Hall C outlook: LAD (E12-11-107)

> Tyler Kutz GW/MIT

Hall C User's Meeting January 29, 2021

Summary

- Physics motivation
- Experimental overview
- Status

Protons and neutrons are modified in the nucleus

- EMC effect: $F_2^A \neq ZF_2^p + NF_2^n$
- Effect stronger than "known" nuclear effects (Fermi motion, binding...)
- Nucleon structure is modified

B. Schmookler et al., Nature 566, 354 (2019)

Protons and neutrons are modified in the nucleus

Are *all* nucleons *slightly* modified? Or are a *few* nucleons *highly* modified?

B. Schmookler et al., Nature 566, 354 (2019)

SRCs lead to high-momentum scaling

Short-range correlations:

- Separation \lesssim radius
- Large relative, small center of mass momentum (relative to k_F)
- 90% neutron-proton pairs

High-momentum tail:

- Universal shape
- Strength grows with nucleus

M. Alvioli et al., Phys. Rev. C 87, 034603 (2013)

Strength of EMC effect correlated with SRC abundance

O. Hen et al., Rev. Mod. Phys. 89, 045002 (2017)

Test SRC-EMC hypothesis with spectator-tagged DIS

- "Tag" scattered electron with detection of recoiling SRC nucleon
- Allows initial momentum reconstruction of struck nucleon

Test SRC-EMC hypothesis with spectator-tagged DIS

- "Tag" scattered electron with detection of recoiling SRC nucleon
- Allows initial momentum reconstruction of struck nucleon

Test SRC-EMC hypothesis with spectator-tagged DIS

- Minimize experimental and theoretical uncertainties by measuring double ratio
- Measured to calculated cross section for high to low x' as function of initial nucleon momentum p_s

$$\frac{F_2^{bound}(x'_{high}, p_s)}{F_2^{free}(x_{high})} = \frac{\sigma_{tag}(x'_{high}, p_s) / \sigma_d(x_{high})}{\sigma_{tag}(x'_{low}, p_s) / \sigma_d(x_{low})} \times \frac{\sigma_d / \sigma_n^{free}(x_{high})}{\sigma_d / \sigma_n^{free}(x_{low})}$$

Examine both sides of nucleon modification

Examine both sides of nucleon modification

BAND analysis flash

LAD experimental setup

LAD target

from D. Meekins

- HAPPEX cell design
- 20 cm cell length
- Target ladder:
 - LH2
 - LD2
 - Empty
 - Carbon multi foil
 - Solid targets for checkout

Large angle detector (LAD)

- 5 panels of refurbished CLAS6 TOF scintillators
 - 55 paddles, each 22 cm long and 4 cm thick
 - One panel at smaller angle, two panels at larger angle
- Positioned 5-5.4 m from target covering $95^{\circ} < \theta_p < 157^{\circ}$
- Proton ID using dE/dX vs. TOF
- Proton momentum from TOF
- Laser calibration system for timing and energy calibration

LAD support design complete

Laser calibration system

- Following laser calibration system developed for BAND*
- Rack-mountable box contains laser system
- Splitter distributes laser pulse to scintillators
- Laser completely contained in fiber-optic cables
- Web GUI allows remote operation
- Time resolution $\leq 100 \text{ ps}$

Laser				Generator		Attenuator		
Times		Pulsing		Select Channel		Handling by dB		
Supply Time	3689:1 [H:M]	Status	ON	Channel 1	Channel 2	Current dB	0.00 [dB]	
Emitting	3688:52 [H:M]		Turn ON	Channel 1			Set dB	
Temperatures			Turn OFF	Wave	PULSE V		-0.1[dB]	+0.1[dB]
Diode	34.00 [°C]			Amplitude	5 [V]		-1[dB]	+1[dB]
Crystal	28.01 [°C]			Offset	2.5 [V]	Handling by Transference (OUT/IN)%		
Electronic Sink	44.00 [°C]			Frequency	1000 [Hz]	Current Transference % 100.0 [%]		
Heat Sink	23.00 [°C]			Duty	10 [%]	Set %		: %
Temperature Control				Pulse Width	0.0001 [S]		-1[%]	+1[%]
Control TEC 1	ON			Rise	2.68e-08 [S]		-10[%]	+10[%]
Control TEC 2	ON			Fall	Fall 1.68e-08 [S]		Handling by Step	
Errors and Informations				Output	OrFF OFF		2640 [Step]	
Error 1	0				Get Current		Set Po	sition
Error 2	0				Load Default		-1	+1
Error 2	0				Set Parameters		-10	+10
Info 1	12				Turn ON			
Info 2	133				Turn OFF	Last Command	D	В
Info 3	47		Update				Upd	ate

*A. Denniston, et al., NIM A 973 164177 (2020)

Random background will be limit to LAD precision

Simulated protons hitting middle LAD panel

- Anticipate accidental background rate 4-8x signal
- Suppress background using
 - Energy deposition (dE/dX)
 - Proton vertexing (GEMs)

GEMs for proton vertexing

- Repurpose PRad GEMs
- Active area: 120 x 55 cm²
- Positioned at 127°
 - First plane 75 cm from target
 - Second plane 95 cm from target

Background rate at GEMs is manageable

- Estimate rate with GEANT4 simulation
- 10.9 GeV electron beam on 20 cm LD2 target
- Include GMn GEM for photon rate comparison

- Rates for LAD GEMs from GEANT4
 - Photons = 22.5 GHz (0.5% efficiency per PRad simulations)
 - Electrons = 15 GHz (4 GHz with aluminum window and 1mm polyethylene)
 - Consistent with previous calculations by Pavel Degtiarenko
- Simple simulation shows 40 ns time resolution achievable with these rates
- With 40 ns time resolution, vertexing able to suppress background to 10% level

GEM support design complete

Experimental status

- ERR approved November 2020
- Beam time request submitted December 2020
- Key remaining tasks:
 - Detailed simulation of GEMs and LAD in GEANT4
 - Commissioning of PRad GEMs for LAD

Thank you!