EMC-type effects from Lattice QCD

Phiala Shanahan, MIT

Image Credit: 2018 EIC User's Group Meeting

Massachusetts Institute of Technology

EMC-type effects from Lattice QCD

Understanding the quark and gluon structure of matter

How is the partonic structure of nuclei different from that of nucleons?

(EMC: Aubert et al., 1983)

EMC-type effects from Lattice QCD

Understanding the quark and gluon structure of matter

Many aspects of EMC effects will be accessible at a future Electron-Ion Collider

Cover image from EIC whitepaper arXiv::1212.1701

- Polarised EMC (polarised light ions)
- Isovector EMC (SIDIS)
- Gluon EMC (quarkonium production)
- LQCD will make predictions!

Lattice QCD

Numerical first-principles approach to non-perturbative QCD

INPUT

Lattice QCD action has same free parameters as QCD: quark masses, α_S

- Fix quark masses by matching to measured hadron masses, e.g., π, K, D_s, B_s for u, d, s, c, b
- One experimental input to fix lattice spacing in GeV (and also α_S), e.g., 2S-1S splitting in Y, or f_{π} or Ω mass

OUTPUT

Calculations of all other quantities are QCD predictions

Parton physics from Lattice QCD

Precision Era

Fully-controlled w/ few-percent errors within ~5y

- Static properties of nucleon incl. spin, flavour decomp.
- Mellin moments of PDFs, GPDs

Early Era

Fully-controlled w/ ~15-percent errors within ~5y

- Nuclear structure A<5
- Spin, flavour decomp. of EMC-type effects

Exploratory Era

First calculations, timeline for controlled calculations unclear

- x-dependence of PDFs
- TMDs k

Nuclear physics from lattice QCD

 Nuclear physics from lattice QCD Collaboration

 Nuclei with A<5 unphysical quark masses
 First calculations with
 physical masses in progress
 2021

Other lattice studies of nuclei:

PACS-CS e.g. ,Yamazaki et al, Phys.Rev.D 92 (2015);

Callatt e.g., E Berkowitz et al, Phys.Lett.B 765 (2017) 285

Mainz e.g., A. Francis et al, Phys.Rev.D 99 (2019)

HALQCD e.g., Ishii et al, Phys.Rev.Lett. 99 (2007) (potential approach)

Recent highlights

- Proton-proton fusion and tritium
 β-decay
 [PRL 119, 062002 (2017)]
- Double β-decay
 [PRL 119, 062003 (2017), PRD 96, 054505 (2017)]
- Gluon structure of light nuclei
 [PRD 96 094512 (2017)]
- Scalar, axial, tensor MEs [PRL 120 152002 (2018), 2102.03805 (2021)]
- Baryon-baryon interactions, including QED
 [2003.12130 (2020), 2009.12357 (2020)]
- EMC-type effects in light nuclei
 [PRD 96 094512 (2017), 2009.05522 (2020)]

EMC effects in Mellin moments

First investigation of EMC-type effects from LQCD: Nuclear effects in Mellin moments of PDFs

- Calculable from $T_{\mu\nu}$ cal operators x
- BUT EMC effects in moments are very small

EMC effects in Mellin moments

Eur. Phys. J. C (2017) 77:163

First investigation of EMC-type effects from LQCD: Nuclear effects in Mellin moments of PDFs

• Lowest Mellin moment of spin-independent PDF defines fraction of momentum of nucleus A carried by parton of type f

$$\langle x \rangle_A^f = \int_0^1 dx \, x f^A(x) \qquad \qquad \sum_{f=q,g} \langle x \rangle_h^f = 1$$

 Momentum sum rule implies nucleus-independent ratio of quark and gluon EMC effects in the first moment

$$\left(\frac{\langle x \rangle_A^f}{\langle x \rangle_p^f} - 1\right) = E_A^f$$

$$\frac{E_A^g}{E_A^q} = -\frac{\langle x \rangle_p^q}{\langle x \rangle_p^g} \approx -1.4$$
$$\overline{\mathrm{MS}} \left(\mu = 2 \mathrm{GeV}\right)$$

Gluon momentum fraction of nuclei

Matrix elements of the spin-independent gluon operator in nucleon + light nuclei [NPLOCD PRD96 094512 (2017)]

first determination of gluon momentum fraction of nuclei

Doubly challenging:

- Nuclear matrix element
- Gluon observable (suffer from poor signal-to-noise)
- BUT: clean signals at ~5% precision

Deuteron gluon momentum fraction

Gluon momentum fraction of nuclei

Matrix elements of the spin-independent gluon operator in nucleon + light nuclei [NPLOCD PRD96 094512 (2017)]

first determination of gluon momentum fraction of nuclei

- Constraints at ~10% level on EMC-effect in gluon momentum fraction
- Small mixing with quark EMT operators (neglected)
- Sum rule constraint

- First determination of all components of momentum decomposition of light nuclei
- Small mixing between quark and gluon EMT operators neglected
- Constraint on either quark or gluon EMC in this quantity implies constraint on the other from sum rules:

Matrix elements of the Energy-Momentum Tensor in light nuclei first QCD determination of momentum fraction of nuclei

 Bounds on EMC effect in moments at ~few percent level, consistent with phenomenology

Ratio of quark momentum fraction in nucleus to nucleon

Matrix elements of the Energy-Momentum Tensor in light nuclei first QCD determination of momentum fraction of nuclei

Few-percent determination of quark momentum fraction
 ~10% determination of strange quark contributions

Matrix elements of the Energy-Momentum Tensor in light nuclei first QCD determination of momentum fraction of nuclei

 Bounds on EMC effect in moments at ~few percent level, consistent with phenomenology [2009.05522 [hep-lat] (2021)]

Ratio of quark momentum fraction in nucleus to nucleon

Momentum fraction of ³He

Matrix elements of the Energy-Momentum Tensor in light nuclei first QCD determination of momentum fraction of nuclei

- Match isovector (u-d quark combination) momentum fraction to low-energy constants of effective field theory, extrapolate to physical quark masses
- Include into nNNPDF global fits of experimental lepton-nucleus scattering data

 $\frac{\mathsf{Blue} \rightarrow \mathsf{Purple}}{\mathsf{Improvement} \text{ using theory constraints}}$

[NPLQCD 2009.05522 (2020)] Phiala Shanahan, MIT

Momentum fraction of ³He

Matrix elements of the Energy-Momentum Tensor in light nuclei first QCD determination of momentum fraction of nuclei

- Match isovector (u-d quark combination) momentum fraction to low-energy constants of effective field theory, extrapolate to physical quark masses
- Include into nNNPDF global fits of experimental lepton-nucleus scattering data

 $\frac{\mathsf{Blue} \rightarrow \mathsf{Purple}}{\mathsf{Improvement} \text{ using theory constraints}}$

• Work in progress at close-to-physical values of the quark masses

Exotic glue in the deuteron a "pure" EMC-type effect

Contributions to nuclear structure from gluons not associated with individual nucleons in nucleus

Exotic glue operator: nucleon $\langle p|\mathcal{O}|p\rangle = 0$ nucleus $\langle N, Z|\mathcal{O}|N, Z\rangle \neq 0$

Jaffe and Manohar, "Nuclear Gluonometry" Phys. Lett. B223 (1989) 218

Exotic glue in the deuteron a "pure" EMC-type effect

Double helicity flip structure function $\Delta(x,Q^2)$: changes both photon and target helicity by 2 units

- Unambiguously gluonic: no analogous quark PDF at twist-2
- Non-vanishing in forward limit for targets with spin≥ I
- Experimentally measurable
 - Unpolarised electron DIS on polarised target: JLab LoI 2015
 - Proton-deuteron Drell-Yan at FNAL
 - J/ ψ production at NICA
- Moments calculable in LQCD

Exotic glue in the deuteron a "pure" EMC-type effect

Double helicity flip structure function $\Delta(x,Q^2)$: changes both photon and target helicity by 2 units

Parton model interpretation: gluonic transversity

$$\Delta(x,Q^2) = -\frac{\alpha_s(Q^2)}{2\pi} \operatorname{Tr} Q^2 x^2 \int_x^1 \frac{dy}{y^3} \left[g_{\hat{x}}(y,Q^2) - g_{\hat{y}}(x,Q^2) \right]$$

 $g_{\hat{x},\hat{y}}(y,Q^2)$: probability of finding a gluon with momentum fraction y linearly polarised in \hat{x} , \hat{y} direction

Exotic glue in the deuteron

Contributions to nuclear structure from gluons not associated with individual nucleons in nucleus

- First moment of gluon transversity distribution in the deuteron [Jaffe, Manohar PLB223 (1989) 218]
- First evidence for non-nucleonic gluon contributions to nuclear structure: LQCD with $m_{\pi} \sim 800$ MeV [NPLQCD PRD96 (2017)]
- Magnitude relative to momentum fraction as expected from large-N_c

nucleon: $\langle p|\mathcal{O}|p\rangle = 0$ nucleus: $\langle N, Z|\mathcal{O}|N, Z\rangle \neq 0$

Next steps towards EMC constraints from LQCD

- Higher statistics, physical quark masses
- Continue to investigate effect of LQCD constraints on global nuclear PDF fits
- EMC-type effects in more complicated quantities perhaps statistically easier to reveal

Generalised form factors (moments of GPDs)

Next: pressure distribution in nuclei

Pressure in light nuclei c.f. pressure in the nucleon?

Summary and outlook

EMC-type effects are accessible to LQCD

- Current state-of-the-art: significant systematics but approaching phenomenologically interesting precision
- Near future: systematics controlled for A<5, predictions for
 - Polarised EMC (polarised light ions)
 - Isovector EMC (SIDIS)
 - Gluon EMC (quarkonium production)

Illii Massachusetts Institute of Technology

