00 0 01 WILL DETMOLD Massachusetts Institute of Technology LATICE OCD AND EFTFOR NUCLEAR PDFS

EMC/SRC, March 24th 2021

NUCLEAR PDFS IN LQCD AND EFT

- Theoretical and experimental goal: understanding nuclear structure
 - The QCD origins of the EMC effect
 - Aspects of universality and SRC
 - Predictions for flavour, spin
 dependence, ...
- Some old EFT, some new LQCD and some new EFT

NUCLEAR EFFECTIVE FIELD THEORY

- Hadron level description of low energy properties and interactions of nuclei
- Based on separation of scales and power counting: spontaneously broken chiral symmetry
- Nuclear EFT Lagrangian (pionless for simplicity)

$$\mathcal{L} = \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3 + \dots$$

$$\mathcal{L}_{1} = N^{\dagger} \left(iD_{0} + \frac{\mathbf{D}^{2}}{2M_{N}} \right) N + \dots$$
$$\mathcal{L}_{2} = -\frac{1}{2} \left[C_{0} \left(N^{\dagger}N \right)^{2} + C_{1} \left(N^{\dagger}\vec{\sigma}N \right)^{2} \right] + \dots, \qquad \swarrow$$
$$\mathcal{L}_{3} = -\frac{D_{0}}{6} (N^{\dagger}N)^{3} + \dots$$

PARTON PHYSICS IN EFT

- EFT provides rigorous description of low-energy QCD with quantifiable uncertainties
- Hard partonic processes not naturally described
- Operator product expansion: moments of PDFs are matrix elements of local twist-2 operators

$$\mathcal{O}^{\mu_0 \cdots \mu_n} = \bar{q} \gamma^{(\mu_0} i D^{\mu_1} \cdots i D^{\mu_n)} q$$
$$\langle A; p | \mathcal{O}^{\mu_0 \cdots \mu_n} | A; p \rangle = \langle x^n \rangle_A (Q) p^{(\mu_0} \dots p^{\mu_n)}$$
$$\langle x^n \rangle_A (Q) = \int_{-A}^{A} x^n q_A(x, Q) dx$$

Evaluate in rest frame, EFT methods applicable

TWIST-2 OPERATORS

- EFT: match QCD operators to all possible hadronic operators with same symmetries
- Used in pion and N sectors to connect lattice PDF moments to experiment [Arndt & Savage; Chen & Ji; Detmold et al.,...]
- Isoscalar, spin independent operator matching: ----- $\bar{q}\gamma^{\{\mu_1} D^{\mu_2} \dots D^{\mu_n\}} q \longrightarrow a_n \frac{1}{\Lambda^n} \operatorname{tr} \left[\Sigma^{\dagger} D^{\mu_1} \dots D^{\mu_n} \Sigma + h.c. \right]$ $+ c_n N^{\dagger} \mathcal{V}^{\mu_1 \dots \mu_n} N + c'_n N^{\dagger} S^{\{\mu_1} A^{\mu_2} \mathcal{V}^{\mu_3 \dots \mu_n\}} N + \dots$ $+ \alpha_n N^{\dagger} \mathcal{V}^{\mu_1 \dots \mu_n} N N^{\dagger} N + \beta_n N^{\dagger} \mathcal{V}^{\mu_1 \dots \mu_n} \tau_j^{\xi_+} N N^{\dagger} \tau_j^{\xi_+} N + \dots$ Two body counterterms where $\mathcal{V}^{\mu_1\dots\mu_n} = \left(v + i\frac{D}{M}\right)^{\mu_1}\dots\left(v + i\frac{D}{M}\right)^{\mu_n}$ $\tau_j^{\xi\pm} = \frac{1}{2} \left(\xi^{\dagger} \tau_j \xi \pm \xi \tau_j \xi^{\dagger} \right)$

POWER COUNTING

Power counting in KSW scheme (Weinberg scheme similar) for small ε~p/M

NUCLEAR PDF MOMENTS

Nucleon matrix elements (includes pion loop effects)

$$v_{\mu_1} \dots v_{\mu_n} \langle N | \mathcal{O}^{\mu_1 \dots \mu_n} | N \rangle = \langle x^n \rangle_q$$

Nuclear matrix elements

$$\langle x^{n} \rangle_{q|A} \equiv v_{\mu_{1}} \dots v_{\mu_{n}} \langle A \left| \mathcal{O}^{\mu_{1} \dots \mu_{n}} \right| A \rangle$$

$$= \langle x^{n} \rangle_{q} \left[A + \left(\alpha_{n} \left\langle A \left| \left(N^{\dagger} N \right)^{2} \right| A \right\rangle \right) + \beta_{n} \left\langle A \left| \left(N^{\dagger} \tau N \right)^{2} \right| A \right\rangle \right] + \dots \right]$$

$$\text{Dominant term}$$

- β_n term suppressed by N_c^2 [Kaplan & Savage 96; K & Manohar 97]
- Ellipsis includes higher-body operators, terms with derivatives: higher-order in power-counting

FACTORISATION AND UNIVERSALITY

Inverse Mellin transform

with

$$\langle x^{n} \rangle_{q|A} = \langle x^{n} \rangle_{q} \left[A + \alpha_{n} \left\langle A \left| \left(N^{\dagger} N \right)^{2} \right| A \right\rangle \right]$$
$$\frac{f^{A}(x)}{A} = f^{N}(x) + g_{2}(A)f_{2}(x)$$

f₂(x) describes two-body contributions

- $g_2(A,\Lambda) = \frac{1}{A} \left\langle A \left| \left(N^{\dagger} N \right)^2 \right| A \right\rangle_{\Lambda} \qquad \qquad \alpha_n = \frac{1}{\left\langle x^n \right\rangle_q} \int dx x^n f_2(x)$
- ▶ Factorisation of (x,Q²) and A dependence: universality
- Observed in data [Daté et al. 84,..., Frankfurt & Strikman 87, Gomez et al. 95]
- Requires there be only a single relevant non-trivial source of A dependence in EFT operator
- Factorisation breaks: holds to O(ϵ) or N_c^2 : expect ~20%

[J W Chen, WD PLB 2005]

FACTORISATION AND UNIVERSALITY

 Factorised form (also holds for QE cross section)

$$\frac{f^A(x)}{A} = f^N(x) + g_2(A)f_2(x)$$

Simple manipulations imply

$$R(x,A) = \frac{2}{A} \frac{f^{A}(x)}{f^{d}(x)} = 1 + \left(a_{2}(A) - 1\right) \left(1 - \frac{f^{p}(x) + f^{n}(x)}{f^{d}(x)}\right)$$

where (scheme independent)

$$a_2(A) = \frac{g_2(A,\Lambda)}{g_2(2,\Lambda)} = \frac{\langle A | (N^{\dagger}N)^2 | A \rangle_{\Lambda}}{\langle d | (N^{\dagger}N)^2 | d \rangle_{\Lambda}}$$

• Consequently $R(1 < x < 2, A) = a_2(A)$ as $f_p(x > 1) = f_n(x > 1) = 0$

• EMC-SRC relation: $\int dR(x, A)/dx = (a_2(A) - 1)h(x)$

[J W Chen, WD, J Lynn, A Schwenk PRL 2017]

QUANTUM MONTE CARLO CALCULATIONS

- QMC calculations of twonucleon distributions
- Postdict/predict SRC scaling factors

$$\rho_{2,1}(A,r) = \frac{1}{4\pi r^2} \left\langle \Psi \left| \sum_{i < j}^{A} \delta(r - r_{ij}) \right| \Psi \right\rangle$$
$$a_2(A/d) = \lim_{r \to 0} \frac{2}{A} \frac{\rho_{2,1}(A,r)}{\rho_{2,1}(d,r)}$$

[J Lynn, D Lonardoni, WD et al JPG 2020]

LATTICE QCD

- Strong coupling definition of QCD
- Numerical tool for nonperturbative QCD calculations
 - Discretise and compactify spacetime
 - Integration over 10¹² degrees of freedom in current calculations using importance sampling Monte Carlo
 - Understand effects of discretisation and compatification and finite statistics

LQCD MOMENTUM FRACTIONS

- Phiala Shanahan (Monday) presented NPLQCD calculation of isovector quark momentum fraction
 - Local operator matrix element
 - Unphysical quark masses for which pion mass is 806 MeV
 - ▶ pp and ³He systems

	p	pp	³ He
$\langle x \rangle_{u-d}^{(h)}$	0.191(1)(9)	0.194(2)(9)	0.066(1)(3)
$\left(\frac{A}{Z-N}\right) \frac{\langle x \rangle_{u-d}^{(h)}}{\langle x \rangle_{u-d}^{(p)}}$		1.007(14)	1.028(15)

[WD et al. 2009.05522]

EFT MATCHING

- Major issue for LQCD nuclei is finite volume (FV) effects
- Well-known Lüscher method to understand
 FV effect in spectrum
- Less well-developed technologies for matrix elements
- Direct matching between LQCD and EFT in same FV
 - Use EFT to extrapolate to infinite volume
 - Pionless EFT for simplicity

 SVM: variational approach using an expanding set of correlated (shifted) Gaussian trial states
 [Eliyahu, Bazak, Barnea 2019]

 $E_0^h \leq \frac{\int \Psi_h^{(N)}(\mathbf{x})^* H \Psi_h^{(N)}(\mathbf{x}) d\mathbf{x}}{\int \Psi_h^{(N)}(\mathbf{x})^* \Psi_h^{(N)}(\mathbf{x}) d\mathbf{x}}$

- Match onto LQCD FV energies to determine nuclear wave functions
 - 2 and 3-body energies fix NN and NNN contact interactions
- Determines infinite volume energy

 SVM: variational approach using an expanding set of correlated (shifted) Gaussian trial states
 [Eliyahu, Bazak, Barnea 2019]

 $E_0^h \leq \frac{\int \Psi_h^{(N)}(\mathbf{x})^* H \Psi_h^{(N)}(\mathbf{x}) d\mathbf{x}}{\int \Psi_h^{(N)}(\mathbf{x})^* \Psi_h^{(N)}(\mathbf{x}) d\mathbf{x}}$

- Match onto LQCD FV energies to determine nuclear wave functions
 - 2 and 3-body energies fix NN and NNN contact interactions
- Determines infinite volume energy

- Given EFT wavefunctions, matrix elements are easily computed
- LQCD matching determines EFT counterterms
 - Enables infinite volume prediction for matrix elements
 - Example: isovector momentum fraction

$$\mathcal{R}^{h}_{\mathcal{O}^{n},3} \equiv \frac{A^{h}}{\left(Z^{h} - N^{h}\right)\left\langle x^{n}\right\rangle_{3}} \frac{\left\langle\Psi_{h}\left|\mathcal{O}_{3}^{(n)}\right|\Psi_{h}\right\rangle}{\left\langle\Psi_{h}\right|\Psi_{h}\right\rangle}$$
$$= \left(1 + \frac{\alpha_{n,3}}{\left(Z^{h} - N^{h}\right)\left\langle x^{n}\right\rangle_{3}}h_{h}(\Lambda, L)\right)$$
Two body counterterm

- Given EFT wavefunctions, matrix elements are easily computed
- LQCD matching determines EFT counterterms
 - Enables infinite volume prediction for matrix elements
 - Example: isovector momentum fraction

$$\mathcal{R}^{h}_{\mathcal{O}^{n},3} \equiv \frac{A^{h}}{\left(Z^{h} - N^{h}\right)\left\langle x^{n}\right\rangle_{3}} \frac{\left\langle \Psi_{h} \left| \mathcal{O}_{3}^{(n)} \right| \Psi_{h} \right\rangle}{\left\langle \Psi_{h} \left| \Psi_{h} \right\rangle}$$
$$= \left(1 + \frac{\alpha_{n,3}}{\left(Z^{h} - N^{h}\right)\left\langle x^{n}\right\rangle_{3}} h_{h}(\Lambda, L)\right)$$
Two body counterterm

OUTLOOK

- First LQCD constraints on nuclear PDFs via EFT matching
- Other flavour and spin structures underway
- Larger nuclei: might require different many-body techniques
 - Nuclear lattice EFT
- x-dependence of nuclear PDFs
 - Reconstruct from enough moments
 - Use new lattice methods based on large momentum effective theory (LaMET)