SRC and LRC in finite and infinite systems

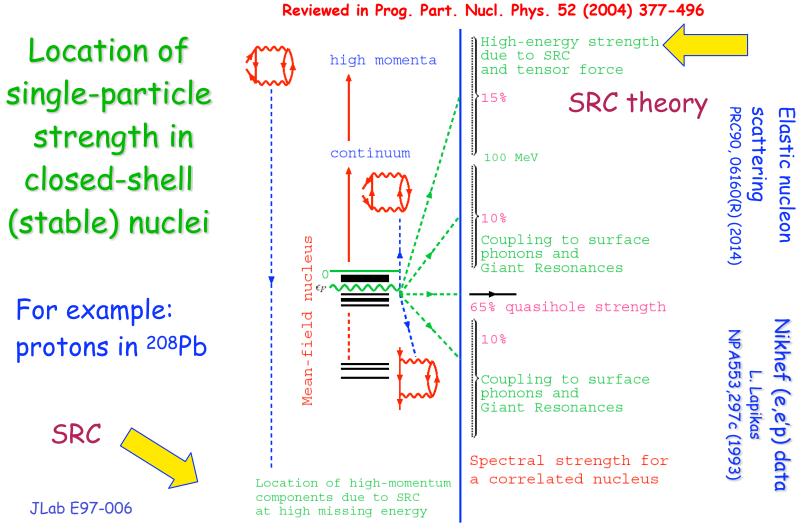
SRC EMC workshop 3/24/2021

Recent DOM review: WD, Charity, Mahzoon J. Phys. G: Nucl. Part. Phys. 44 (2017) 033001 Optical model review: WD, Charity Prog. Part. Nucl. Phys. 95 (2019) 252 Quenching sp strength review: Aumann et al, Prog. Part. Nucl. Phys. 118, 103847 (2021)

- •Dedication: Arturo Polls passed last year and I remember him fondly
- Motivation -> where LRC where SRC
- •Green's functions/propagator method
 - vehicle for ab initio calculations —> matter (see Arnau Rios talk)
 - •as a framework to link data at positive and negative energy (and to generate predictions for exotic nuclei)
- -> dispersive optical model (DOM <- Claude Mahaux)
- DOM with non-local potentials ¹²C, ¹⁶⁻¹⁸O, ^{40,48}Ca, ^{58,64}Ni, ^{112,124}Sn, ²⁰⁸Pb
- Revisit (e,e'p) data from NIKHEF 40 Ca and 48 Ca \rightarrow N-Z dependence
- Neutron skin in ⁴⁸Ca and ²⁰⁸Pb -> PREX II
- Ground-state energy and high-momentum content
- Nuclear saturation properties revisited
- Conclusions

Propagator / Green's function and spectral functions & spectroscopic factors

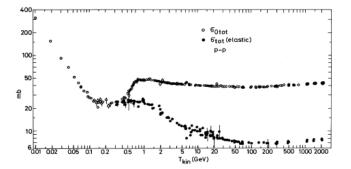
Lehmann representation

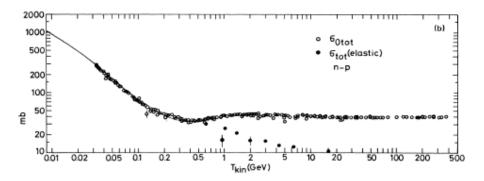

$$G_{\ell j}(k,k';E) = \sum_{m} \frac{\langle \Psi_{0}^{A} | a_{k\ell j} | \Psi_{m}^{A+1} \rangle \langle \Psi_{m}^{A+1} | a_{k'\ell j}^{\dagger} | \Psi_{0}^{A} \rangle}{E - (E_{m}^{A+1} - E_{0}^{A}) + i\eta} + \sum_{n} \frac{\langle \Psi_{0}^{A} | a_{k'\ell j}^{\dagger} | \Psi_{n}^{A-1} \rangle \langle \Psi_{n}^{A-1} | a_{k\ell j} | \Psi_{0}^{A} \rangle}{E - (E_{0}^{A} - E_{n}^{A-1}) - i\eta}$$

- Any other single-particle basis can be used & continuum integrals implied
- Overlap functions --> numerator
 Corresponding eigenvalues
 --> denominator
- Spectral function $S_{\ell j}(k; E) = \frac{1}{\pi} \operatorname{Im} G_{\ell j}(k, k; E) \qquad E \leq \varepsilon_F^ = \sum_n \left| \langle \Psi_n^{A-1} | a_{k\ell j} | \Psi_0^A \rangle \right|^2 \delta(E - (E_0^A - E_n^{A-1}))$
- Discrete transitions

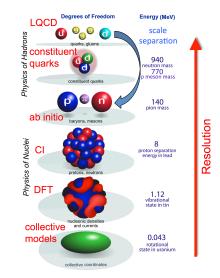
 $\sqrt{S_{\ell j}^n} \phi_{\ell j}^n(k) = \langle \Psi_n^{A-1} | a_{k\ell j} | \Psi_0^A \rangle$

- Momentum distribution: integrate spectral function to ε_F^-
- Positive energy —> see later

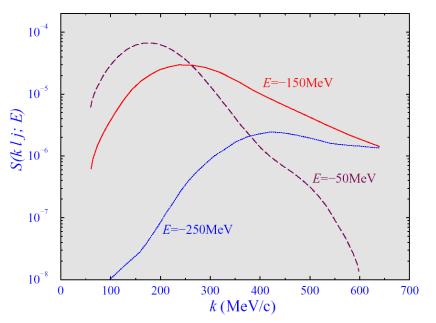




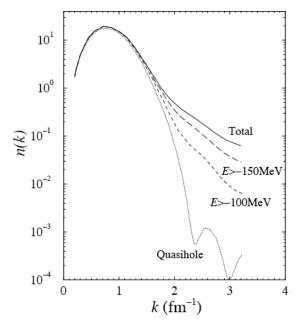
Phys. Rev. Lett. 93, 182501 (2004) D. Rohe et al.


Short-range correlations

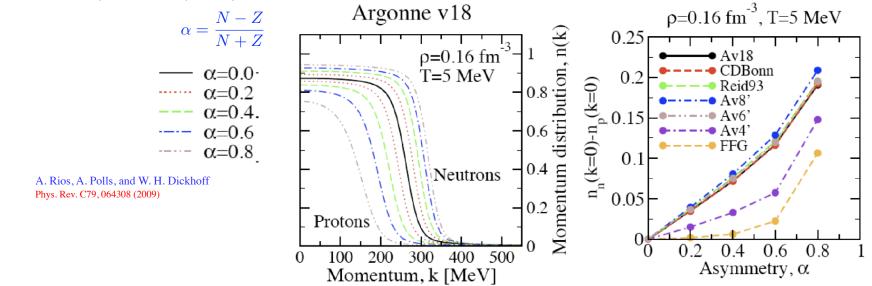
NN total cross sections



- NN —> coupled to anything at higher energy
- simulate by a strong core
- better to use dispersion relations (not much has been done)
- traditional approach: deal with repulsion as in Monte Carlo
- or SCGF with ladders —> high-momentum tails & removal of strength near the Fermi energy (Arnau Rios talk)


Old prediction of high-momentum components

 $p_{1/2}$ spectral function at fixed energies in ¹⁶O Phys. Rev. C49, R17 (1994)


Momentum distribution ¹⁶O

Confirms expectation: High momentum nucleons can only be found at large negative energies Phys. Rev. C51, 3040 (1995)

Momentum distribution SCGF asymmetric matter -> Arnau Rios talk

Asymmetry dependence

- Incorporates/represents np dominance <--> tensor force discussed by many in several talks
- So more correlations for minority species <--> other talks e.g. Alexandra Gade's

Dispersive Optical Model (St. Louis group)

2000 1800

1600

1400

1000

400

200

10000

2000

100 E_{lab} [MeV]

100 E_{lab} [MeV]

n+208PF

E<0 ->

[mp 1200

ь 800 600

- Mahaux & Sartor 1991 -> Washington University group since 2006
- Use experimental data to constrain the nucleon self-energy while linking structure and reaction domain using dispersion relations

 $k_{-1} > 100$

 $00>E_{lob}>40$

 $40 > E_{lab} > 20$

30 60 90 120 150 180

 $\theta_{c.m.}$ [deg]

20

30

60

 $\theta_{c.m.}$ [deg]

90 120 150 180

Indirectly:

 $\begin{array}{c} \mathrm{d}\sigma/\mathrm{d}\Omega \, \left[\mathrm{mb/sr}\right] \\ \mathrm{d}\sigma & \mathrm{d}\Omega \\ \mathrm{d} & \mathrm{d} \\ \mathrm{d} & \mathrm{d} \end{array}$

 $p+^{208}Ph$

 $E_{lab} > 100$

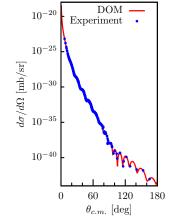
a bardana

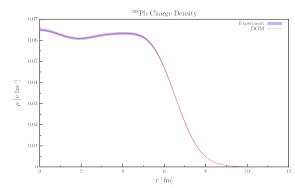
 θ_{cm} [deg]

120 150 180

100

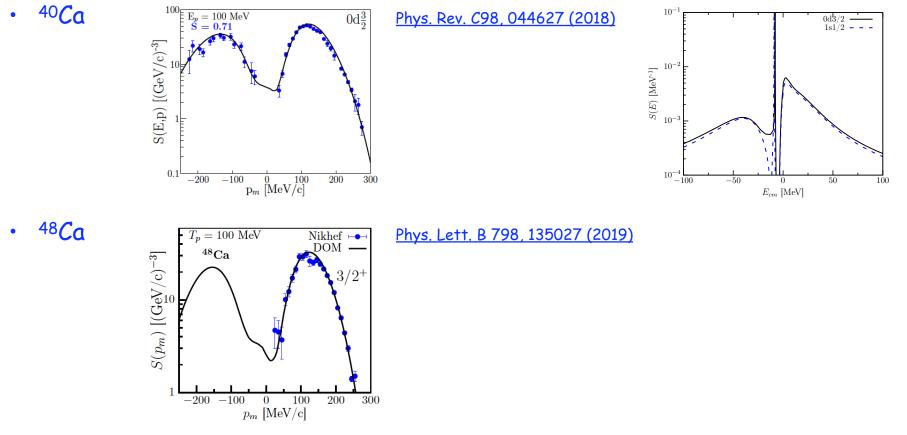
a ha a ha a ha a ha a ha

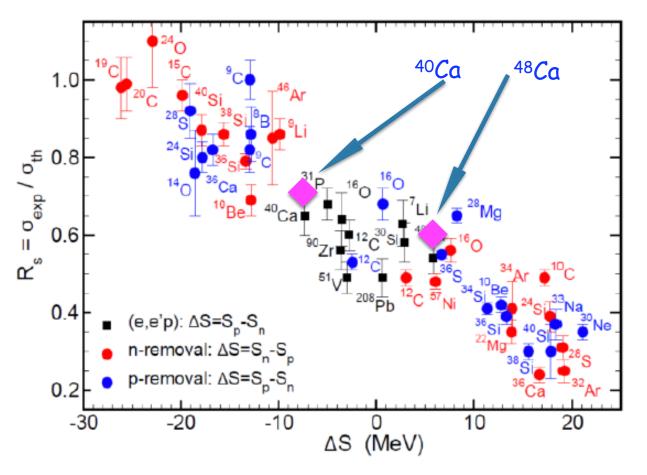

 θ_{cm} [deg]


30 60 90 120 150 180

- Generates proton/neutron distorted waves
- Overlap functions with their normalization (spectroscopic factors)

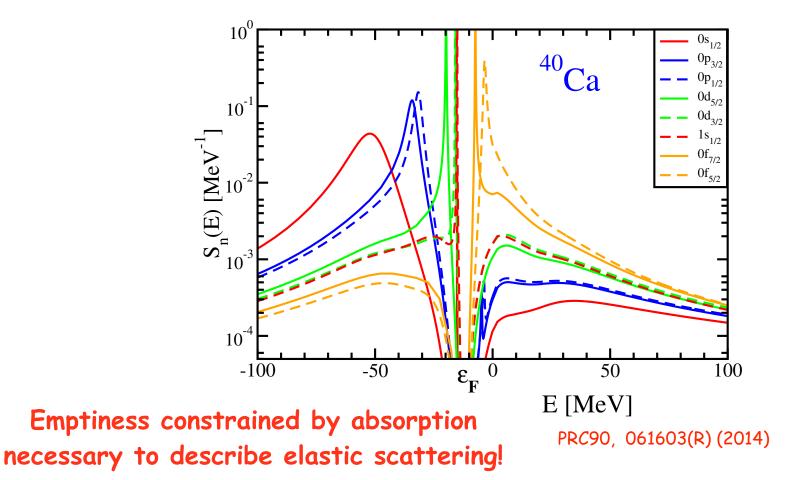
Mack Atkinson thesis 2019

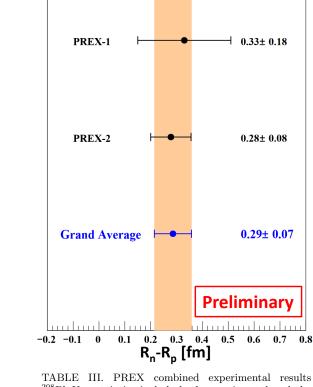


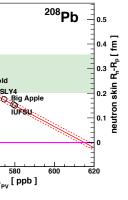

Check with (e,e'p) cross sections (Mack Atkinson)

- No further adjustments!
- Both structure and reaction properties allowed to change

Compare with updated Gade plot


Very near the Fermi energy in ${}^{40}Ca$ and ${}^{48}Ca$ from (e,e'p) ->


Quenching sp strength review: Aumann et al, Prog. Part. Nucl. Phys. 118, 103847 (2021)

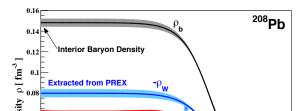

Spectral function for bound states

[0,200] MeV -> constrained by elastic scattering data

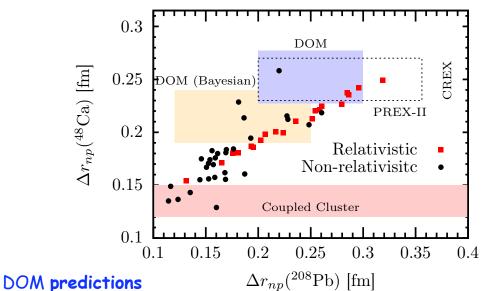
Updated PREX results

 $\rightarrow 1.4\%$

 TABLE III. PREX combined experimental results for


 ²⁰⁸Pb.Uncertainties include both experimental and theoret

 ical contributions.


 ²⁰⁸Pb Parameter

 Value

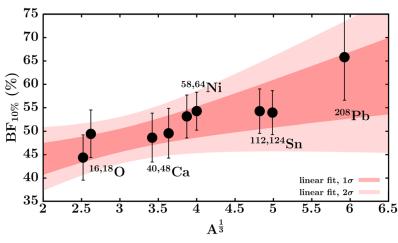
Weak radius (R_W)	$5.800 \pm 0.075 \text{ fm}$
Interior weak density (ρ_W^0)	$-0.0796 \pm 0.0038 \text{ fm}^{-3}$
Interior baryon density (ρ_b^0)	$0.1480 \pm 0.0038 \text{ fm}^{-3}$
Neutron skin $(R_n - R_p)$	$0.283\pm0.071~\mathrm{fm}$

 <- Ciprian Gal for the PREX collaboration DNP October 2020

- Phys. Rev. Lett. 119, 222503 (2017)
- Phys. Rev. C 101, 044303 (2020)
- Phys. Rev. Lett. 125, 102501 (2020)
- Phys. Rev. C 102, 034601 (2020)
- PREX preprint ArXiv 2102.10797

High-momentum predictions & relation to ground-state energy Ground-state energy can be included in the DOM

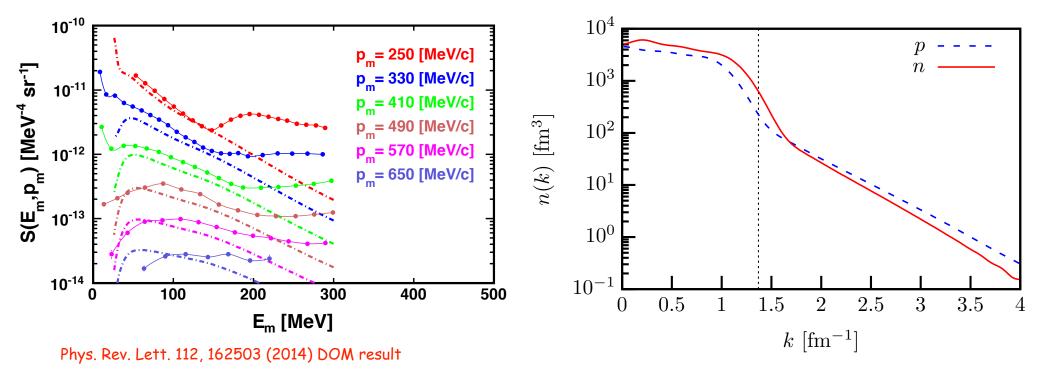
$$E/A = \frac{1}{2A} \sum_{\ell j} (2j+1) \int_0^\infty \!\!\! dk k^2 \frac{k^2}{2m} n_{\ell j}(k) + \frac{1}{2A} \sum_{\ell j} (2j+1) \int_0^\infty \!\!\! dk k^2 \int_{-\infty}^{\varepsilon_F} dE \; E \; S_{\ell j}(k;E)$$


Succeeds	Α	DOM E_0^A/A	Mass equation	Expt. E_0^A/A
	¹² C	-7.85	-7.29	-7.68
	⁴⁰ Ca	-8.46	-8.50	-8.55
	⁴⁸ Ca	-8.66	-8.59	-8.66
	²⁰⁸ Pb	-7.76	-7.81	-7.87

Phys. Rev. C 102, 044333 (2020)

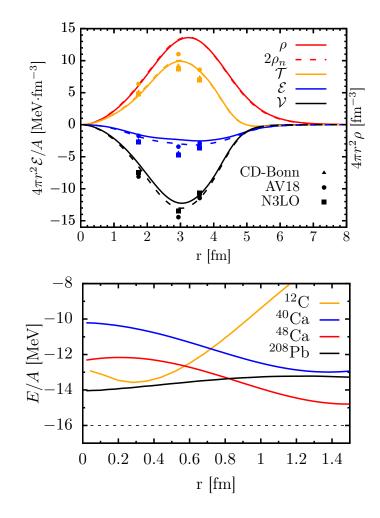
Because fraction of binding energy from 10% most deeply bound nucleons includes the

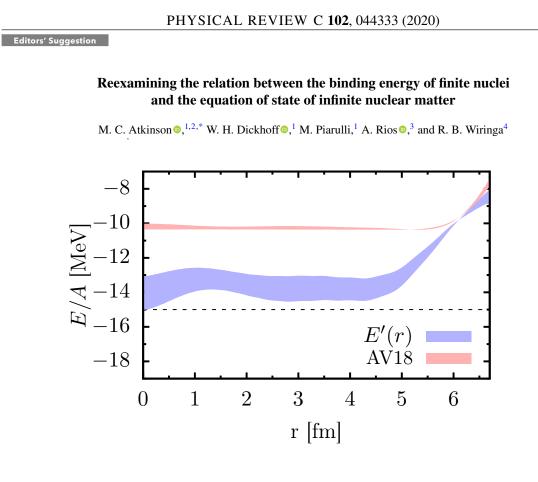
high-momentum contribution Phys. Rev. Lett. 125, 102501 (2020)


Predicted in Phys. Rev. C51, 3040 (1995)

Original Jefferson Lab data per proton compared to DOM results

- Pion/isobar contributions cannot be described
- Rescattering contributes some cross section C. Barbieri and L. Lapikás Phys. Rev. C 70, 054612 (2004)


²⁰⁸Pb enhancement of p over n high-momentum content automatically Phys. Rev. C 101, 044303 (2020)



Phys. Rev. Lett. 93, 182501 (2004) Experiment D. Rohe et al.

Consequence

Maybe 16 MeV binding is not needed!

LRC in finite nuclei and infinite matter

Comment:

- LRC or low-energy excitations in infinite nuclear matter -> no counterpart in finite nuclei
- BUT: LRC in finite nuclei -> no counterpart in nuclear matter
- They will contribute some binding!
- How much: nobody has really looked into this
- Extrapolations from nuclei to matter should deal with this in more detail

Conclusions

- DOM can describe many experimental data by simultaneously describing structure and reaction energy domain
- DOM can predict hard to access experimental data —> neutron skin
- DOM can be constrained by energy of the ground state and then automatically requires the inclusion of high-momentum components yielding more correlated protons when neutrons are in the majority
- DOM suggests that some reexamining of nuclear saturation properties might be in order: 16 MeV at saturation may be too large
- For rare isotopes use (p,2p) in inverse kinematics
- Outlook: (p,2p) analysis with DOM ingredients that yield precise (e,e'p) cross sections, exhibits some issues suggesting that the effective interaction is not sufficiently accurate (RCNP-St. Louis collaboration)