
Compact Photon Source

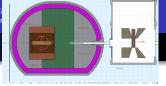
Gabriel Niculescu James Madison University

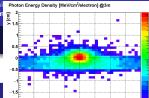
2021 Hall C Users Meeting, 01/28-29/2021 JLab (virtual)

January 29, 2021

Introduction

Time permitting, I shall talk about...


- What is CPS? (Definition)
- What can it be used for? (Justification)
- How does it work? (Key concepts & features)
- Current development status.
- Summary & Outlook


Enter CPS

What is CPS?

- stands for Compact Photon Source
- novel arrangement of untagged photon source

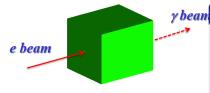
What is it for?

- high s, t photon-nucleon interactions such as WACS
- narrow photon beam identifying exclusive reactions
- optimized for work w/ polarized NH3-type targets
- high intensity* ($\sim 30 \times$ better than alternatives)

Specs?

30 kW Power Radiator 10% rl Beam size (@ 2 m) $\sim 1 \; \mathsf{mm}$ Lifetime (est.) 1000+ h

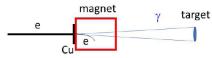
Potential Clients?


- polarized photon-induced reactions using NH3-type targets
- ...emphasizing low cross-section, exclusive reactions
- any other experiment that might use CPS as their "primary" beam

Experiments using CPS

- E12-17-008 "Polarization Observables in Wide-Angle Compton Scattering at large s, t and u", D. Hamilton *et al.*, A⁻, 46 days.
- C12-18-005, "Timelike Compton Scattering off a transversely polarized proton", M. Boer, D. Keller, V. Tadevosyan, 49.5 days.
- Two-photon exchange study using CPS (LOI in preparation).

Compact Photon Source Concept

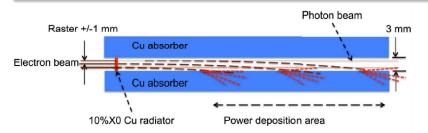


ideas and facts. (why?)

- ...as proposed in 2014 (BW)
- Outgoing γ beam: $\vartheta \sim m/E$ angular size
- Source could be hermetic!!!

what & how?

- What to do w/ the electron beam?
- How about: traditional approaches?
 NO! No hermeticity; large, \$\$\$.
- Idea: Use the magnet as a dump, ergo, problem is solved! How?



CPS Central piece (CP)

2014 Concept (BW): sliding power absorption...

Deflect, degrade, (begin to) dispose of residual e^- beam

For the current design...

- Radius R for 11 GeV $e^- \sim 10$ m
- ullet For 0.3 cm channel power deposition area 17 \pm 12 cm
- \bullet Total field integral: ${\sim}1000$ kG-cm, iron dominated magnet.

Compact Photon Source Development (I)

from the November 2014 talk at the NPS meeting $\gamma\text{-}Source$

Distance to target ~200 cm
photon beam diameter on target ~0.9 mm

2mm hole

1.2µA e⁻

8.8 GeV

B ~ 1.5T

Beam Dump
in the magnet

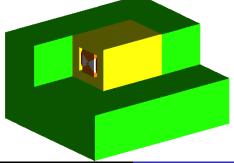
Initial MC simulation shows acceptable background rate on SBS and NPS
Detailed analyses of radiation level are in progress

B. Wojtsekhowski

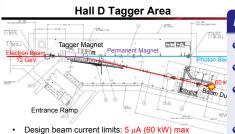
Compact Photon Source Development (II)

from the tech note for the 2015 WACS proposal

Conceptual Design Report A Compact Photon Source


B. Wojtzekhowski

Thomas Jefferson National Accelerator Facility, Newport News, VA 23506


G. Niculescu

James Madison University, Harrisonhuv, VA 22507

June 22, 2015

CPS knowledge dissemination (I)

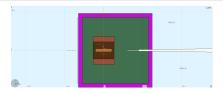
- Design radiator thickness: ~0.0005 Radiation Lengths ma
- Challenge: Increase radiator thickness to 0.05-0.10 R.L.?

Jeffers

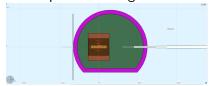
K_L^0 facility:

- CPS-like source in Hall D.
- sliding power dep...
- see proceedings of KL2016 workshop
- Hall C CPS model made available to the Hall D team currently pursuing this project

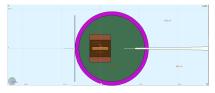
CPS Development Group

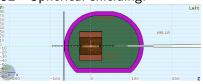

• ..

2017: Breakthrough (TH):
 CPS development group organized
 by CUA after workshop in Feb.
 2017


page discussion view source history CPS Collaboration 3. Vladimir Berdnikov (CUA) Josh Crafts

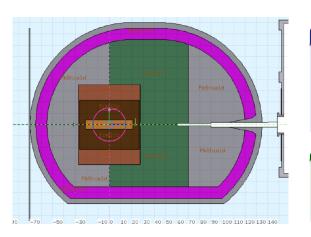
(CUA) Eugene Chudakov ☐ (JLab) 8. Pavel Degtiarenko M (JLab) 9. Donal Day M (UVa) Sean Dobbs
☐ (FSU) Rolf Ent (JLab) David J. Hamilton
 ☐ (U Glasgow)


Compact Photon Source Development (III)


01 - Square shielding. Offset.

03 - Cut Spherical shielding.

02 - Spherical shielding.


04 - Cut "egg-shape".

NOTE1: Figures not to scale! Powder W volume is reduced:

 $4.8 m^3$. $2.2 m^3$ $1.8 m^3$.

NOTE2: Prompt and activation results for all these (and more!).

"Final" CPS version (FLUKA)

Simulation

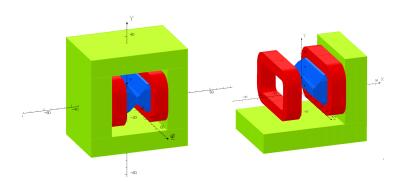
- detailed simulation...
- …fields, shielding mats.
- prompt/activation dose
- power deposition

• • •

- substantial savings in weight and \$\$\$
- ... safe to operate.

CPS knowledge dissemination (II)

Nucl.Instrum.Meth.A 957 (2020) 163429


- A Conceptual Design Study of a Compact Photon Source (CPS) for Jefferson Lab
- D. Day, ¹ P. Degtiarenko, ² S. Dobbe, ³ R. Ent, ² D.J. Hamilton, ⁴ T. Horn, ^{5,2} D. Keller, ¹ C. Keppel, ² G. Kircheven, ⁵ P. Reid, ⁷ I. Strikovsky, ⁸ B. Wojtekhowski, ² and J. Zhang ¹ University of Virginic 28204, Virginic 28204, Virginic 28204, Single Strike Strike
 - ⁴Uniscruity of Clasgow, Clasgow C12 80Q, Scotland, United Kingdom ⁵Catholic University of America, Washington, D. C. 20064, USA ⁶James Madison University, Harrisonbury, Virginia 28207, USA ⁷Saint Mary University, Hadiya, Nova Scotia, Canada ⁸George Washington University, Washington, D. C. 20052, USA (Dated: December 17, 2019)

NIM Paper

- CPS concept, design, and simulation results
- expected performance, usage, lifetime
- ... published in NIM, 2020

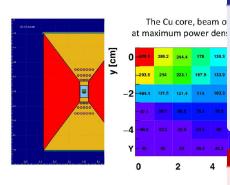
Can we build it?

View of the magnet

CPS¹⁷Magnet Evolution B. Wojtsekhowski


Stacking of Pb and W blocks...

CPS Shielding Stack Profile Update


- The CPS shield interior now contains a total of 1508 lead bricks. Note: This does not include the exterior skin.
- The number of Tungsten Bricks is now 2109.

How About?...

Heat dissipation...

- 27 kW is a lot of heat to get rid of
- esp. over a relatively small space
- temperature of the center piece will be substantial
- ...with a large temp gradient $(80^{\circ} \rightarrow \sim 500^{\circ} \text{ or so})$

Action Items:

- heat dissipation/cooling
- temp-induced stress

Power deposition in the Central Piece

Simulation details...

- Fluka results
- 0.5x0.5x5 mm grid
- available either as df
- ...or as param.

Heat Dissipation

- Water @110 psi
- Bogdan: analytic calc.
- GN: 2D simulation
- Amy, Steve: 3D (in progress)

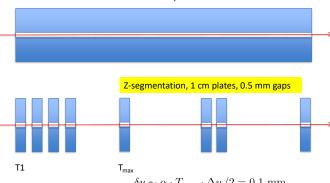
Simple analytic calculation

Thermal elongation and related stress

Copper thermal expansion, $\alpha = 17 \cdot 10^{-6}$ per deg. K

Copper Young module, $E = 1.2 \cdot 10^6 \text{ kg/cm}^2$

$$\delta l = \alpha \cdot \Delta T \cdot l \sim 17 \cdot 10^{-6} \times 400 \times 200 = 1.4 \text{ mm}$$


$$\sigma = E \cdot \frac{\delta l}{l} = \alpha \cdot \Delta T \cdot E =$$

$$17 \cdot 10^{-6} \times 400 \times 10^{6} \text{ atm} = 7200 \sim 10 \times \sigma_{Y}$$

Mitigation...

Reduction of the deformation risk by a few design changes

Current shape

 $\delta y \sim \alpha \cdot T_{max} \cdot \Delta y / 2 = 0.1 \text{ mm}$

...and there is a plan to prototype/test this approach.

Projected Timeline

Anticipated Project Progression:

- ⇒ radiation analysis: completed; design of shielding: advanced; Pb from SLAC is moving
- ⇒ power deposition: completed
- \Rightarrow stress analysis: in progress. Goal is to complete it by 03/01/2021.
- ⇒ production drawings for the central part for internal review - by 07/01/2021
- \Rightarrow **order** the magnet+inserts \sim 08/15/2021

I hope I convinced that...

- CPS a very helpful tool for probing (exclusive) photon-nucleon interactions.
- Project not only "feasible" but mature enough to seriously plan (detailed) prototyping and construction.
- ... ERR underway
- I'm likely out of time but if you do have projects/ideas/possible experiments that could use CPS please **JOIN IN!**.

THANK YOU!

