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Outline

. The EMC Effect — deep-inelastic structure of nuclei is different
Il. Proposal: arises entirely from nucleons in short-range correlations
lll. Alternate: It matters that nuclei are built from Quarks & Gluons

- start from a QCD-inspired model of hadron structure

- develop a quantitative theory of nuclear structure

IV. Testthe SRC explanation of the EMC effect

— using D as an example
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Fig. 1: Image of the EMC data as it appeared in the November 1982 issue of the CERN

Courier.

1983), as the editor argued that the data had already been published.
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Higinbotham et al., CERN Courier 2013

This image nearly derailed the highly cited refereed publication (Aubert et al.,
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The EMC Effect: Nuclear PDFs

*  Observation stunned and electrified the
HEP and Nuclear communities 37 years ago

 What is it that alters the quark momentum in the nucleus?
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Short-range correlations (SRC)
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Linear relation of # in SRC vs Slope of EMC
effect ®» SRC explain the EMC effect

[F5 /A /[FS /2]

B. Schmookler et al., Nature 566 (2019) 354-358.
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Further: change in F, is dramatic in SRC approach

T T I 208
0.05/b |  Does not look so bad but
197 .
i N9 is of order 0.03
T > (p> 0.3 GeV: only ~80 MeV off-shell))
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The same correlation applies to Local Density

High Virtuallity vs. Local Density

J. Arrington and N. Fomin, Phys. Rev. Lett. 123 (2019) 042501 0. Hen et al., arXiv:1905.02172.
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The plots on the left and right side are exactly the same data.

The simpler model (i.e. a constant) is consistent with both universal functions.

One should define there criterion for adding parameters to a regression.
(see Higinbotham et al., Phys. Rev. C. 93 (2015) 055207 for examples)

NOTE: When handled consistently, HV and LD give exactly the same ‘a2’ values.
https://arxiv.org/abs/1907.03658

Hix 2019 -15- J)effé@on Lab

%3 ADELAIDE
'

Bt From Or Hen
L/




Alternate explanation based upon the effect of local scalar
and vector mean-fields (~ local density ) on confined quarks

RAPID COMMUNICATIONS

PHYSICAL REVIEW C VOLUME 46, NUMBER 6 DECEMBER 1992

Towards a microscopic understanding of nuclear structure functions
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Very large scalar mean-fields are a fact

1970 R. BROCKMANN AND R. MACHLEIDT

TABLE II. Results of a relativistic Dirac-Brueckner calculation in comparison to the
tential B. As a function of the Fermi momentum kg, it is listed: the energy per nucleon
vector potentials Us and Uy, and the wound integral «.

Relativistic
k, 6/ A Us U, p
(fm 1) (MeV) M/M (MeV) (MeV) (%)
0.8 —7.02 0.855 —136.2 104.0 23.1
0.9 —8.58 0.814 —174.2 134.1 18.8
1.0 —10.06 0.774 —212.2 164.2 16.1
1.1 —11.18 0.732 —251.3 195.5 12.7
1.2 - 12.35 0.691 —290.4 225.8 11.9
1.3 —13.35 0.646 —332.7 259.3 12.5
1.35 —13.55 0.621 —355.9 278.4 13.0
1.4 —13.53 0.601 —374.3 2934 13.8
1.5 —12.15 0.559 —413.6 3284 14.4
1.6 —8.46 0.515 —455.2 371.0 15.8
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General Remarks

Every nucleus is a different eigenstate of QCD

Any theoretical explanation of EMC effect in terms of bound
nucleons is a model

Strong mean scalar and vector fields mean that it is
inappropriate to characterize nuclear corrections in terms of
how far off-mass-shell a bound nucleon may be

The scalar and vector fields enter the calculation of a structure
function in different ways
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A new approach to nuclear matter: QMC Model

(Guichon, Saito, Tsushima et al., Rodionov et al., Stone
- see Saito et al., Prog. Part. Nucl .Phys. 58 (2007) 1 and
Guichon et al., Prog. Part. Nucl. Phys. 100 (2018) 262-297 for reviews)

« Start with quark model (MIT bag/NJL...) for all hadrons

* Introduce a relativistic Lagrangian
with o, w and p mesons coupling
to non-strange quarks

* Hence, initially only 3 parameters
(4 if o mass not fixed)
- determine by fitting to:
Po E/A and symmetry energy

- same in dense matter & finite nuclei

NAE o, D,

-t
\ ‘,.
)

|

O = (o nuclear | )
matter

B hypernuclei

« Must solve self-consistently for the internal structure of

baryons in-medium
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Density dependent
effective NN
(andNA,NE ..)

forces

Structure of
finite nuclei &




Application to nuclear structure

and Neutron Stars — cannot be discussed here....

The QMC model predicted heavy neutron stars
with hyperons before their discovery
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Derivation of Density Dependent Effective Force

Physical origin of density dependent forces of Skyrme
type within the quark meson coupling model

P.A.M. Guichon >*, H.H. Matevosyan ™¢, N. Sandulescu »%°,
A.W. Thomas®

Nuclear Physics A 772 (2006) 1-19

« Start with classical theory of MIT-bag nucleons with structure
modified self-consistently in medium to give M (o).

* Quantise nucleon motion (non-relativistic),
expand in powers of derivatives

« Derive equivalent, local energy functional:

= T
(H(r)):fOM‘I' ﬂ + Ho + Hs + Hetr + Hfin + Hso
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Latest development: QMC pi3

« Correct to all order in nuclear density; add o3 term; calculate pairing
* Now just 5 parameters — cf. 15+ in typical Skyrme calculations
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Giant Monopole Resonances
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FIG. 13. GMR energies for *®Pb, "¥Sm, ""*Sn, and *°Zr from experiment and for the QMCx-I1 and SVmin models.
are taken from Table 1 of Ref. [24].
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Deformation of Gd isotopes
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Nuclear DIS Structure Functions :
The EMC Effect

The QMC approach is ideal as one MUST start
with a theory that quantitatively describes
nuclear structure and allows calculation of
structure functions
— there are no other examples.....
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EMC Effect for Finite Nuclei

(There is also a spin dependent EMC effect - as large as unpolarized)
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FIG. 7: The EMC and polarized EMC effect in "B. The

empirical data is from Ref. [31].
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Spin-EMC Effect is a crucial test

Tensor correlations leading to high momentum
components in nuclear wave function have been
proposed as an alternate explanation of the EMC
effect

The tensor force scatters 3S, pairs almost entirely into
3D, at high momentum (~84% at p > 400 MeV/c)

Nucleons in SRC are depolarized — simple Clebsch-
Gordan coefficients - and cannot contribute to spin-
EMC effect

That is, SRC idea gives essentially NO spin-EMC effect
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Approved JLab Experiment

@ Effectin "Liis slightly suppressed because it is a light nucleus and proton
does not carry all the spin  (simple WE: P, =13/15 & F, =2/15)

@ LExperiment now approved at JLab [E12-14-001] to measure spin structure
functions of 'LLi (GFMC: P, =086 & P, =0.04)

@ Everyone with their favourite explanation for the EMC effect should make a
prediction for the polarized EMC effect in " Li
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A Closer Look at the Deuteron
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Simple Model calculation of F, P

1
q (x)————- dydp*(Aoxo+ A1 px1 +A-qx2)

Free nucleon: ¢"(x/y) = 4M y3" +4M* y" +4p - g x5

Deuteron: qD(x)=/d-;¢p(y)q”(x/y)+6‘A)qﬂ(x)+5mqn(x)

X

S(A)qﬂ(x)
Pa
MD 2 l Ep N
1 - /dy/dp{[*(l——)q(x/y)
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+ M_I;X?n _ qu)(ﬂ")(pz _ Mz)JC
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Careful study of the EMC effect in the deuteron

MST p>pr Microscopic model of Melnitchouk et al.,
0.02 o Hpep, : .
shows little of valence EMC effect in D

total / : _
0 © “/ arises from nucleons in SRC
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Crab Nebula

Summary

* The EMC effect contains fundamental information @
about the structure of atomic nuclei

 The QMC approach is based upon the change in nucleon structure
because of STRONG Lorentz scalar mean-field

* The existence of these mean-fields means that characterizing
changes in terms of p2 # m? is quite inadequate

 Initial systematic study of finite nuclei very promising
- Binding energies typically within 0.3%

 Model describes the EMC effect very well, and in addition:
- Predicts isovector EMC effect ( >10 of the NuTeV anomaly)
- Predicts significant spin-EMC effect

 SRC explanation implies an exceptionally large
suppression of F, for correlated nucleons
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What do we know?

Since 1970s: Dispersion relations = intermediate range
NN attraction is a strong Lorentz scalar

In relativistic treatments (RHF, RBHF, QHD...) this
leads to mean scalar field on a nucleon ~300 to 500 MeV!!

This is not small — up to half the nucleon mass

Largely cancelled by large vector mean field BUT these
have totally different dynamics: w? just shifts energies,
o seriously modifies internal hadron dynamics

Latter cannot be accurately captured by EFT with N and 1r
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Superheavies (not fit) : 0.1% accuracy
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