Mean-Field Studies of Nuclear Quark Structure

lan Cloët Argonne National Laboratory

3rd Workshop on Quantitative Challenges in EMC and SRC Research

22-26 March 2021, Meeting host by Jefferson Lab EIC Center and MIT LNS.

News

 PAC42 (2014) at Jefferson Lab approved an experiment to measure the "The EMC Effect in Spin Structure Functions" using a ⁷Li target

https://www.jlab.org/exp_prog/proposals/14/PR12-14-001.pdf

- Proposal went through Jeopardy process in PAC 48 (2020)
 - scientific rating went from B⁺ to A⁻ almost unheard of thanks to a lot of work from Will Brooks and Sebastian Kuhn
- Long awaited quasi-elastic electron scattering results from JLab will be presented in a plenary talk by Michael Paolone at the GHP 2021 Meeting (13-16 April)

https://www.jlab.org/indico/event/412/

- results on ${}^{12}C$ and ${}^{56}Fe$ will be presented
- if you are interested please participate in the meeting

Polarized EMC Effect

- Spin/Polarized EMC effect experiments are just measurements of the spin structure function(s) of a nucleus exactly analogous to nucleon DIS
- Polarized EMC effect provides insight into QCD effects in nuclei

$$\Delta R(x) = \frac{g_{1A}(x)}{g_{1A}^{\text{naive}}(x)} = \frac{g_{1A}(x)}{P_{\rho} g_{1\rho}(x) + P_{n} g_{1n}(x)}$$

- $P_p \& P_n$ effective polarizations of protons/neutrons in nucleus
- Things to consider when choosing a target
 - spin of nucleus carried by valence nucleons 1/A suppression so need light nucleus or perhaps tagging
 - $g_{1n}(x)$ is small, so best to have spin dominated by protons
 - candidate nuclei include ³H $(J = \frac{1}{2})$, ⁷Li $(J = \frac{3}{2})$, ¹¹B $(J = \frac{3}{2})$, ...
- JLab seems enthusiastic to run polarized ⁷Li DIS experiment

Mean-Field Calculations of Polarized EMC Effect

- Several relativistic mean-field calculations of polarized EMC effect
 - all calculations find polarized EMC same size or larger than EMC effect
- Large polarized EMC effect results because in-medium quarks are more relativistic (*M** < *M*)
 - quark lower components are enhanced
 - in-medium we find that quark spin is converted to orbital angular momentum

[Tronchin, Matevosyan and Thomas, PLB 783, 247-252 (2018)]

Mean-Field vs SRC Expectations

- To explain EMC effect need medium modification of bound nucleons — or equivalently significant non-nucleonic components in nucleus
 - leading explanation for EMC effect is medium modification from mean-field and/or SRC
- Polarized EMC effect provides a means to possibility distinguish between mean-field and SRC effects
- For SRCs to give large polarized EMC SRC pairs need to have a significant polarization correlated with spin of nucleus
 - QMC calculations using Argonne v18 potential show very little net polarization for high momentum nucleons
 - integrating distributions shows that only ${\sim}2\%$ net polarization from high momentum nucleons
- See also "Reflections on the Origin of the EMC Effect" (A. W. Thomas) for explanation on how SRCs depolarize participants

Quasi-elastic scattering

• Quasi-elastic scattering is used to study nucleon properties in a nucleus: $q^2 = \omega^2 - |q|^2$

 $R(O^2, n)$ Giant Resonance $O^2 =$ Total photo-absorption Elastic EMC Nucleur Lepton scattering Deep Inelastic OUARKS" Proton Elastic Lenton scattering $x = O^2/2Mn$ r = 1

Nuclear Response function

• The cross-section for this process reads

$$\frac{d^{2}\sigma}{d\Omega \,d\omega} = \sigma_{\text{Mott}} \left[\frac{q^{4}}{\left|\boldsymbol{q}\right|^{4}} \, R_{L}(\omega, \left|\boldsymbol{q}\right|) + \left(\frac{q^{2}}{2\left|\boldsymbol{q}\right|^{2}} + \tan^{2}\frac{\theta}{2} \right) R_{T}(\omega, \left|\boldsymbol{q}\right|) \right]$$

- response functions are accessed via Rosenbluth separation
- In the DIS regime Q², ω → ∞ x = Q²/(2 M_N ω) = constant response functions are proportional to the structure functions F₁(x, Q²) and F₂(x, Q²)

Quasi-elastic scattering

• Quasi-elastic scattering is used to study nucleon properties in a nucleus: $q^2 = \omega^2 - |q|^2$

$$rac{d\sigma}{d\Omega} = rac{\sigma_{ extsf{Mott}}}{1+ au} \left[extsf{G}_{ extsf{E}}^2(extsf{Q}^2) + extsf{G}_{ extsf{M}}^2(extsf{Q}^2)
ight]$$

- response functions are accessed via Rosenbluth separation
- In the DIS regime Q², ω → ∞ x = Q²/(2 M_N ω) = constant response functions are proportional to the structure functions F₁(x, Q²) and F₂(x, Q²)

Quasi-elastic scattering

• Quasi-elastic scattering is used to study nucleon properties in a nucleus: $q^2 = \omega^2 - |q|^2$

• The cross-section for this process reads

$$\frac{d\sigma}{dx \, dQ^2} = \frac{2\pi \, \alpha_e^2}{x \, Q^4} \left[\left(1 + (1+y)^2 \right) F_2(x, Q^2) - y^2 F_L(x, Q^2) \right]$$

- response functions are accessed via Rosenbluth separation
- In the DIS regime Q², ω → ∞ x = Q²/(2 M_N ω) = constant response functions are proportional to the structure functions F₁(x, Q²) and F₂(x, Q²)

Coulomb Sum Rule

- The "Coulomb Sum Rule" reads $S_L(|\boldsymbol{q}|) = \int_{\omega^+}^{|\boldsymbol{q}|} d\omega \; \frac{R_L(\boldsymbol{\phi}, |\boldsymbol{q}|)}{\tilde{G}_E^2(Q^2)}, \quad \tilde{G}_E^2 = Z \; G_{Ep}^2(Q^2) + N \; G_{En}^2(Q^2)$
- Non-relativistic expectation as $|\mathbf{q}|$ becomes large $S_L(|\mathbf{q}| \gg p_F) \rightarrow 1$ [CSR counts number of charge carriers]
- CSR first measured at MIT Bates in 1980 then Saclay in 1984
 - both experiments observed significant quenching of the CSR
 - no new data on the CSR since SLAC data from early 1990s
- Two plausible explanations: 1) nucleon structure is modified in the nuclear medium; 2) experiment/analysis is flawed e.g. Coulomb corrections
- Quenching of the CSR has become one of the most contentious observations in nuclear physics
- JLab experiment E05-110 will report ¹²C and ⁵⁶ Fe results at GHP2021 (13-16 April)
 - will hopefully settle controversy of CSR quenching

Longitudinal Response Function

• In nuclear matter response function given by

$$R_L(\omega,oldsymbol{q}) = -rac{2\,Z}{\pi\,
ho_B}\,\,{
m Im}\,{
m \Pi}_L\,(\omega,oldsymbol{q})$$

- longitudinal polarization Π_L is obtained by solving a Dyson equation
- Response function sensitive to electromagnetic form factors of bound nucleon consider:
 - 1) electromagnetic current is that if a free nucleon
 - 2) electromagnetic current modified by nuclear medium
- The *in-medium* nucleon current causes a sizeable quenching of the longitudinal response
 - driver of this effect is modification of the proton Dirac form factor
- Nucleon RPA correlations play almost no role for $|{m q}|\gtrsim$ 0.7 GeV

Coulomb Sum Rule

$$S_L(|\boldsymbol{q}|) = \int_{\omega^+}^{|\boldsymbol{q}|} d\omega \; rac{R_L(\omega, |\boldsymbol{q}|)}{\tilde{G}_E^2(Q^2)}, \quad \tilde{G}_E^2 = Z \; G_{Ep}^2(Q^2) + N \; G_{En}^2(Q^2)$$

- Recall that the non-relativistic expectation is unity for $|\boldsymbol{q}| \gg p_F$
 - GFMC ¹²C results appear consistent with this expectation
- For a *free nucleon current* find relativistic corrections of 20% at $|{m q}|\simeq 1\,{\rm GeV}$
 - in the non-relativistic limit our CSR result does saturate at unity
- An *in-medium nucleon current* induces a further 20% correction to the CSR
 - good agreement with exisiting $^{\rm 208}{\rm Pb}$ data
- Quenching of the CSR can be naturally explained by slight modification of bound nucleon EM form factors natural consequence of QCD models

Nuclear Imaging — Next Steps for Mean-Field Calculations

- During the next 10-20 years Jefferson Lab and the EIC will (hopefully) revolutionize our understanding of QCD and nuclear
 - provide quark and gluon tomography of light nuclei, e.g., quark and gluon GPDs and TMDs of deuteron, ³H, ³He, ⁴He, ⁷Li, ...
 - such progress is likely essential to fully solve the mystery of the EMC effect and to develop a QCD based description of nuclei
- A robust description of nuclear tomography and forthcoming data – places stringent requirements on model frameworks — ideally:
 - should satisfy Poincaré symmetry to given, e.g., correct support, polynomiality, positivity, correct number of observables, gauge invariance, gluon & flavor separation ...
- Some relativistic mean-field models of nuclear structure can satisty these requirements

Gluon EMC Effects

- To solve puzzle of EMC effect need new observables, e.g., gluon and spin EMC effects
 - can help distinguish between different explanations of the EMC effect (Everyone's Model is Cool – Jerry Miller)
 - mean-field and SRC make different predictions for spin EMC effect
- The gluon EMC effect can be defined as

$$R_g(x) = \frac{g_A(x)}{Z g_p(x) + N g_n(x)}$$

- analogous definition for gluon spin EMC effect, with, $Z \rightarrow P_p$ and $N \rightarrow P_n$
- Results opposite obtained in mean-field model that describes the EMC effect and predicts spin EMC effect
 - gluons are generated purely perturbatively
 - provides a baseline for comparison and understanding of future EIC measurements

Generalized Parton Distributions

- GPDs are a generalization of PDFs and form factors, and provide a spatial tomography of hadrons and nuclei
 - measured in processes such as DVCS, DDVCS, DVMP, ...

16

• For example, the twist-2 spin-independent GPDs of a spin-1/2 target are defined by

$$\int \frac{\mathrm{d}\lambda}{2\pi} e^{2i \times \lambda P \cdot n} \langle p' | \bar{q}(-n\lambda) \not p[-n\lambda, n\lambda] q(n\lambda) | p \rangle = \bar{u}(p') \left[\not p H_q(x, \xi, t) + \frac{i\sigma^{n\Delta}}{2M} E_q(x, \xi, t) \right] u(p)$$

- analogous results for helicity and transversity twist-2 GPDs
- GPDs have numerous remarkable properties

$$q(x) = H_q(x, 0, 0),$$
 $\int_{-1}^{1} \mathrm{d}x \left[H_q(x, \xi, t), E_q(x, \xi, t)\right] = \left[F_1^q(t), F_2^q(t)\right],$

$$J_q = \frac{1}{2} \int_{-1}^{1} \mathrm{d}x \, x \left[H_q(x,\xi,0) + E_q(x,\xi,0) \right], \qquad \qquad S_q = \frac{1}{2} \int_{-1}^{1} \mathrm{d}x \, x \, \tilde{H}_q(x,\xi,0)$$

NJL Results for Proton GPDs (including at finite skewness)

• GPDs are given by the diagrams:

- quark propagator is solution to gap equation
- diquark propagators are solutions to Bethe-Salpeter equations
- quark-diquark vertices from solution to Faddeev equation

-0.5

0 0.5

12/16

Deuteron GPDs

- The deuteron has a rich GPD structure
- The impact parameter PDFs provide a spatial tomography for various *x* slices
 - tensor polarized along z-axis
 - donut shape is clear
 - longitudinally polarized along x-axis
 - dumbbell shape is clear
- These quantities provide an interesting connection to traditional nuclear physics results for the deuteron
 - nuclear spatial densities have donut and dumbbell shapes
- Does the gluon donut align with the quark donut – does this change with x? Incredible insight into NN interaction possible at an EIC

J. Carlson, R. Schiavalla, Rev. Mod. Phys. **70** 743 (1998)

J. L. Forrest *et al.* Phys. Rev. **C54** 646 (1996)

Results for Deuteron GPDs

• Nuclear GPDs given by convolution between quark/gluon GPDs in nucleon & nucleon GPDs nuclei $H_A(x_A, \xi_A, t) = h_A(y_A, \xi_V, t) \otimes H_N(z, \xi_Z, t)$

Gravitational Structure of Nucleons and Nuclear Matter

• The nucleon has 3 gravitational form factors

$$\langle p' | T^{\mu\nu} | p \rangle = \bar{u}(p') \left[A(t) \frac{P^{\mu}P^{\nu}}{M} + D(t) \frac{\Delta^{\mu}\Delta^{\nu} - \Delta^{2}g^{\mu\nu}}{4M} + J(t) \frac{P^{(\mu}i\sigma^{\nu})^{\alpha}\Delta_{\alpha}}{2M} \right] u(p)$$

- related to mass and angular momentum distributions $J(t) = \frac{1}{2} [A(t) + B(t)]$, and pressure and shear forces
- Gravitational form factors are related to GPDs

$$\sum_{i=q,g} \int_{-1}^{1} \mathrm{d}x \, x \, \left[H_i(x,\xi,t), E_i(x,\xi,t) \right] = \left[A(t) + \xi^2 D(t), \, B(t) - \xi^2 D(t) \right]$$

• We find (light front) charge and mass radii of:

 $\begin{array}{ll} \text{free} & \left< r^2 \right>_C = (0.61\,\text{fm})^2, & \left< r^2 \right>_A = (0.45\,\text{fm})^2, & D(0) = -1.08 \\ \text{NM} & \left< r^2 \right>_C = (0.66\,\text{fm})^2, & \left< r^2 \right>_A = (0.46\,\text{fm})^2, & \underline{D(0) = -1.21} \end{array}$

- mass radius changes much less than the charge radius
- ullet pressure and shear forces on the nucleon increase by around 10%
- small mass radius may help explain success of traditional NP

Conclusion and Outlook

- JLab appears motivated to measure polarized EMC effect in ⁷Li
 will feature in a new "opportunities" document for JLab
- New Jefferson Lab CSR results will be presented at GHP 2021 https://www.jlab.org/indico/event/412/
- Tremendous opportunity for the JLab and EIC to transform our understanding of QCD and nuclei via 3D imaging
 - quark & gluon GPDs and TMDs of: p, D, 3 H, 3 He, 4 He, . . .
 - quark & gluon PDFs of ⁷Li, ¹¹B, ⁵⁶Fe, . .
 - flavor separation, e.g., *s*-quarks
- Key physics question: How does the *NN* interaction arise from QCD?
- Can explore this question by imaging nuclei and comparing quarks and gluons for slices in x, k²_T, and b²_T
 - correlations between quarks and gluons in nuclei provide insights into color confinement

16/16

Conclusion and Outlook

- JLab appears motivated to measure polarized EMC effect in ⁷Li
 will feature in a new "opportunities" document for JLab
- New Jefferson Lab CSR results will be presented at GHP 2021 https://www.jlab.org/indico/event/412/
- Tremendous opportunity for the JLab and EIC to transform our understanding of QCD and nuclei via 3D imaging
 - quark & gluon GPDs and TMDs of: p, D, 3 H, 3 He, 4 He, . . .
 - quark & gluon PDFs of ⁷Li, ¹¹B, ⁵⁶Fe, ...
 - flavor separation, e.g., *s*-quarks
- Key physics question: How does the *NN* interaction arise from QCD?
- Can explore this question by imaging nuclei and comparing quarks and gluons for slices in x, k²_T, and b²_T
 - correlations between quarks and gluons in nuclei provide insights into color confinement

