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Emergence of light cone (LC) dominance at high energies 

Deuteron - LC - nonrelativistic  correspondence

Outline

❖

❖

❖

❖

❖

Construction of LC density matrix, spectral and  decay functions

Quest for 3N SRCs

Quest for nonnucleonic degrees of freedom - have no time
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To resolve short-range structure of nuclei on the level of 
nucleon/hadronic constituents one needs processes which 
transfer to the nucleon constituents both energy and 
momentum larger than the scale of the NN short range 
correlations q0 ≥ 1GeV, q⃗ ≥ 1 GeV

⇒ Need to treat the processes in the relativistic 
domain.  The  price to pay is a need to treat the 
nucleus wave function using light-cone 
quantization - - One cannot use (at least in a 
simple way) nonrelativistic description of nuclei.  

much larger for SRC with momenta  up to 1 GeV/c
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⇒ High energy process develops along the light cone. 

Note: in general no benefit for using LC for low energy processes.

↵N = (EN � pN z)/(mA/A)

Relativistic 
projectile

t1, z1 t2, z2

t1 − z1 = t2 − z2

Similar to the perturbative QCD the amplitudes of the processes are 
expressed through the wave functions on the light cone. In the nucleus rest 
frame

ph

A

In the reference frame of collider (LHC,RHIC) ↵N = AEN/EA
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Light-cone Quantum mechanics of two nucleon system

Due to the presence of a small parameter (inelasticity of NN interactions) it 
makes sense to consider two nucleon approximation for the LC wave 
function of the deuteron.  

Key point is presence of the unique matching between nonrelativistic and LC 
wave functions in this approximation. Proof is rather involved.

First step: include interactions which do not have two nucleon 
intermediate states into kernel  V (like in nonrel. QM) to build a 
Lippman-Schwinger type (Weinberg type) equation [LF & MS 81]

=

T TV V

+

i i if f fn
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Second step: Impose condition that master equation should 
lead to the Lorentz invariance of the on-energy-shell 
amplitude of NN scattering

Introduce  three- vector k⃗ = (k3, kt) with 

Invariant mass of two 
nucleon system is

↵ = 1� k3p
k2 +m2

M2
NN = 4

m2 + k2t
↵(2� ↵)

= 4m2 + 4k2
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deuteron can be reasonably described as a system of two nucleons. In the approximation where the high-momentum
component of the wave function of the nucleus is due to a succession of hard two-nucleon collisions practically the
same argument indicates the dominance of the nucleon degrees of freedom in the wave function of the nucleus in a
wide kinematical region.

In the light-cone quantum mechanics of the NN system the Weinberg equation for the off-light-cone-energy-shell
amplitude, T , of the NN system plays the same role as the Schrödinger equation in the nonrelativistic theory. To
simplify the discussion we restrict ourselves to the case of spinless nucleons:

T (αi, kit,αf, kft) = V (αi, kit,αf, kft) +
∫

V (αi, kit,α
′, k′

t)
dα′

4α′(1 − α′)
d2k′

t

(2π)3

× T (α′, k′
t,αf, kft)

[(m2 + k′
t
2)/α′(1 − α′) − (m2 + k2

ft)/αf(1 − αf)]/2
. (A1)

Here (αj , kjt) is the light-cone momentum of a nucleon in the initial, intermediate and final state. As usual the kernel
V does not contain diagrams which have two-nucleon intermediate states. It is convenient to introduce new variables
kj3 [495]:

αj =
1
2

(
1 + kj3

/√
k2

j + m2
)

. (A2)

kj = (kj3, kjt) is the nucleon momentum in the c.m. system of the two-nucleon system. In these variables eq. (A1)
obtains the form:

T (ki, kf, ki3, kf3) = V (ki, kf, ki3, kf3)

+
∫

V (ki, k
′, ki3, k

′
3)

d3k′
√

k′2 + m2

1
4(2π)3

T (k′, kf, k′
3, kf3)

k′2 − k2
f

. (A3)

On the energy shell T (k, k3, kf, kf3) = T (k2, k2
f , kkf), V (k, k3, kf, kf3) = V (k2, k2

f , kkf). The necessity to reproduce the
rotational invariance of the on-shell T puts a severe restriction on the form of V off energy shell: V = V (k2, k2

f , kkf).
The simplest method to prove this statement is to calculate T on energy shell in terms of perturbation theory in the
potential V . For example, in second order in the potential V we obtain:

T (k, kf) − V (k, kf)

=
∫

V (k, k3, k
′, k′

3)V (k′, k′
3, kf, k3f)

d3k′

4
√

k′2 + m2

1
(2π)3

1
k′2 − k2

f

. (A4)

For arbitrary potential V the right-hand side of eq. (A4), contrary to the left-hand side, depends on the direction of
the 3-axis. Evidently, the only form compatible with eq. (A4) is

V (k, k3, kf, kf3) = V (k2, k2
f , kkf). (A5)

This argument can easily be improved by considering an arbitrary order of perturbation theory in the potential V .
Equation (A5) recovers the rotational invariance for the light-cone quantum mechanics of the two-nucleon system.
(The same form of the angular momentum constraint has been suggested in ref. [495] in the context of quark models of
a hadron.) As a consequence of eq. (A5) the Weinberg equation (A3) obtains a form quite similar to the nonrelativistic
Schrödinger equation:

T (k, kf) = V (k, kf) +
∫

V (k, k′)
d3k′

4
√

k′2 + m2

1
k′2 − k2

f

1
(2π)3

T (k′, kf).

In the light-cone dynamics of the deuteron this equation has been discussed in refs. [494, 496]. The suggested method
of deducing angular momentum conservation can be easily generalized to account for spin and isospin of nucleons,
and unequal masses of nucleons. The above discussed derivation of angular condition shows that, in order to establish
the form of the angular condition in a more general case which includes nonnucleon degrees of freedom, one should
investigate the many-channel Weinberg equation and use the Lorentz invariance of all on-energy-shell amplitudes.

For a many-nucleon system the form of the angular constraint, in spite of a number of interesting attempts, has
not been clarified. For a discussion of the many-body Weinberg equation and its relationship with the nonrelativistic
theory of nuclei, and for references, see ref. [494].

Very similar structure for the equation for the scattering 
amplitude in NR QM and for LC. If a NR potential leads to a 
good description of phase shifts the same is true for its LC 
analog. Hence simple approximate relation for LC and NR two 
nucleon wave function 
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↵ = (
p

p2 +m2 � p3)/(mD/2) where p is rest frame momentum of nucleon 
spectator in reaction h+ D—> p +X

Highly nonlinear relation between momentum k and momentum p:  backward p=3m/4

46

FIG. 3.15: The fast backward proton production in the pD scattering at p� = 0 [27, 39]. The solid curve is the result of
calculation in the relativistic Glauber approximation. Dashed curve is the QCD prediction of section 4 normalized at pN =
0.5 GeV/c. The broken (dashed) curves is the prediction of the Schmidt-Blankenbecler model [71] assuming �(pcm/pcm max)
scaling normalized at pN = 0.3 GeV/c.

FIG. 3.16: Test of the � scaling hypothesis in p+p⇥ ⇥+ +X reaction at pN = 8.9 GeV/c [27] (p� = 0). The solid and dashed
curves are the predictions based on the high energy data [182, 183] assuming � scaling and radial scaling (x = Ecm/Ecm max �
pcm/pcm/pcm max) For authors: is this relation OK? correspondingly.

The same pattern of scaling onset is observed for the process p+p� � +X (fig. 3.16). We want to emphasize that
condition (3.42) is not fulfilled if standard variables such as x = p�L/p�max or E�/E�

max are used (see e.g., [25, 37, 71]) to
compare asymptotic formulae with experiment. In particular these variables vary up to x = 1 at any incident energy.
As a result an artificial violation of the Yang scaling is introduced, see e.g. fig. 3.16 and the dotted curve in fig. 3.15.
This is especially clear for the region of small spectator momenta pN, where the validity of the impulse approximation
can be strictly proved. For example the use of variable x = p�/p�max leads to a change of the cross-section of the
p + D � p + X reaction by a factor of 300 at x = 1

2 , p⇥ = 0 in the range Einc
N = 2-100 GeV (at large energy x = 1

2 ,
p⇥ = 0 corresponds to pN = 0).

In fig. 3.15 a calculation of p + D � p + X [61–63, 106–109] using eq. (3.37) is compared with experimental data
[27, 38, 39]. We use the Hamada-Johnston WF of the deuteron-solution of Weinberg eq. (2.22) and scaling variable
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FIG. 3.17:

�/2 = (
�

m2 + p2�p3)/mD. The result of the calculation overestimates experimental data by (30-50 %26. It is worth

noting that in the studied range of spectator momenta the dominant contribution is given by D-wave. To check this

important feature of the realistic WFs experiments with polarized deuteron beams are necessary (see [7] and section

3 3.3).

3.5.3. Comparison with other approaches

First we compare predictions of eq. (3.37) with the quantum mechanical approach and the Bethe-Salpeter approach

[65], which is similar to approaches [114, 170, 171] for the deuteron structure functions and the deuteron form factor,

which were discussed in the previous subsections. These approaches lead to eqs. (3.44) and (3.45)respectively27

G
D/N
h (p) = ⇤hN

tot⌅
2
D(p)(1 + p3/M)(2� �). (3.44)

G
D/N
h (p) = ⇤hN

tot⌅
2
D(p)(2� �)⇥(2� �). (3.45)

Here p is the spectator momentum in the deuteron rest frame. 1 + p3/M , (2 � �) is the Möller flux factor, which

reflects the Doppler shift for the frequency of the interacting nucleon. � is given by eq. (3.43) and ⌅2(p) = (U2(p) +

W 2(p))/(
�

m2 + p2). ⇥(2� �) accounts for the phase space restrictions due to energy conservation.

Eq. (3.37) and eqs. (3.44), (3.45) correspond to a qualitatively di�erent space-time picture of the strong interaction.

Thus it seems instructive to compare predictions of these models for the nucleon yield. To be definite we use the

deuteron rest frame.

(1) In the Bethe-Peierls approximation when p/m ⇥ 1 (p2 � m⇧D) all formulae coincide. Really this case cor-

responds to the pointlike vertex D ⇤ NN, where expression (3.37) follows from the exact calculation of the

Feynman diagrams [1–3, 61–63].

26 We consider this as one of the evidencies that the absolute normalization of the data [27] should be increased by a factor 1.5-2 (cf.

footnote on p. 84. Note also that it is necessary to check the accuracy of scaling in variable � at � 1.5 at higher energies.

27 To simplify the comparison we consider here the predictions of the models in the impulse approximation.

LC

NR

d�(p+D ! p+X)

d2ktd↵/↵
= �inel

NN 
2
D(↵, kt)

large momentum transfer in NN scattering,  
spectator mechanism -decay function

would be desirable to have data from Jlab (real photon, moderate x ~.1- .2)

k ! 1

backward p=0.5 GeV—> k=0.8 GeV
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k (GeV/c)

Hamada-Johnston WF

Extracted from the data assuming dominance of 2N 
SRC

We also estimated  a2(12C)= 4 ÷ 5

�2
D(k)/�2

D(k = 300MeV/c)
�2

A(k)/�2
A(k = 300MeV/c)

Momentum distributions normalized
 to its value at 300 MeV/c.

First application of the logic of decay function - spectator mechanism of production of fast backward nucleons - 
observed in high energy proton, pion , photon - nucleus interactions with a number of simple regularities.  We 
suggested - spectator mechanism - breaking of 2N, 3N SRCs. We extracted ( Phys.Lett 1977 ) two nucleon 
correlation function from analysis of 
 γ(p) 12 C→backward p+X processes [ no backward nucleons are produced in the scattering off free protons!!!]

Spectator production of the backward  proton from 2N SRC

Backward direction is very good for 
looking for decay of SRCs

Before collision

p

-p

After collision collision

p
forward 
hadrons

γ

In the collider frame  where nucleus has momentum Ap: 
SRC is two nucleons with momenta αp and (2-α)p

First observation&measurement of 2N SRC in high energy processes
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Dynamical quantity (ones which can be directly  observe)

Nonrelativistic Light cone

momentum distribution n(k) LC density matrix ρA(α, kt)
not  observable directly

Spectral function

Decay function

modeled in 2N  moving in mean field model

calculated for A=3 
and nuclear matter

DA(k2, k1, Er) = |⇥⇥A�1(k2, ...) |�(HA�1 � Er)a(k1)| ⇤A⇤|2 FS81 -88

Ab-initio NR calculation  of double  momentum distribution +  
            ansatz 2N  moving in mean field  are used  for modeling spectral and decay functions

�10



k=1.5 fm-1

k=2.2 fm-1

k=3.0 fm-1

k=3.5 fm-1

Points  are numerical calculation of the 
spectral functions of 3He and nuclear 
matter - curves two nucleon 
approximation from CSFS 91

Numerical calculations in NR quantum mechanics confirm dominance of two nucleon 
correlations in the spectral functions of nuclei at k> 300 MeV/c - could be fitted by a 
motion of a pair in a mean field   (Ciofi, Simula,Frankfurt,  MS - 89-91).  However  
numerical calculations for nuclear matter ignored three nucleon correlations - 3p3h 

excitations. Relativistic effects maybe important rather early as the recoil 
modeling does involve k2/mN2 effects.
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Phenomenologically  such model works well for A(e, e’p), A(e,e’pp),… - 
several talks 

Additional  Ansatz - LC implementation of motion of the pair in the mean field 

question/concern : removing one nucleon of SRC does not destroy interactions of 
second nucleon of SRC with mean field  - should suppress  emission from pairs with 
high momenta of the pair.

symmetry in LC NN fraction around αNN=2 

!12



further open questions: 

with what is accuracy WF  of pn pair  ∝ ψ2D(κ)?; FSIs Boeglin talk✷

✷

✷ off shell eN cross section
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ratio for different angles and same momentum

D/(U+D)

Need observables sensitive to LC dynamics
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FIG. 7.6: (cont.)

and the corresponding wave functions is rather rigid. However, once this relationship is changed, e.g., by introducing
the transitions of two nucleons into a quark compound bag (QCB), the prediction for R(ps) changes significantly at
ps > 0.3 GeV/c, see, e.g., fig. 7.5b.96

It is worthwhile to emphasize that eqs. (7.3) and (7.4) predict a different momentum dependence at fixed angle
and at fixed nucleon momentum (fig. 7.6), It can be seen from fig. 7.6 that the calculation based on eq. (7.4) leads
to R ∼ ( 1

2 cos2 θ − sin2 θ), although a rather complicated angular dependence follows from eq. (7.3) (θ is the angle
between ps and the 3-axis). To our knowledge the discussed angular dependence of R(ps) is the clearest relativistic
effect suggested so far in the literature. Actually this is the only effect where the relativistic relation between k and
ps becomes important at momenta as low as 0.3 GeV/c.

Equation (7.3) predicts Q2 independence of R(ps). Besides, the same R(ps) is expected for different final states
like Nsp + N, Nsp + ∆, Nsp + N∗, . . .. Such a universality of R(ps) at fixed ps is a general feature of the two-
nucleon approximation (valid in all approaches, nonrelativistic, covariant, and light-cone). Thus, the independence
of w(k)/u(k) extracted from different measurements for the same spectator momentum would provide an important
check of the extraction procedure and of the role of the final state interaction.

At the same time one can expect that at large spectator momenta R(ps) would depend on Q2 in the transitional Q2

range 2− 4 GeV2, where scattering off the compressed nucleon configuration becomes important. This is because the
deformation of the bound nucleon wave function should be somewhat different for S- and D-waves due to the different
relative roles of the one- and two-pion exchange potentials. Indeed, the contribution of the two-pion exchange potential,
which leads to a larger deformation of the bound nucleon wave function (cf. the discussion in section 2 2.5 2.5.2), is
more important for the S-wave.

In the impulse approximation eq. (7.1) is also valid for the deep inelastic reaction e+D → e+p+X. The final state
interaction between the struck nucleon and the spectator is a correction because a large amount of energy (∼ 1 GeV)
is transferred to the interacting nucleon in an average process. Moreover, the contribution to the nucleon yield due to
the production of nucleons in γ∗N interaction (the direct mechanism) constitutes a small correction to the production
of spectator nucleons in a wide kinematical region, α = (

√
m2 + p2

s − ps3)/m > 1 − x. This region includes (for
sufficiently large x) emission of spectators in the forward direction.

Equation (7.1) may be modified due to suppression of the spectator nucleon yield (with α > 1 − x) as a result
of the final state interaction between hadrons produced in ℓN interaction and would-be spectators. However, the
suppression of the nucleon yield in different spin states should be rather close, at least at small pt, because secondary
hadron rescatterings mostly suppress the contribution of configurations in the deuteron wave function where p, n are

96 We are indebted to I. M. Narodetski for supplying numerical results for the QCB deuteron wave functions [405].

105

FIG. 7.6: Angular dependence of (σ±−σ0)/⟨σ⟩ for the spectator distribution in the reaction e+D⃗ → N+X at different nucleon
momenta. Solid and dashed lines are predictions of relativistic theory and nonrelativistic quantum mechanics, respectively.

FIG. 7.6: (cont.)

for nucleon momenta ps ! 0.1 GeV/c (fig. 7.5a),95 although no significant effect is expected for ps ! 0.4 GeV/c in the
6q model (see the above discussion in section 7 7.1). The use of different realistic potentials with nuclear core leads
to quite similar expressions for R(ps), probably because in this framework the relationship between the phase shifts

95 Indeed, the qualitative picture of the ps dependence of R at not too large nucleon momenta within the deuteron (k/m ≪ 1) is quite
simple. It is well known that in corrdinate space, due to the presence of the D-wave, the charge distribution in the deuteron with spin
pointing in the direction of the 3-axis is “cigar-shaped”. Evidently due to the properties of the Fourier transform in momentum space
the deuteron with helicity ±1 has the form of a ball flattened in the direction of the 3-axis. As a result the yield of the backward
spectators is minimal for deuteron helicity ±1.

!13



Since NN interaction is sufficiently singular for large momenta

⇥N
A (�, pt) can  be expanded over contributions of j-nucleon correlations ⇥j(�, pt)

Three nucleon SRCs = three nearby nucleons with large relative momenta

238 L.L. Frankfurt and MI. Strikman, High -energy phenomena, short-range nuclear structure and (lCD

dominated by the configurations, where the momentum of a fast nucleon-k is balanced by the rest of

the nucleus (i.e. the nucleon configuration p’ = k; P2 p
3~ PA — —k/A — 1). This hypothesis has

recently been revived by Amado and Woloshyn [44] in their analysis of the backward nucleon
production at initial energies T~= 600—800 MeV. Practically the same hypothesis was discussed by

Blankenbecler and Schmidt in connection to the backward p, IT production at large energies in the
framework of the Bethe—Salpeter light cone formalism [46—48].

At the same time for a realistic NN potential with a core, the contribution of two-nucleon

correlations dominates at k —* ~. This follows from the large difference between the scales of the
long-range potential characterizing the depth of the potential well (—40MeV), and of the short-range

repulsive potential (the value of the barrier is ~0.6 GeV for the realistic NN potentials). Numerical

calculations with realistic potentials [82] indicate that two-nucleon correlations dominate in n(k) at
k  0.4—0.5 GeV/c.

In relativistic theory the answer is more complicated. It seems fruitful for the theoretical analysis of

hard phenomena to define formally the notion of f-nucleon correlation. Look at a subsystem of j
nucleons in the ground state having invariant mass —~jmN,where nucleons obtain large relative

momenta due to hard short-range interactions between all j nucleons. Typical example of the

three-nucleon correlation is shown in fig. 2.11. Before a hard interaction the j nucleons are in the
average configuration (a, —— a~‘— 1), f-nucleon correlation contribute to p~(a,k± )in the region a <I only

due to momentum conservation. In the non-relativistic Schrödinger equation this kinematic decom-

position of f-nucleon correlations is not evident. Therefore onecannot relate simply n(k) to p~(a,k1) for

a~2.

Though at a —~A A-nucleon correlation should dominatep~(a,k± ),in the region 1 <a -~A relative
contributions of different configurations are determined by the competition of two factors: the small

probability a3 to find a correlation with large / and the enhancement of higher correlations due to a
slower decrease of their contribution to p~(a,k1) at large a (see eq. (2.43)). Therefore it seems natural

to expect that at least in the region of not too large a S 3 (which is probed until now) few-nucleon

correlations (FNC) dominate. Thus, the nucleon density matrix p~(a,k± )can be effectively expanded

over the contribution of j-nucleon correlations p1(a, k1):

k.1) = ~ a1p,(a, k1). (2.38)

More accurate treatment is required to account for the c.m. motion of the j-nucleon configuration in the

mean field of the nucleus. It is expected that this effect should lead to small corrections except near the

edge of the f-nucleon correlation. This is because the scale of the repulsive potential is considerably
larger than that for the long-range potential.

The a1’s in eq. (2.38) can be estimated on the basis of the non-relativistic Schrödinger equation for

nuclear WF since they are determined by the mean internucleon distances. The well known fact that the

/34 ,

Fig. 2.11. A typical diagram for the three-nucleon correlation.⇥j(�, pt)(j � �)n(j�1)+j�2, where ⇥j(�, 0) ⇥ (2� �)n

FS 79

iterations of NN interactions (Plus 3N from 3N forces possible)

α  up to 2  (3) are allowed for 2N (3N) SRC ( plus small mean field corrections) 

NR case large k = 2N SRC, qualitative difference relativistic and 
nonrelativistic dynamics
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of the correlated nucleons by energetic projectile was suggested in [5] as a spectator
mechanism for production of nucleons in the reaction of Eq.(4). It was experimentally
confirmed in high momentum transfer triple coincidence A(p, 2p, N)X experiment[15,
16] in which clear correlation between pin and pr was observed.

Therefore already this example demonstrates that moving from spectral to decay
function we obtain an additional tool for probing SRCs, such as correlation between
initial and recoil nucleon momenta.

Another advantage of decay function is the possibility to isolate three-nucleon
correlations and probe their different dynamical aspects. Fig8 shows the dependence
of decay function on the relative angle of recoil nucleon momentum with respect to
pin and recoil nuclear energy for pin, pr ≥ 400 MeV/c.
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Figure 8: Dependence of the decay function on the residual nuclei energy and relative
angle of struck proton and recoil nucleon. Figure (a) neutron is recoiling against
proton, (b) proton is recoiling against proton. Inital momentum of the struck nucleon
as well as recoil nucleom momenta is restricted to pin, pr ≥ 400 MeV/c.

Fig.8 shows a rather extensive possibiliteis to isolate 2N and 3N correlations vary-
ing recoil energy of the reaction. In the calculation presented above the threshould

for type 2N-I SRCs (Fig.4(a)) will be ∼ p2
in,min

2mN
≈ 80 MeV, while for type 3N-I SRCs

(Fig.6) the threshold for recoil energies is twice as large. Upper left side of the figure
demonstrates how type 2N-I SRC evoles to type 3N-I SRC with recoil nucleon being
spectator in correlations. The figure also shows who with an increase or recoil energy
type 3N-II correlations start to dominate. The important signature in this case is the
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Evidence from NR calculations?  3N SRC can be seen in the 
structure of decay of 3He (Sarsgian et al).

Searching for three-nucleon short-range correlations

Misak M. Sargsian1, Donal B. Day2, Leonid L. Frankfurt3, and Mark I. Strikman4
1 Department of Physics, Florida International University, Miami, FL 33199, USA
2 Department of Physics, University of Virginia, Charlottesville, VA 22904, USA
3Sackler School of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel

4 Department of Physics, Pennsylvania State University, University Park, PA 16802
(Dated: November 1, 2019)

Three nucleon short range correlations (SRCs) are one of the most elusive structures in nuclei.
Their observation and the subsequent study of their internal makeup will have a significant impact
on our understanding of the dynamics of super-dense nuclear matter which exists at the cores
of neutron stars. We discuss the kinematic conditions and observables that are most favorable
for probing 3N-SRCs in inclusive electro-nuclear processes and make a prediction for a quadratic
dependence of the probabilities of finding a nucleon in 2N- and 3N- SRCs. We demonstrate that
this prediction is consistent with the limited high energy experimental data available, suggesting
that we have observed, for the first time, 3N-SRCs in electro-nuclear processes. Our analysis en-
ables us to extract a3(A,Z), the probability of finding 3N-SRCs in nuclei relative to the A=3 system.

I. INTRODUCTION:

Three nucleon short-range correlations (3N-SRCs), in
which three nucleons come close together, are unique
arrangements in strong interaction physics. 3N SRC’s
have a single nucleon with very large momentum (>⇠
700 MeV/c) balanced by two nucleons of compara-
ble momenta. Unlike two-nucleon short-range correla-
tions (2N-SRCs), 3N-SRCs have never been probed di-
rectly through experiment. As the consequence of the
factorization of short-distance e↵ects from low momen-
tum collective phenomena [1, 2], 2N- and 3N- SRCs dom-
inate the high momentum component of nuclear wave
function which is almost universal up to a scale factor (see
e.g.[1, 3]).

The dynamics of three-nucleon short-range configura-
tions reside at the borderline of our knowledge of nuclear
forces making their exploration a testing ground for “be-
yond the standard nuclear physics” phenomena such as
irreducible three-nucleon forces, inelastic transitions in
3N systems as well as the transition from hadronic to
quark degrees of freedom. Their strength is expected
to grow faster with the local nuclear density than the
strength of 2N-SRCs [1, 2]. As a result, their contribution
will be essential for an understanding of the dynamics of
super-dense nuclear matter (see e.g. Ref. [4]).

Until recently a straightforward experimental probe of
2N- and 3N-SRCs was impossible due to the requirements
of high-momentum transfer nuclear reactions being mea-
sured in very specific kinematics in which the expected
cross sections are very small (see Ref.[1] and references
therein). With the advent of the high energy (6 GeV)
and high intensity continuous electron accelerator at Jef-
ferson Lab (JLab) in the late 1990’s, an unprecedented
exploration of nuclear structure became possible, opening
a new window to multi-nucleon SRCs.

FIG. 1: (a) Geometry of 2N-SRCs, pr ⇡ �pi. Two config-
urations of 3N-SRCs: (b) Configuration in which recoil nu-
cleon momenta pr2,pr3 ⇠ �pi/2, (c) configuration in which
pr2 ⇠ pr3 ⇠ pi. Here ms is the invariant mass of the recoiling
2N system.

II. TWO NUCLEON SHORT RANGE
CORRELATIONS (2N-SRCS)

The first dedicated study of 2N-SRCs in inclusive,
A(e, e0)X, high momentum transfer reactions revealed
a plateau in the ratios of per nucleon cross sections
of heavy nuclei to the deuteron [5] measured at Stan-
ford Linear Accelerator Center (SLAC) with momentum
transfer, Q

2 >⇠ 2 GeV2 and Bjorken variable x > 1.5.

Here x = Q
2

2mNq0
with mN the nucleon mass and q0 the

transferred energy to the nucleus, and for a nucleus A,
0 < x < A. The observed plateau, largely insensitive
to Q

2 and x, sets the parameter a2(A,Z)[6] which is the
probability of finding 2N-SRCs in the ground state of
the nucleus A relative to the deuteron. These plateaus
were confirmed in inclusive cross section ratios of nuclei
A to 3He[7, 8], at similar kinematics with the magnitude
of plateaus taken to be related to the relative probabil-
ity, a2(A,Z)

a2(
3He)

. Qualitatively and quantitatively the latter

results were in agreement with Ref.[5]. These, together
with more recent and dedicated measurements of the nu-
clear to the deuteron inclusive cross section ratios[9], pro-
vided compelling evidence for the sizable (⇠ 20%) high
momentum component of the ground state nuclear wave
function for medium to heavy nuclei originating from 2N-
SRCs.
While inclusive processes provided the first evidence
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relative angle of the recoil nucleon emission being close to 1200 that characterized
type 3N-II SRCs. The lower right part of the figure shows also different realization
of 3N-I SRCs in which both struck and recoiled nucleons are spectator with the third
nucleon which has roughly twice the momentum of pin or pr.
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Figure 9: Recoil energy dependence of the ratio of decay function calculated for the
case of struck and recoil nucleons being both protons to the decay function for the
case of struck proton and recoil neutron. Both initial momentum of struck and recoil
nucleons is set to be larger than 400 MeV/c. Also the relative angle between inital
and recoil nucleons is restricter to 180 ≤ θr ≥ 1700

Fig.8(a) and (b) corresponds to situation in which struck-proton is detected with
recoil neutron or proton respectively. Comparison of these two cases shows (see
upper left part of the graph) that in type 2N-I SRCs pn correlation dominates the pp
by factor of ten. This feature reflects the dominance of tensor interaction in S = 1,
T = 0 channel of NN interaction at short distances and was confirmed experimentaly,
both for hadron- and electon- induced triple coincidence reactions on carbon[17, 18].
Interesting consequence of the onset of 3N SRCs is that these two rates become
practically equal once recoil energy increases. More detailed view of relative strenght
of pp and pn decay function is given in Fig.9 which demonstrates this trend clearly
which can be considered as an unambigeous indication of the dominance of type 3N-I
SRC effects.

As it was mentioned before formulation of the decay function can be extended to
the situations in which more than two nucleons are detected in the products of the

19

Recoil energy dependence of the ratio of decay function 
calculated for the case of struck and recoil nucleons - ps & pr for 
struck proton and recoil proton and neutron for ps & pr > 
400MeV/c &   180o > θ(ps  pr) > 170o

Jlab e,epN
experiment

3N SRC
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Some of experimental evidence in historic order

Plenty of data were described using few nucleon SRC approximation with 3N, 4N correlations 
dominating in certain kinematic ranges. Strength of 2N correlations is similar to the one found in 
(e,e’),(p,2p)

Observations of (p,2pn) &(e,e’) at x>1 confirm the origin of SRC as 
the dominant source of the fast backward nucleons

Comparison of few nucleon SRC 
approximation with pA data at Epinc=400 GeV

α= 3.0

pTa→backward p+Xp6Li→backward p+X

Test of universality for pA→p+X  spectra 
for backward emission at   Ep= 9 GeV
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recent analysis of (e,e’) x> 2 (Day, Sargsian, LF , MS)

Further studies are necessary of  LC scaling of the ratios, etc. Recoil 
structure more complicated than in 2N case 

4

where ↵0

3N
is the threshold value for the ↵3N above which

one expects onset of 3N-SRCs (taken as ⇠ 1.6 as de-
scribed above). To quantify the strength of 3N-SRCs we
introduce a parameter a3(A,Z)[29]:

a3(A,Z) =
3

A

�eA

(�e3He + �e3H)/2
, (5)

representing an intrinsic nuclear property related to the
probability of finding 3N-SRCs in the nuclear ground
state. If a plateau is observed in the 3N-SRC region
of ↵3N then the ratio R3(A,Z) in Eq.(4) can be used to
extract a3(A,Z) as follows[29]:

a3(A,Z) = R3(A,Z)
(2�ep + �en)/3

(�ep + �en)/2
. (6)

The status of the experimental observation of the scal-
ing in the ratio of Eq.(4) is as follows: The E02-109
experiment[38] provided a high accuracy ratios, in the
2N-SRC region, at large momentum transfer for a wide
range of nuclei[9]. This experiment covered some part
of the 3N-SRC kinematic region with lesser quality of
data (see also Refs.[37–40]), providing an indication of
a plateau in the cross section ratios beginning at x > 2
once Q

2 is su�ciently high.
In Ref.[29] it was pointed out that the above-mentioned

data [9, 37, 38] su↵ered from a collapse of the 3
He cross

section between x = 2.68 and x = 2.85 due to di�culties
with the subtraction of the Aluminum target walls. This
issue arose from the relatively small diameter of the tar-
get cell (4 cm) combined with the fact that �Al � �

3
He

at large x as �
3
He must go to 0 at its kinematic limit,

x = 3. The cross section ratio in Ref. [9] was made pos-
sible by the following: First the inverted ratio 3He/4He
was formed and then rebinned - combining three bins
into one for x � 1.15. Subsequently the bins in the in-
verted ratio that had error bars falling below zero were
moved along a truncated gaussian, such that the lower
edge of the error bar was at zero. The ratio was then
inverted to give the ratio for 4He/3He shown in Figure 3
of Ref. [9] and as the triangles in Fig. 3 below. The use
of a truncated gaussian gave rise to the asymmetric error
bars seen in the ratios.

As an alternative to the somewhat unconventional pro-
cedure above, we have used the following approach to
substitute the 3He data of Refs.[9, 37, 38] in 3N-SRC
region: We have replaced the problematic data between
x = 2.68 and x = 2.85 (1.6  ↵3N  1.8), point by point,
by employing a y-scaling function F (y)[41–43] fit to the
SLAC data [35, 36] measured at a comparable Q2. A sim-
ple, two parameter fit F (y) = a exp(�bx), limited to the
range 1.6(y = �0.7)  ↵3N  1.8(y = �1.1) provides a
good description of the the SLAC data[29]. We preserved
the absolute error of the E02019 data set [9, 37, 38] rather
than the smaller errors from the fit. The fit parameters
are a = 0.296 and b = 8.241.

Note that the above approach was first used in Ref. [5],
which provided the first evidence of 2N-SRCs through
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FIG. 3: The ↵3N dependence of the inclusive cross section
ratios for 4He to 3He, triangles - JLAB data [9, 37], circles
- ratios when using a parameterization of SLAC 3He cross
sections [35, 36]. The horizontal line at 1.3  ↵3N < 1.5
identifies the magnitude of the 2N-SRC plateau. The line for
↵3N > 1.6 is Eq.(10) with a 10% error introduced to account
for the systematic uncertainty in a2(A,Z) parameters across
all measurements. The data correspond to Q2 ⇡ 2.5 GeV2 at
x = 1,↵3N = 1.

cross section ratios in inclusive scattering. The 2N-SRC
results obtained have been confirmed by subsequent pre-
cision studies[7–9] in which the ratios were measured in
single experiment.
It is also worth mentioning that in the case of 2N-SRC

the adopted approach was more complicated than the
one we employed in the current work. In Ref. [5] the data
were combined to form the cross section ratios of nuclei
(3He, 4He, C, Al, Fe and Au) to the deuteron, covering
a range in Q2 from 0.9 to 3.2 (GeV/c)2. In the current
analysis of 3N-SRCs, we worked at a single value of Q2 ⇡
2.7 (GeV/c)2 and, incidentally, the 3He data used in 1993
is the same set we employ here. The resulting ratios are
displayed as red circles in Fig. 3.
Fig. 3 presents the results for the cross section ra-

tios obtained within the two above described approaches.
While both give similar results we consider the replace-
ment of the data points between x = 2.68 and x = 2.85
(1.6  ↵3N  1.8) as a best alternative to the procedure
adopted in Ref [9] in part because it allows a consistent
treatment of the ratios for all A.
In Fig. 3 the plateau due to 2N-SRCs is clearly visible

for 1.3  ↵3N  1.5. In this region ↵3N ⇡ ↵2N [29], where
↵2N is the LC momentum fraction of the nucleon in the
2N-SRC. Because of this, we refer to the magnitude of
this plateau as:

R2(A,Z) =
3�A(x,Q2)

A�3He(x,Q2)
|1.3↵3N1.5 =

a2(A)

a2(3He)
. (7)

The horizontal line in the region of 1.3  ↵3N  1.5 is
given by the right hand side of Eq. (7), in which the values
of a2(3He) and a2(A) are taken from the last column of

5

Table II in Ref. [44], an average of the SLAC, JLAB
Hall C and JLAB Hall B results. The magnitude of the
horizontal solid line in the region of 1.6  ↵3N  1.8, is
the prediction of R3N (A,Z) ⇡ R

2

2N
(A,Z) which will be

explained in the next section. We assigned a 10% error to
this prediction (dashed lines) related to the uncertainty
of a2(A,Z) magnitudes across di↵erent measurements.

As Fig.3 shows the data at ↵3N > 1.6 are consistent
with the prediction of the onset of the new plateau in the
3N-SRC region and that its magnitude is proportional to
R

2

2N
.

With a set of 3He data obtained in the above discussed
approach we are able to estimate the ratios for other
nuclei, including, 9Be, 12C, 64Cu, and 197Au, albeit with
larger uncertainties[29].

The large experimental uncertainties in evaluation of
the ratios for 4

He (Fig.3) and for heavier nuclei[29] do not
allow us to claim unambiguously the onset of the plateau
at ↵3N � 1.6. However one can evaluate the validity of
such a plateau by comparing one- and two- parameter
fits to the experimental ratios in the ↵3N � 1.6 region.
The one-parameter fit in the 3N-region gives the values
(Rexp

3
) of the plateaus as seen in Figure 4(a) along with

our prediction of Eq. (10). Rexp

3
is also listed in Table I.

A two-parameter linear fit, returns errors on the param-
eters nearly as large as the parameters themselves and a
correlation matrix indicating that the second parameter
is redundant, providing no additional information.

V. 3N-SRCS AND THE pn DOMINANCE:

In Fig.1(b) the 3N-SRC is produced in the sequence
of two short-range NN interactions in which the nucleon
with the largest momentum interacts with the external
probe[29, 30]. The presence of short-range NN interac-
tions in 3N-SRC configurations tells us that the recently
observed pn-SRC dominance[12–14] is critical to our un-
derstanding of 3N-SRCs.

For 3N-SRCs one expects that only pnp or npn con-
figurations to contribute, with the pn short-range inter-
action playing role of a “catalyst” in forming a fast in-
teracting nucleon with momentum, pi (Fig.1(b) ). For
example, in the case of pnp configuration, the neutron
will play the role of intermediary in furnishing a large
momentum transfer to one of the protons with two suc-
cessive short range pn interactions. Quantitatively such
a scenario is reflected in the nuclear light-front density
matrix in the 3N-SRC domain, ⇢

N

A(3N)
(↵N ), being ex-

pressed through the convolution of two pn-SRC density
matrixes, ⇢N

A(pn)
(↵, p?) as follows:

⇢
N

A(3N)
(↵N , p?) ⇡

X

i,j

Z
F (↵0

i
, pi?,↵

0
j
, pj?)⇥

⇢
N

A(pn)
(↵0

i
, p

0
i?) ⇢

N

A(pn)

�
↵
0
j
, p

0
j?

�
d↵id

2
pj?d↵id

2
pj?,(8)

where (↵0
i/j

, p
0
i/j?), are the LC momentum fractions and

transverse momenta of spectator nucleons in the center of

mass of the pn SRCs. According to the pn dominance[17]:

⇢
N

A(pn)
(↵, p?) ⇡

a2(A,Z)

2XN

⇢d(↵, p?), (9)

where XN = Z/A or (A � Z)/A is the relative fraction
of the proton or neutron in the nucleus and ⇢d(↵, p?) is
the light-front density function of the deuteron at ↵ �
1.3. The factor F (↵0

i
, pi?,↵

0
j
, pj?) is a smooth function

of LC momenta and accounts for the phase factors of
nucleons in the intermediate state between the sequential
pn interactions with 0 < ↵

0
i/j

< 2.

0
1
2
3
4
5
6
7
8
9

10 100

(a)

(a
2(
A)
/a
2(
3 H
e)
)2
,R

3e
xp

A

(a2(A)/a2(3He))2

R3exp

0
1
2
3
4
5
6
7
8
9

10 100

(b)

a 2
an
d
a 3

A

a2(A)
a3(A)

FIG. 4: (a) The A dependence of the experimental evaluation
of R3 compared with the prediction of Eq.10. (b) The A
dependence of a3(A,Z) parameter compared to a2(A,Z) of
Ref.[9].
It follows, from Eq.(8) and the expression of

⇢
N

A(pn)
(↵, p?) in Eq.(9), that the strength of 3N-SRCs is

/ a
2

2
(A,Z). This is evident by calculating R3 in Eq.(4)

using the relation (3) and the conjecture of Eq.(8), which
leads to[29]:

R3(A,Z) =
9

8

(�ep + �en)/2

(2�ep + �en)/3
R

2

2
(A,Z) ⇡

✓
a2(A,Z)

a2(3He)

◆2

,

(10)
where �ep ⇡ 3�en in the considered Q

2 ⇠ 3 GeV2 range.
As Fig.3 shows the prediction of R3 ⇡ R

2

2
is in agreement

with the experimental per nucleon cross section ratios of
4He to 3He targets. There is a similar agreement for other
nuclei including 9Be, 12C, 64Cu and 197Au[29].
To test the prediction of Eq.(10) quantitatively we

evaluated the weighted average of Rexp

3
(A,Z) for ↵3N >
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Table II in Ref. [44], an average of the SLAC, JLAB
Hall C and JLAB Hall B results. The magnitude of the
horizontal solid line in the region of 1.6  ↵3N  1.8, is
the prediction of R3N (A,Z) ⇡ R

2

2N
(A,Z) which will be

explained in the next section. We assigned a 10% error to
this prediction (dashed lines) related to the uncertainty
of a2(A,Z) magnitudes across di↵erent measurements.

As Fig.3 shows the data at ↵3N > 1.6 are consistent
with the prediction of the onset of the new plateau in the
3N-SRC region and that its magnitude is proportional to
R

2

2N
.

With a set of 3He data obtained in the above discussed
approach we are able to estimate the ratios for other
nuclei, including, 9Be, 12C, 64Cu, and 197Au, albeit with
larger uncertainties[29].

The large experimental uncertainties in evaluation of
the ratios for 4

He (Fig.3) and for heavier nuclei[29] do not
allow us to claim unambiguously the onset of the plateau
at ↵3N � 1.6. However one can evaluate the validity of
such a plateau by comparing one- and two- parameter
fits to the experimental ratios in the ↵3N � 1.6 region.
The one-parameter fit in the 3N-region gives the values
(Rexp

3
) of the plateaus as seen in Figure 4(a) along with

our prediction of Eq. (10). Rexp

3
is also listed in Table I.

A two-parameter linear fit, returns errors on the param-
eters nearly as large as the parameters themselves and a
correlation matrix indicating that the second parameter
is redundant, providing no additional information.

V. 3N-SRCS AND THE pn DOMINANCE:

In Fig.1(b) the 3N-SRC is produced in the sequence
of two short-range NN interactions in which the nucleon
with the largest momentum interacts with the external
probe[29, 30]. The presence of short-range NN interac-
tions in 3N-SRC configurations tells us that the recently
observed pn-SRC dominance[12–14] is critical to our un-
derstanding of 3N-SRCs.

For 3N-SRCs one expects that only pnp or npn con-
figurations to contribute, with the pn short-range inter-
action playing role of a “catalyst” in forming a fast in-
teracting nucleon with momentum, pi (Fig.1(b) ). For
example, in the case of pnp configuration, the neutron
will play the role of intermediary in furnishing a large
momentum transfer to one of the protons with two suc-
cessive short range pn interactions. Quantitatively such
a scenario is reflected in the nuclear light-front density
matrix in the 3N-SRC domain, ⇢

N

A(3N)
(↵N ), being ex-

pressed through the convolution of two pn-SRC density
matrixes, ⇢N

A(pn)
(↵, p?) as follows:
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where XN = Z/A or (A � Z)/A is the relative fraction
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the light-front density function of the deuteron at ↵ �
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FIG. 4: (a) The A dependence of the experimental evaluation
of R3 compared with the prediction of Eq.10. (b) The A
dependence of a3(A,Z) parameter compared to a2(A,Z) of
Ref.[9].
It follows, from Eq.(8) and the expression of

⇢
N

A(pn)
(↵, p?) in Eq.(9), that the strength of 3N-SRCs is

/ a
2

2
(A,Z). This is evident by calculating R3 in Eq.(4)

using the relation (3) and the conjecture of Eq.(8), which
leads to[29]:
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where �ep ⇡ 3�en in the considered Q

2 ⇠ 3 GeV2 range.
As Fig.3 shows the prediction of R3 ⇡ R

2

2
is in agreement

with the experimental per nucleon cross section ratios of
4He to 3He targets. There is a similar agreement for other
nuclei including 9Be, 12C, 64Cu and 197Au[29].
To test the prediction of Eq.(10) quantitatively we

evaluated the weighted average of Rexp

3
(A,Z) for ↵3N >

Onset of 3N dominance at α~ 1.6
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Correlations in p A→ p (backward) + p (backward) +X
measurements of Bayukov et al 86

�i = 120o

�i

pi ⇡ 0.5GeV,↵ ⇡ 1.4, pt ⇡ .25GeV
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pBe

pU

R2 =
1

�in
pA

d�(p + A� pp + X)/d3p1d3p2

d�(p + A� p + X)/d3p1d�(p + A� p + X)/d3p2

|p1| = |p2| � 500MeV/c

Curves is experimental fit.

the pattern of ψ dependence of R2 can  be reproduced
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Study 3N correlations in A(e,e’ p +2 backward nucleons)  &A(p,p’ p +2 
backward nucleons). Reminder: for the neutron star dynamics mostly isotriplet 
nn, nnn,..   SRC are relevant.

p (n)

p (e)p(n)

e(p)

p(n)

Start with 3He, followed by 4He, C. Expectations: 

(a)   
(b)  ppn ~ nnp >> nnn, ppp 
(c) e+A → e+ 2N +X stronger angular dependence and larger 
R2(ψ=-180o) than in pA.

�1 Back.Nucl + �2 Back.Nucl + �3 Forw.Nucl � 3

Can inverse kinematics help? Lumi
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Summary - discoveries through precision and through new processes

Precision theoretical and experimental  studies of the lightest 
nuclei, including relativistic dynamics

Tests of realistic modeling of FSI

Tests of factorization (comparing electron, photon, 
nucleon- nucleus SRC sensitive processes.

☛

☛

☛

☛ Tests of dynamic assumptions of LC many 
nucleon approximation.

☛ Calculating and looking for 3N SRC

Looking for Δ-isobars and other non-
nucleonic degrees of freedom in nuclei

☛

☛ Separation of S and D waves in SRCs
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