 1.24      | 1.21        | 1.24      | 1.24  | 1.21  | 1.21  | 1.22     | 1.50     | 1.15    | 1.14    | 1.14        | 1.13       | 1.14           | 1.12        | 1.12           | 1.13         | 1.13           | 1.11             | 1.11             | 1.11        | 1.25        |
|                 | HERA (NC e+p 3)         | 259                   |            | 1.02       | 1.04             | 1.05  | 1.06      | 1.04        | 1.06      | 1.06  | 1.03  | 1.02  | 1.03     | 1.00     | 1.01    | 1.01    | 1.01        | 1.00       | 1.00           | 1.00        | 1.00           | 1.00         | 1.00           | 1.00             | 1.00             | 1.02        | 0.96        |
|                 | HERA (NC e+p 4)         | 209                   |            | 1.11       | 1.13             | 1.15  | 1.15      | 1.13        | 1.15      | 1.15  | 1.11  | 1.10  | 1.10     | 1.09     | 1.09    | 1.09    | 1.09        | 1.09       | 1.09           | 1.09        | 1.10           | 1.09         | 1.09           | 1.09             | 1.09             | 1.09        | 1.09        |
|                 | HERA (NC e-p)           | 159                   |            | 1.77       | 2.13             | 2.14  | 2.14      | 2.14        | 2.13      | 2.13  | 1.82  | 1.73  | 1.68     | 1.62     | 1.62    | 1.63    | 1.54        | 1.54       | 1.57           | 1.61        | 1.60           | 1.61         | 1.60           | 1.59             | 1.59             | 1.55        | 1.52        |
|                 | HERA (CC e-p)           | 39                    |            | 1.48       | 1.44             | 1.32  | 1.30      | 1.59        | 1.30      | 1.30  | 1.66  | 1.62  | 1.29     | 1.33     | 1.32    | 1.34    | 1.32        | 1.32       | 1.46           | 1.63        | 1.63           | 1.65         | 1.65           | 1.48             | 1.46             | 1.53        | 1.28        |
|                 | HERA (CC e-p)           | 42                    |            | 1.17       | 1.07             | 1.10  | 1.09      | 1.08        | 1.09      | 1.10  | 1.13  | 1.19  | 1.25     | 1.06     | 1.05    | 1.01    | 1.04        | 1.04       | 1.23           | 1.16        | 1.16           | 1.16         | 1.15           | 1.16             | 1.16             | 1.08        | 1.14        |
|                 | JLab (d)                | 136                   |            |            |                  | 0.66  | 0.66      | 0.58        | 0.68      | 0.67  | 0.55  | 0.59  | 0.60     | 0.57     | 0.57    | 0.57    | 0.75        | 0.68       | 0.73           | 0.89        | 0.91           | 0.95         | 0.94           | 0.93             | 0.92             | 0.89        | 0.90        |
|                 | JLab (p)                | 136                   |            |            |                  | 1.12  | 1.12      | 1.13        | 1.12      | 1.11  | 0.93  | 0.94  | 0.95     | 0.94     | 0.94    | 0.94    | 1.08        | 1.02       | 1.09           | 1.24        | 1.25           | 1.21         | 1.21           | 1.22             | 1.79             | 1.79        | 1.22        |
|                 | BONUS (n/d)             | 191                   |            |            |                  | 0.99  | 0.99      | 1.02        | 0.98      | 0.99  | 0.98  | 0.98  | 1.00     | 1.00     | 1.00    | 1.00    | 1.00        | 0.90       | 1.01           | 1.12        | 1.13           | 1.10         | 1.10           | 1.09             | 1.13             | 1.13        | 1.12        |
|                 | E866 (nn)               | 121                   |            |            |                  |       |           |             |           |       |       |       | 1.49     | 1.16     | 1 16    | 1 17    | 1 14        | 1.15       | 1.20           | 1 24        | 1.24           | 1.25         | 1 24           | 1.25             | 1 23             | 1 24        | 1.15        |
| DY              | E866 (pd)               | 129                   |            |            |                  |       |           |             |           |       |       |       | 2.99     | 1.10     | 1.00    | 1 12    | 0.95        | 0.92       | 0.91           | 0.95        | 0.94           | 0.92         | 0.91           | 0.92             | 0.93             | 0.98        | 1.12        |
|                 | CDE (7)                 | 28                    |            |            |                  |       |           |             |           |       |       |       | 2.55     | 1.00     | 1 18    | 1 19    | 1 15        | 1.22       | 1 23           | 1 13        | 1 12           | 1 10         | 1.09           | 1 32             | 1 35             | 1.07        | 0.96        |
| Z               | D0 (7)                  | 20                    |            |            |                  |       |           |             |           |       |       |       |          |          | 0.59    | 0.59    | 0.59        | 0.50       | 0.61           | 0.59        | 0.59           | 0.59         | 0.59           | 0.60             | 0.60             | 0.59        | 0.50        |
|                 | CDE (W)                 | 13                    |            |            |                  |       |           |             |           |       |       |       |          |          | 0.50    | 1.04    | 0.98        | 1.08       | 0.51           | 0.55        | 0.55           | 0.55         | 0.55           | 1 18             | 1.28             | 1 21        | 1.23        |
| w               |                         | 10                    |            |            |                  |       |           |             |           |       |       |       |          |          |         | 0.84    | 0.50        | 0.59       | 3.33           | 3 15        | 3.23           | 3 23         | 3 21           | 1.10             | 1.20             | 1.21        | 1.25        |
|                 | D0 (w)                  | 14                    |            |            |                  |       |           |             |           |       |       |       |          |          |         | 0.04    | 0.00        | 0.55       | 1 59           | 1.65        | 1 72           | 1.85         | 1.94           | 1.25             | 1.24             | 2 29        | 2.23        |
|                 |                         | 11                    |            |            |                  |       |           |             |           |       |       |       |          |          |         |         |             |            | 1.03           | 1.05        | 1.01           | 1.00         | 1.01           | 1.00             | 1.05             | 1.04        | 1.00        |
|                 |                         | 10                    |            |            |                  |       |           |             |           |       |       |       |          |          |         |         |             |            | 2.57           | 1.01        | 1.01           | 1.00         | 1.01           | 1.00             | 1.03             | 2.26        | 1.05        |
|                 | DU (μ)<br>ΑΤΙ ΑΕ (2012) | 10                    |            |            |                  |       |           |             |           |       |       |       |          |          |         |         |             |            | 3.57           | 4.68        | 4.52           | 4.62         | 4.59           | 3.02             | 2.99             | 5.20        | 2.00        |
|                 | ATLAS (2012)            | 22                    |            |            |                  |       |           |             |           |       |       |       |          |          |         |         |             |            |                | 0.56        | 0.56           | 0.59         | 0.59           | 0.49             | 0.50             | 0.45        |             |
| Lantan          | ATLAS (2011)            | 22                    |            |            |                  |       |           |             |           |       |       |       |          |          |         |         |             |            |                | 2.04        | 2.08           | 2.55         | 2.54           | 1.93             | 1.92             | 1.98        |             |
| Lepton          | ATLAS (2010)            | 22                    |            |            |                  |       |           |             |           |       |       |       |          |          |         |         |             |            |                | 1.92        | 1.93           | 1.99         | 1.98           | 1.90             | 1.95             | 1.87        |             |
|                 | CMS (sig)               | 22                    |            |            |                  |       |           |             |           |       |       |       |          |          |         |         |             |            |                | 0.37        | 0.35           | 0.35         | 0.36           | 0.40             | 0.41             | 0.38        |             |
|                 | CMS (µ) (2011)          | 11                    |            |            |                  |       |           |             |           |       |       |       |          |          |         |         |             |            |                | 4.10        | 3.92           | 3.65         | 3.69           | 3.97             | 4.02             | 4.11        |             |
|                 | CMS (e) (2011)          | 11                    |            |            |                  |       |           |             |           |       |       |       |          |          |         |         |             |            |                | 1.37        | 1.37           | 1.29         | 1.30           | 1.59             | 1.65             | 1.59        |             |
|                 | CMS (e) (2010)          | 6                     |            |            |                  |       |           |             |           |       |       |       |          |          |         |         |             |            |                | 0.74        | 0.73           | 0.71         | 0.71           | 0.58             | 0.56             | 0.62        |             |
|                 | CMS (µ) (2010)          | 6                     |            |            |                  |       |           |             |           |       |       |       |          |          |         |         |             |            |                | 0.10        | 0.10           | 0.09         | 0.09           | 0.07             | 0.07             | 0.08        |             |
|                 | D0                      | 110                   |            |            |                  |       |           |             |           |       |       |       |          |          |         |         |             |            |                |             |                |              |                |                  |                  | 0.92        | 0.19        |
| lots            | CDF                     | 76                    |            |            |                  |       |           |             |           |       |       |       |          |          |         |         |             |            |                |             |                |              |                |                  |                  | 1.34        | 0.21        |
| Jets            | STAR MB                 | 2                     |            |            |                  |       |           |             |           |       |       |       |          |          |         |         |             |            |                |             |                |              |                |                  |                  | 0.02        |             |
|                 | STAR HT                 | 8                     |            |            |                  |       |           |             |           |       |       |       |          |          |         |         |             |            |                |             |                |              |                |                  |                  | 1.59        |             |
|                 |                         | Total:                | 1.002      | 1.265      | 1.530            | 1.505 | 1.505     | 1.523       | 1.509     | 1.506 | 1.241 | 1.183 | 1.323    | 1.123    | 1.116   | 1.121   | 1.059       | 1.054      | 1.084          | 1.109       | 1.108          | 1.108        | 1.107          | 1.093            | 1.106            | 1.109       | 1.070       |

Cocuzza et al. (2021)

 $\rightarrow$  data randomized at each step

#### proton DIS data

#### deuteron DIS data



Cocuzza et al. (2021)



Cocuzza et al. (2021)



→ impact of LHC data mostly on sea-quark PDFs

Monte Carlo analysis tells a different story...



- $\rightarrow$  effect very small!
- $\rightarrow$  sits between KP and CJ15 at small  $x (\sim 0.1 0.3)$
- $\rightarrow$  more consistent with CJ15 at large x (~0.5 0.8)

Monte Carlo analysis tells a different story...



→ fitted result fairly robust

→ reveals some tension between different data sets (e.g. SLAC vs. JLab)

Fitted deuteron EMC ratio has small, < 2% deviations from unity for x < 0.6</p>





Resulting neutron structure function is <u>smaller</u> at large x







*d/u* PDF ratio from global fit to all data is well constrained up to  $x \sim 0.8$ (mostly by *W*-asymmetry data)



Cocuzza et al. (2021)

→ DIS measurements on deuteron (& other light nuclei) may be more sensitive to nuclear physics than to d/u ratio!

# Outlook

- Most reliable information on nucleon PDFs requires Monte Carlo analysis and modern Bayesian analysis tools
  - $\rightarrow$  upcoming JAM21 global QCD analysis

Cocuzza et al. (2021)

- Data on A = 3 nuclei may shed light on isospin dependence of nuclear (including off-shell) effects
  - → upcoming results from MARATHON experiment