Probing few-body nuclear dynamics via ³H and ³He (e,e'p) cross-section measurements

Reynier Cruz Torres March 22nd, 2021 SRC-EMC Workshop

PRL. 124, 212501 (2020)

Why study the NN interaction?

- Crucial input to nuclear structure calculations
- Understanding of QCD
- Connections to astrophysics

Testing Reaction-Mechanism and NN Models

• Measure nucleon-knockout cross sections.

• Compare with calculations using different NN interactions and modeling of reaction.

• See which one works best.

Why light nuclei?

- exactly calculable

test and benchmark theory

Why light nuclei?

 exactly calculable test and benchmark theory

Deuteron

A=3

 ³H targets are uncommon (available once a generation)

Electron-induced Proton Knockout

Electron-induced Proton Knockout

Missing momentum

$$\vec{p}_{miss} \equiv \vec{p}_{f} - \vec{q}$$

Plane-Wave Impulse Approximation (PWIA)

Missing momentum

 $\vec{p}_{miss} \equiv \vec{p}_{f} - \vec{q}$

Assuming:

- 1) momentum transfer absorbed by a single nucleon.
- knocked-out nucleon did not rescatter as it left the nucleus.

$$\vec{p}_{miss} = \vec{p}_i$$

Previous studies and non-QE mechanisms

F. Benmokhtar et al., PRL 94, 082305 (2005)

Previous studies and non-QE mechanisms

Minimizing competing mechanisms

$$Q^2 > 2 GeV^2$$

$$x_{\rm B} = Q^2 / 2m_{\rm p}\omega > 1$$

M. M. Sargsian, Int. J. Mod. Phys. E10, 405 (2001) M. M. Sargsian et al., J. Phys. G29, R1 (2003)

Minimizing competing mechanisms

Minimizing competing mechanisms

Jefferson Lab

Jefferson Lab

Experiment kinematics

From Counts to Cross Section

Luminosity

Live time

Detector Efficiency

- PID
- tracking
- trigger

Phase-space volume and acceptance correction

Corrections

- bin migration
- bin centering
- radiation

Isolating the ³He 3bbu channel

- ³He(e,e'p) final state can be 2bbu (pd) or 3bbu (ppn)
 - ³H(e,e'p) does not have a 2bbu channel

Extracted Absolute Cross Sections

Cross Section Models

Cracow:

- Faddeev-formulationbased
- Continuum interaction between two spectator nucleons (FSI₂₃)

<u>CK + CC1:</u>

- ³He spectral function of CDA and L.P. Kaptari and electron off-shell nucleon cross-section
- Continuum interaction between two spectator nucleons (FSI₂₃)

$$\sigma = \sigma_{ep} \cdot S(p_i, E_i)$$

M. Sargsian (FSI):

- Generalized Eikonal Approximation based
- NO continuum interaction between two spectator nucleons (FSI₂₃). Only use for high-p_{miss} comparison

Comparison to theory

³H Data, Cracow agree within 10-20%!!!

³H Data, PWIA-calculation comparison

³He agreement is limited

³He agreement is limited

Still better agreement than previous data

Struck-nucleon FSI at high-p_{miss}

Single-Charge Exchange (SCX)

pn-SCX (e,e'p) -> (e,e'n) decreases σ(e,e'p)

np-SCX (e,e'n) -> (e,e'p) increases σ(e,e'p)

SCX in A=3 at high-p_{miss}

SCX in A=3 at high-p_{miss}

 Much Smaller Non-QE contribution compared to previous measurements

- Much Smaller Non-QE contribution compared to previous measurements
- Better agreement with Cracow than with CK+*CC1*

- Much Smaller Non-QE contribution compared to previous measurements
- Better agreement with Cracow than with CK+CC1
- Better agreement with ³H than ³He

- Much Smaller Non-QE contribution compared to previous measurements
- Better agreement with Cracow than with CK+CC1
- Better agreement with ³H than ³He
- Including leading nucleon FSI improves the agreement

- Much Smaller Non-QE contribution compared to previous measurements
- Better agreement with Cracow than with CK+CC1
- Better agreement with ³H than ³He
- Including leading nucleon FSI improves the agreement
- The remaining disagreement could be explained by SCX

- Much Smaller Non-QE contribution compared to previous measurements
- Better agreement with Cracow than with CK+CC1
- Better agreement with ³H than ³He
- Including leading nucleon FSI improves the agreement

PRL. 124, 212501 (2020)

 The remaining disagreement could be explained by SCX

These data are a crucial benchmark for few-body nuclear theory

More coming... stay tuned!

³He, ³H, ²H (e,e'p) in Hall-B

- Hall A showed importance of using Helium & Triton BUT \w limited statistics
- CLAS12: x0.1 luminosity x100 acceptance
 x10 statistics + larger kinematical coverage!

Thank you!

