SRC via Tritium (e,e')

Shujie Li On behalf of the JLab E12-11-112 Collaboration

SRC-EMC Workshop March, 2021

University of New Hampshire

Jefferson Lab E12-11-112 (Hall A) :

Precision Measurement of the Isospin Dependence in the 2N and 3N Short-range Correlation Region

Tritium Family Experiments:

 2017.12:
 Commissioning

 2018.2-2018.5:
 E12-11-103 MARATHON

 2018.4
 E12-14-011 e'p (exclusive

 SRC, see Rey's talk)
 2018.5 :

 2018.5 :
 E12-11-112 x>1 (inclusive

 SRC) 2.2 GeV beam
 2018.9-11 :

 2018.9-11 :
 E12-11-112 x>1 (inclusive

 SRC) 4.3 GeV beam
 2018.11:

Nucleon-Nucleon Short Range Correlation (SRC)

Free nucleon-nucleon potential = Repulsive core + attractive tensor force T = 1, S = 0 :np, pp, nn pairs. The tensor operator $S_{1,2}$ = 0, no attractive tensor force T = 0, S = 1: Deuteron-like np pair.

Subedi et al, Science 320, 1476 (2008)

JLAB Hall C E02-019 10^{0} 10^{-1} do/(dQdE') (nb/MeV/Sr) 10-2 0-3 10⁻⁴ 10⁻⁵ 0.6 0.8 1.2 .6 1.8 2

High momentum tails should yield constant ratio if SRC-dominated

N. Fomin, et al., PRL 108 (2012) 092052

Inclusive electron scattering:

- high statistics
- background suppressed at high Q2

In inclusive (e,e') quasi-elastic scattering, high momentum nucleons dominate the x = Q2/2mv > 1 kinematics

High momentum tails should yield constant ratio if SRC-dominated

N. Fomin, et al., PRL 108 (2012) 092052

Inclusive electron scattering:

- high statistics
- background suppressed at high Q2

Plateaus in Cross section ratio b/w 1.3< xbj <2: JLAB Hall C E02-019

Inclusive electron scattering:

- high statistics
- background suppressed at high Q2

$$a_2(^{12}C) \approx 0.04 \times 5 = 0.2$$

The x>1 plateau of A/D cross section ratios give the percentage of deuteron-like high momentum pairs in each nucleus up to corrections of center-of-mass motions et al.

JLab E08-014

Inclusive electron scattering:

- high statistics
- background suppressed at high Q2

Measure **isospin-dependence** of SRC with Calcium isotopes

Jefferson Lab E12-11-112 (Hall A) :

Precision Measurement of the Isospin Dependence in the 2N and 3N Short-range Correlation Region

Spokespersons:

Patricia Solvignon, John Arrington, Donal Day, Douglas Higinbotham, Zhihong Ye **Students**:

Shujie Li, Nathaly Santiesteban, Leiqaa Kurbany

Measurements: 1H, 2H, 3H, 3He, (C12, Ti48) inclusive cross sections at 0.6<xbj<3

Primary Physics Topics:

np

no

Check the 2N SRC isospin dependence at 1<x<2, and also 3N momentum sharing configuration.

pair dominates:	$\frac{\sigma_{^{3}H}}{\sigma_{^{3}He}} = \frac{\sigma_{np} + \sigma_{n}}{\sigma_{np} + \sigma_{p}} \simeq \frac{\sigma_{np}}{\sigma_{np}} = 1$	
isospin preference:	$\frac{\sigma_{^{3}H}}{\sigma_{^{3}He}} = \frac{2\sigma_{nn} + \sigma_{pp}}{\sigma_{nn} + 2\sigma_{pp}} \xrightarrow{\sigma_{p} \sim 3\sigma_{n}} 0.7$	

Jefferson Lab, Hall A **Inclusive (e,e') scattering**

Primary kinematics: Beam energy: 4.3 GeV Momentum : 3.54 , $3.82\;GeV$: 20.88, 17 degree Angle : 1.9 , 1.4 GeV^2 Q^2

x>1 Kinematics:

p_min: Minimum momentum of the struck nucleon in deuteron

Absolute Cross Sections and Momentum Distribution

Absolute Cross Sections and Momentum Distribution

F(y) ~ longitudinal momentum distribution $\sigma_{QE} = F(y)(Z\tilde{\sigma}_p + N\tilde{\sigma}_n)(\frac{q}{\sqrt{M^2 + (y+q)^2}})^{-1}$

 $\frac{dF(k)}{dk} \approx -2\pi kn(k)$

Uncertainties

Absolute XSection

Yield Ratios

Sources	Uncertainties	norm	ptp	norm	ptp
Beam Energy	0.050%	0	0.1-2%		
Scattering Angle	0.3 mrad	1.65-2.65%	0.4-8%		
Momentum	0.02%	1.1-1.8%	0.2-10%		
Tracking Efficiency	0.20%	0.20%	0.10%		
Acceptance		2%	1.50%		0.2-1%
PID		0	0		
Trigger		0	0		
Radiative Correction		1%	1%	0.30%	0.20%
Endcap Contamination		0	0.1-1%		0.1-1.5%
Charge		1.00%	0.30%	0.10%	
Boiling		0.40%	0.30%	0.50%	0.30%
Target Thickness		0.6 - 1.1%	0	0.8-1.4%	
Hydrogen Contamination		0.5%	0	0.5%	
Total		2.0-4.2%	0.6-13%	0.8-1.5%	0.4-1.8%

x>1 cross section ratio (from yield ratio):

14

x>1 cross section ratio (from yield ratio):

This work: A=3 to D ratios at 1.4 GeV2

3H/3He ratio from (e,e'):

Tritium v.s. Helium-3:

- Large isospin (neutron-proton) asymmetry
- Similar separation energy: 6.26 MeV v.s. 5.49 MeV
- Small Coulomb effect: $V_{eff} = 0.66 \text{ MeV v.s. } 0$

Inclusive cross section ratio at x>1, Q2> 1.4 GeV 2:

- High statistics
- Systematic uncertainties canceled
- Meson-exchange current suppressed
- Final State Interaction within the SRC pairs \Rightarrow canceled in ratio

Offshell elastic xsection

$$2 \text{ np pairs + 1 pp pairs}$$

$$inclusive \frac{\sigma(3H)}{\sigma(3He)} = \frac{2(\sigma_n + \sigma_p) \cdot p_1 + 2\sigma_n \cdot p_0}{2(\sigma_n + \sigma_p) \cdot p_1 + 2\sigma_p \cdot p_0}$$
Fraction of a np or pp pair with high momentum ("enhancement factor")

3H/3He ratio from (e,e'):

Combined results of data from 2 experiments:

- 1.4 GeV2 data from inclusive SRC: 0.854+-0.011

- 1.9GeV2 data from the exclusive SRC 0.845+-0.010

Isospin dependence in A=3 nuclei

 The off-shell elastic cross section ratio of proton to neutron at Q2=1.4-1.9 GeV2 is p/n ~ 2.55

$$\frac{\sigma(3H)}{\sigma(3He)} = \frac{2(\sigma_n + \sigma_p) \cdot p_1 + 2\sigma_n \cdot p_0}{2(\sigma_n + \sigma_p) \cdot p_1 + 2\sigma_p \cdot p_0} = 0.85$$

$$\downarrow p_1/p_0 = 2.2 + 0.18$$

$$\downarrow \downarrow$$

Isospin dependence in A=3 nuclei and more

 The off-shell elastic cross section ratio of proton to neutron at Q2=1.4-1.9 GeV2 is p/n ~ 2.55

$$\frac{\sigma(3H)}{\sigma(3He)} = \frac{2(\sigma_n + \sigma_p) \cdot p_1 + 2\sigma_n \cdot p_0}{2(\sigma_n + \sigma_p) \cdot p_1 + 2\sigma_p \cdot p_0} = 0.85$$

Towards 3N-SRC

Thanks M. Sargsian for useful discussions

Dominant channel:

$$\frac{\sigma_{^{3}H}}{\sigma_{^{3}He}} = \frac{2\sigma_{nn} + \sigma_{pp}}{\sigma_{nn} + 2\sigma_{pp}} \xrightarrow{\sigma_{p} \sim 3\sigma_{n}} 0.7$$

3N-SRC contribution is predicted to dominate at somewhere alpha_3N > 1.6. Ratio will drop from 2N-SRC plateau

Mean-field to SRC transition

Acknowledgement

- Tritium experiments students and postdocs lacksquare
- Dave Meekins and the target group
- Hall A engineers lacksquare
- GMp and DVCS collaboration E12-14-011 (e'p SRC) collaboration

Nucleons in Nuclei: Beyond Shell Model

• The closed orbits are NOT fully occupied.

"The main effects of NN correlations is to generate high momentum and high removal energy components"

High momentum nucleons in different nuclei

The Gas Target System: special handling

- Maximum current = 22.5 uA on gas cells to minimize the risk of gas leak.
- Endcap(75mg/cm2 Aluminum) being mis-reconstructed into thin gas body (77mg/cm2 Tritium)
- "Boiling": gas density change along beam path

Charge Normalized Yield

The Tritium density reduced by ~ 10 percent at 22.5 uA

S. Santiesteban et al. , https://doi.org/10.1016/J.NIMA.2019.06.025

