Pion Form Factor and Factorization to High Q² E12–19–006

Garth Huber

E12-19-006 Cast of Characters

- Spokespersons: Dave Gaskell, Tanja Horn, GH
- Graduate Students on the Experiment:

Jacob Murphy Ohio U.

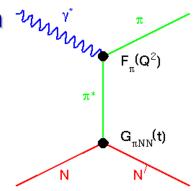
Muhammad Junaid U. Regina

Nathan Heinrich U. Regina

Petr Stepanov CUA

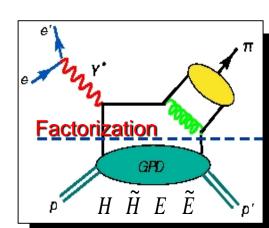
- Important Group Members:
 - Vladimir Berdnikov (CUA), Stephen Kay (Regina), Vijay Kumar (Regina), Julie Roche (Ohio U.), Petr Stepanov (CUA), Richard Trotta (CUA), Ali Usman (Regina), Carlos Yero (JLab)
- If interested in joining the team, please contact DG, TH, or GH

Motivations of the Experiment


1) Determine the Pion Form Factor to high Q^2 :

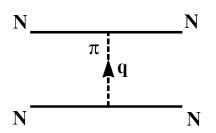
via $p(e,e'\pi^+)n$

 $|p\rangle = |p\rangle_0 + |n\pi^+\rangle + \dots$



■ The experiment should obtain high quality F_{π} over a broad Q² range. Rated "high impact" by PAC.

2) Study the Hard-Soft Factorization Regime:


- Need to determine region of validity of hardexclusive reaction meachanism, as GPDs can only be extracted where factorization applies.
- Separated p(e,e'π⁺)n cross sections vs. Q² at fixed x to investigate reaction mechanism towards 3D imaging studies.
- Perform exclusive π^-/π^+ ratios from ²H, yielding insight to hard–soft factorization at modest Q2.

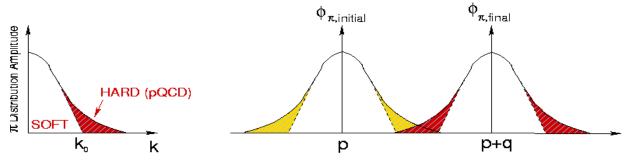
The Pion has Particular Importance

The pion is responsible for the long-range part of the nuclear force, acting as the basis for meson exchange forces, and playing a critical role as an elementary field in nuclear structure Hamiltonians.

- As the lightest meson, it must be a valence $q\bar{q}$ bound state, but understanding its structure through QCD has been exceptionally challenging.
 - e.g. Constitutent Quark Models that describe a nucleon with m_N =940 MeV as a qqq bound state, are able to describe the ρ -meson under similar assumptions, yielding a constituent quark mass of about $m_{\mathcal{Q}} \approx \frac{m_N}{3} \approx \frac{m_\rho}{2} \approx 350 \text{ MeV}$

■ The pion mass $m_{\pi} \approx 140$ MeV seems "too light".

We exist because nature has supplied two light quarks and these quarks combine to form the pion, which is unnaturally light and hence very easily produced.


Charged Meson Form Factors

Simple $q\bar{q}$ valence structure of mesons presents the ideal testing ground for our understanding of bound quark systems.

In quantum field theory, the form factor is the overlap integral:

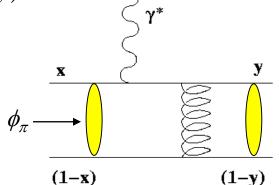
$$F_{\pi}(Q^2) = \int \phi_{\pi}^*(p)\phi_{\pi}(p+q)dp$$

The meson wave function can be separated into $\varphi_{\pi}^{\ soft}$ with only low momentum contributions $(k < k_0)$ and a hard tail $\varphi_{\pi}^{\ hard}$.

While $\varphi_{\pi}^{\ hard}$ can be treated in pQCD, $\varphi_{\pi}^{\ soft}$ cannot.

From a theoretical standpoint, the study of the Q^2 -dependence of the form factor focuses on finding a description for the hard and soft contributions of the meson wave-function.

The Pion in perturbative QCD



At very large Q^2 , pion form factor (F_{π}) can be calculated using pQCD

$$F_{\pi}(Q^{2}) = \frac{4}{3}\pi\alpha_{s} \int_{0}^{1} dx dy \frac{2}{3} \frac{1}{xyQ^{2}} \phi(x) \phi(y)$$

at asymptotically high Q^2 , the pion distribution amplitude becomes

$$\phi_{\pi}(x) \xrightarrow[Q^2 \to \infty]{} \frac{3f_{\pi}}{\sqrt{n_c}} x(1-x)$$

and F_{π} takes the very simple form

$$Q^2 F_{\pi}(Q^2) \xrightarrow[Q^2 \to \infty]{} 16\pi\alpha_s(Q^2) f_{\pi}^2$$

 f_{π} =93 MeV is the $\pi^+ \rightarrow \mu^+ \nu$ decay constant.

G.P. Lepage, S.J. Brodsky, Phys.Lett. 87B(1979)359.

This only relies on asymptotic freedom in QCD, *i.e.* $(\partial \alpha_s/\partial \mu) < 0$ as $\mu \rightarrow \infty$.

 Q^2F_{π} should behave like $\alpha_s(Q^2)$ even for moderately large Q^2 .

→ Pion form factor seems to be best tool for experimental study of nature of the quark-gluon coupling constant renormalization.

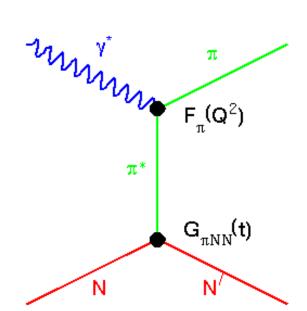
[A.V. Radyushkin, JINR 1977, arXiv:hep-ph/0410276]

The pion is the "positronium atom" of QCD, its form factor is a test case for most model calculations

- What is the structure of the π^+ at all Q^2 ?
 - at what value of Q^2 will the pQCD contributions dominate?
- A difficult question to answer, as both "hard" and "soft" components (such as gluonic effects) must be taken into account.
 - non-perturbative hard components of higher twist strongly cancel soft components, even at modest Q^2 . [Braun et al., PRD **61**(2000)073004]
 - the situation for nucleon form factors is even more complicated.
- Many model calculations exist, but ultimately...
 - Reliable $F_{\pi}(Q^2)$ data are needed to delineate the role of hard versus soft contributions at intermediate Q^2 .
- A program of study unique to Jefferson Lab (until the completion of the EIC)

Measurement of F_{π} via Electroproduction

Above $Q^2>0.3$ GeV², F_{π} is measured indirectly using the "pion cloud" of the proton via pion electroproduction $p(e,e'\pi^+)n$

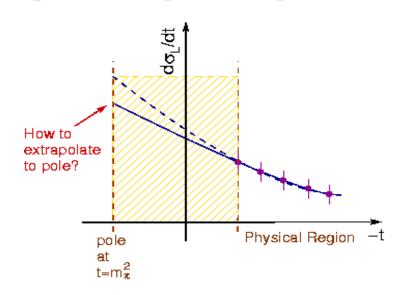

$$|p\rangle = |p\rangle_0 + |n\pi^+\rangle + \dots$$

- At small -t, the pion pole process dominates the longitudinal cross section, σ_l
- In Born term model, F_{π}^{2} appears as

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2, t)$$

Drawbacks of this technique:

- 1. Isolating σ_{L} experimentally challenging.
- 2. The F_{π} values are in principle dependent upon the model used, but this dependence is expected to be reduced at sufficiently small -t.


Extraction of form factor from σ_L data

 $p(e,e'\pi^+)n$ data are obtained some distance from the $t=m_{\pi}^2$ pole.

No reliable phenomenological extrapolation possible.

A more reliable approach is to use a model incorporating the π^+ production mechanism and the 'spectator' nucleon to extract F_{π} from σ_{L} .

Our philosophy is to publish our experimentally measured $d\sigma_L/dt$, so that updated values of $F_{\pi}(Q^2)$ can be extracted as better models become available.

E12–19–006 Forward Angle Requirements

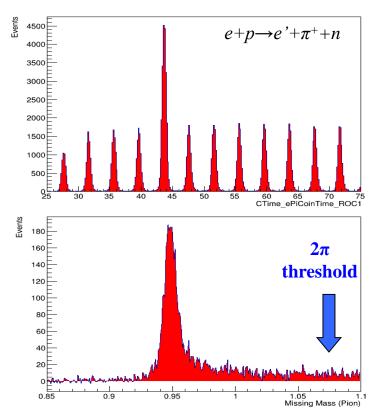
The forward angle capabilities of upgraded Hall C were in large part designed to accommodate this experiment.

Test of SHMS at 5.69° in Aug 2018

Requirements for Fall 2021 Run:

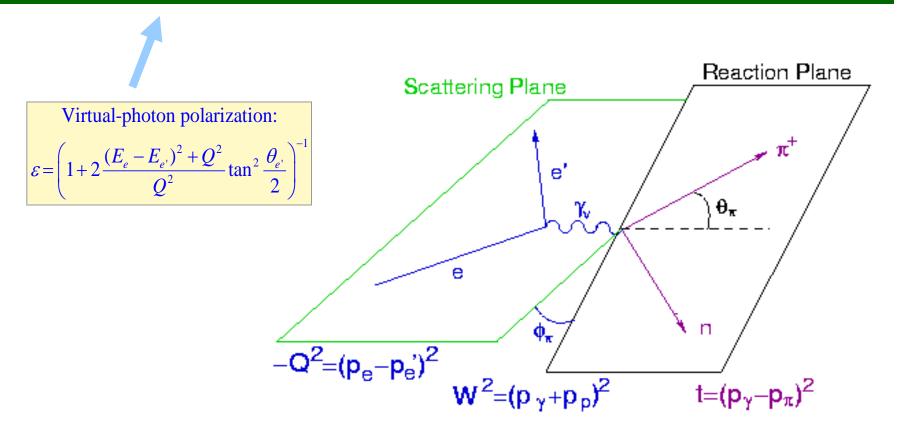
Setting	Beam Energy	0 _{SHMS}	$ heta_{HMS}$	θ _{OPEN}
Q ² =1.60 W=3.08	9.20	6.28°	12.34°	18.62°
Q ² =3.85 W=3.07	8.00	5.50°	34.15°	39.65°
Q ² =5.00 W=2.95	8.00	6.35°	42.91°	49.26°
Q ² =6.00 W=3.19	9.20	5.50°	46.43°	51.93°
Q ² =8.50 W=2.79	9.20	5.52°	57.70°	63.22°

- Steve Lassiter has alignment plan for θ_{SHMS}=5.50° which looks promising.
- The SHMS+HMS minimum opening angle needs investigation too!


$p(e,e'\pi^+)n$ Event Selection

Coincidence measurement between charged pions in SHMS and electrons in HMS.

Easy to isolate exclusive channel

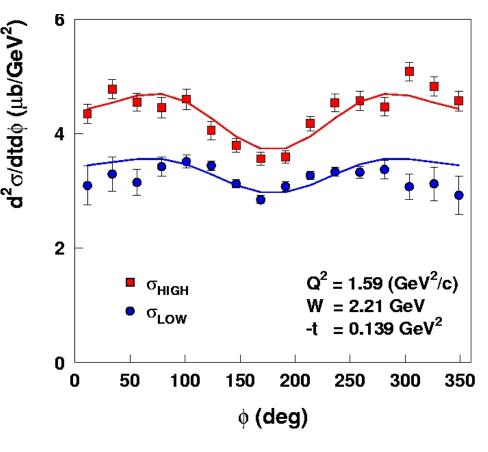

- Excellent particle identification
- CW beam minimizes
 "accidental" coincidences
- Missing mass resolution easily excludes 2—pion contributions

Sample data from Kaon-LT experiment E12-09-011

 Q^2 =3.0, W=3.14, x= 0.25, low ϵ Run: 8045 E_{beam} =8.186 GeV, P_{SHMS} =+6.0530 GeV/c, θ_{SHMS} = 6.910° Plots by Vijay Kumar

$$2\pi \frac{d^{2}\sigma}{dtd\phi} = \varepsilon \frac{d\sigma_{L}}{dt} + \frac{d\sigma_{T}}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi$$

Extraction of F_{π} requires t dependence of σ_{L} to be known.


- Only three of Q^2 , W, t, θ_{π} are independent.
- Vary θ_{π} to measure t dependence.
- Since non-parallel data needed, LT and TT must also be determined.

The different pion arm (SHMS) settings are combined to yield φ -distributions for each t-bin

$$2\pi \frac{d^{2}\sigma}{dtd\phi} = \varepsilon \frac{d\sigma_{L}}{dt} + \frac{d\sigma_{T}}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi$$

- Extract all four response functions via a simultaneous fit using measured azimuthal angle (φ_π) and knowledge of photon polarization (ε).
- This technique demands good knowledge of the magnetic spectrometer acceptances.
- Control of point-to-point systematic uncertainties crucial due to $1/\Delta\epsilon$ error amplification in σ_L
- Careful attention must be paid to spectrometer acceptance, kinematics, efficiencies, ...

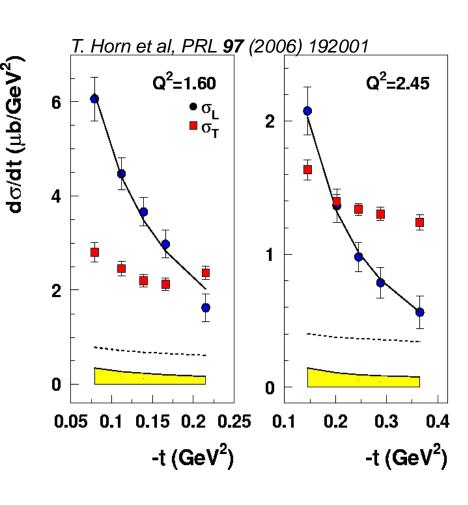
T. Horn, et al, PRL 97 (2006)192001

Magnetic Spectrometer Calibrations

Uncertainties from F_{π} Proposal (E12–06–101)

- Similarly to Fπ-2, we plan to use the over-constrained p(e,e'p) reaction and inelastic e+12C in the DIS region to calibrate spectrometer acceptances, momenta, offsets, etc.
 - $F\pi$ -2 beam energy and spectrometer momenta determined to <0.1%.
 - Spectrometer angles <0.5 mr.
 - $F\pi$ -2 agreement with published p+e elastics cross sections <2%.

Projected Systematic Uncertainty Source	Pt-Pt ε-random t-random	ε- uncorrelated common to all t-bins	Scale ε-global t-global			
Spectrometer Acceptance	0.4%	0.4%	1.0%			
Target Thickness		0.2%	0.8%			
Beam Charge	-	0.2%	0.5%			
HMS+SHMS Tracking	0.1%	0.4%	1.5%			
Coincidence Blocking		0.2%				
PID		0.4%				
Pion Decay Correction	0.03%	-	0.5%			
Pion Absorption Correction	-	0.1%	1.5%			
MC Model Dependence	0.2%	1.0%	0.5%			
Radiative Corrections	0.1%	0.4%	2.0%			
Kinematic Offsets	0.4%	1.0%	-			


- Uncorrelated uncertainties in σ_{UNS} are amplified by $1/\Delta \varepsilon$ in L/T separation.
- Scale uncertainty propagates directly into separated cross section.

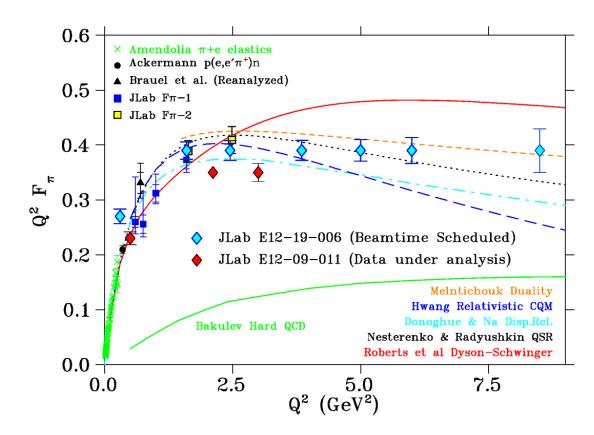
F_m Extraction from JLab data

- Model is required to extract F_{π} from σ_{L}
- JLab F_{π} experiments used the VGL Regge model [Vanderhaeghen, Guidal, Laget, PRC 57 (1998) 1454]
 - Propagator replaced by π and ρ Regge trajectories
 - Most parameters fixed by photoproduction data
 - -2 free parameters: Λ_{π} , Λ_{ρ}
 - At small –t, $\sigma_{\!\scriptscriptstyle L}$ only sensitive to \varLambda_π

$$F_{\pi}(Q^2) = \frac{1}{1 + Q^2 / \Lambda_{\pi}^2}$$

Model of: T.K. Choi, K.J. Kong, B.G. Yu [arXiv: 1508.00969] may allow a second way to extract F_{π} from σ_{L} data.

Current and Projected F_{π} Data

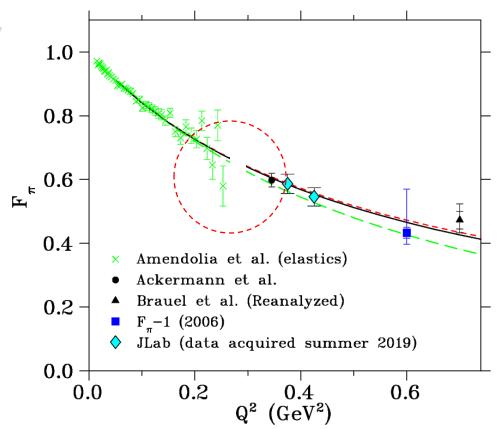


SHMS+HMS will allow measurement of F_{π} to much higher Q^2 .

No other facility worldwide can perform this measurement.

New overlap points at $Q^2=1.6,2.45$ will be closer to pole to constrain $-t_{min}$ dependence.

New low Q^2 point (data acquired in 2019) will provide comparison of the electroproduction extraction of \mathbf{F}_{π} vs. elastic $\pi + e$ data.


The ~10% measurement of F_{π} at Q^2 =8.5 GeV² is at higher $-t_{min}$ =0.45 GeV²

The pion form factor is the clearest test case for studies of QCD's transition from non-perturbative to perturbative regions.

Check of Pion Electroproduction Technique

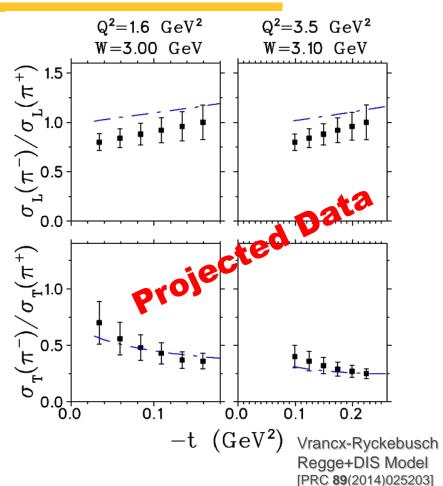
- Does electroproduction really measure the on–shell form– factor?
- Test by making p(e,e'π+)n
 measurements at same
 kinematics as π+e elastics.
- Can't quite reach the same Q², but electro-production appears consistent with extrapolated elastic data.

Data for new test acquired in Summer 2019:

- small Q² (0.375, 0.425) competitive with DESY Q²=0.35
- -t closer to pole (=0.008 GeV²) vs. DESY 0.013

A similar test for K+ form factor is part of Kaon-LT

Verify that σ_L is dominated by t-channel process



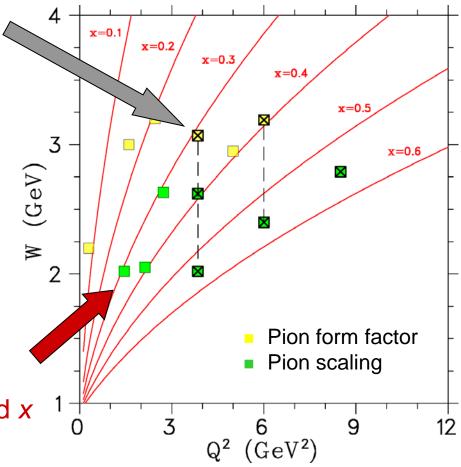
- π^+ *t*-channel diagram is purely isovector.
- Measure

$$R_{L} = \frac{\sigma_{L}[n(e, e'\pi^{-})p]}{\sigma_{L}[p(e, e'\pi^{+})n]} = \frac{|A_{V} - A_{S}|^{2}}{|A_{V} + A_{S}|^{2}}$$

using a deuterium target.

- Isoscalar backgrounds (such as b₁(1235) contributions to the t-channel) will dilute the ratio.
- We will do the same tests at Q^2 =1.60, 3.85, 6.0 GeV².

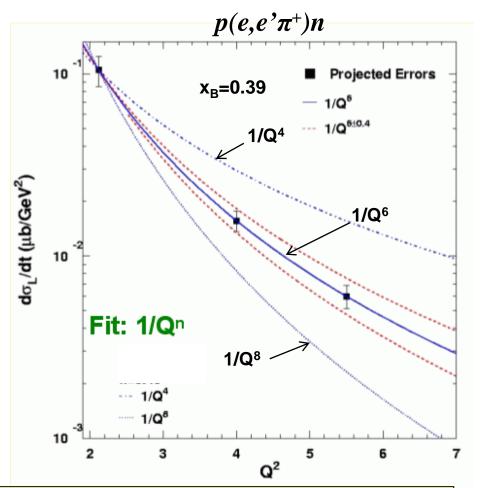
Because one of the many problems encountered by the historical data was isoscalar contamination, this test will increase the confidence in the extraction of $F_{\pi}(Q^2)$ from our σ_L data.


E12-19-006 Optimized Run Plan

Points along vertical lines allow F_{π} values at different distances from pion pole, to check the model properly accounts for:

- π⁺ production mechanism
- spectator nucleon
- off-shell (*t*-dependent) effects.

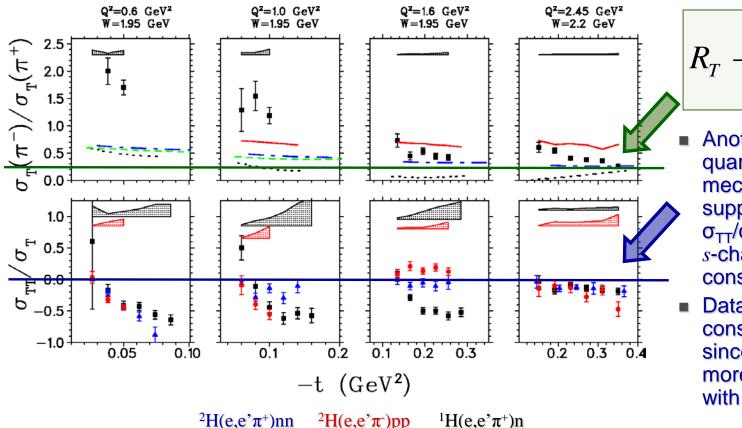
Points along red curves allow $1/Q^n$ scaling tests at fixed x


For more details, visit Pion-LT RedMine: https://redmine.jlab.org/projects/hall-c/wiki/

$p(e,e'\pi^+)n Q^{-n}$ Hard—Soft Factorization Test

- QCD counting rules predict the Q^{-n} dependence of $p(e,e'\pi^+)n$ cross sections in Hard Scattering Regime:
 - σ_L scales to leading order as Q^{-6} .
 - \bullet σ_T scales as Q^{-8} .
 - As Q^2 becomes large: $\sigma_L >> \sigma_T$.

Х	Q ²	W	-t _{min}
	(GeV ²)	(GeV)	(GeV/c) ²
0.31	1.45-3.65	2.02-3.07	0.12
0.39	2.12-6.0	2.05-3.19	0.21
0.55	3.85-8.5	2.02-2.79	0.55


- Experimental validation of onset of hard scattering regime is essential for reliable interpretation of JLab GPD program results.
 - •If σ_L becomes large, it would allow leading twist GPDs to be studied.
 - •If σ_T remains large, it could allow for transversity GPD studies.

π^-/π^+ Hard–Soft Factorization Test

- Transverse Ratios tend to ¼ as −t increases:
 - → Is this an indication of Nachtmann's quark charge scaling?
- -t=0.3 GeV² seems too low for this to apply. Might indicate the partial cancellation of soft QCD contributions in the formation of the ratio.

A. Nachtmann, Nucl. Phys. **B115** (1976) 61.

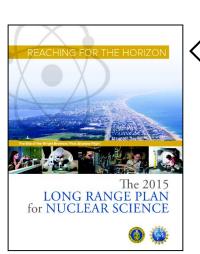
$$R_T \to \frac{2Q_d^2}{2Q_u^2} = \frac{1}{4}$$

- Another prediction of quark—parton mechanism is the suppression of σ_{TT}/σ_{T} due to s-channel helicity conservation.
- Data qualitatively consistent with this, since σ_{TT} decreases more rapidly than σ_{T} with increasing Q².

Strong Endorsement in many Reviews

Report to PAC18, 12 GeV Session: Measuring \mathbf{F}_{π} at Higher \mathbf{Q}^2

G.M. Huber, H.P. Blok, D.J. Mack on behalf of the Exclusive Reactions Working Group July 6, 2000


 F_{π} Rated "Early High Impact" by PAC35 in 2010

F_{π} first proposed to JLab PAC in 2000!

 F_{π} endorsed by NSAC in 2002, as one of the key motivations for the 12 GeV Upgrade.

 F_{π} endorsed again by NSAC in 2015, "as one of the flagship goals of the JLab 12 GeV Upgrade".

PAC47 (2019) Theory Report:

"Since the proposals were originally reviewed, the physics motivations for BOTH studies have only increased."

"A" rating reaffirmed by PAC for BOTH studies.

Call for Collaborators

- E12–19–006 is expected to provide the definitive p(e,e'π⁺)n L/T–separation data set, and will remain important for decades to come.
- The F_{π} -1 and F_{π} -2 experiments were very productive, and are among JLab's top cited results (top 4 listed):
 - Volmer et al, PRL 2001 (F_{π} -1) 324 citations
 - Horn et al, PRL 2006 (F_{π} -2) 264 citations
 - Tadevosyan et al, PRC 2007 $(F_{\pi}-1)$ 214 citations
 - Huber et al, PRC 2007 (F_{π} -2) 203 citations
- E12–19–006 is scheduled for 19 weeks of beam fall 2021, to acquire low ε data for L/T–separation (high ε data planned for 2023–24)
 - WE REALLY NEED YOUR ASSISTANCE TO MAKE THE EXPERIMENT A SUCCESS!!