

Update on Kaon-L Experiment

Ali Usman

University of Regina

Hall C Users Meeting

E12-09-011 Collaboration

Spokespersons

Tanja Horn, Garth Huber, Pete Markowitz

Graduate Students

Vijay Kumar, Richard Trotta, Ali Usman

Key Members

Vladimir Berdnikov, Nathan Heinrich, Muhammad Junaid, Stephen Kay, Petr Stepanov, Carlos Yero

Kaon Electroproduction Reaction

- > Kaon is an excellent candidate to study the structure of strange hadrons.
- > Exclusive Kaon Electroproduction

 $e^- + p \rightarrow e^{-\prime} + K^+ + \Sigma/\Lambda$

- Critical to understand reaction mechanism for GPDs and Form factor measurement.
- Study of GPDs require validation of soft-hard factorization.
- > Kaon σ_L , σ_T and L/T ratio is unknown above the resonance region.

First experiment to study reaction mechanism, factorization and attempt precision measurement of K⁺ Form Factor at high Q²

Physics Motivation

- Meson production can be described by the tchannel exchange meson pole term in limit of small -t and large W.
- At sufficiently high Q², the process should be understandable in terms of the "handbag" diagram.
- Non-perturbative (soft) physics is represented by GPDs.
 - Factorized from QCD perturbative (hard) processes for longitudinal photons.
- Measurement of GPDs require
 - Confirmation of the applicability of hard-soft QCD factorization mechanism at intermediate Q².

Form Factor

- Mesons give an ideal testing ground for our understanding of bound quarkantiquark system.
- > Form Factor describes transverse spatial position of partons within hadrons.
- \blacktriangleright In pQCD, F_K can be written as

 $Q^2 F_K(Q^2) \rightarrow 16\pi \alpha_s(Q^2) f_K^2 \qquad (Q^2 \rightarrow \infty)$

Questions

- \Box What is the F_{κ} at all Q^2 ?
- At what Q^2 , non-pQCD transitions into pQCD?

Hall C at Jefferson Lab is only facility in the world with the capacity to perform F_{κ} measurement

Measuring F_{κ} from $p(e, e'K^+)\Sigma/\Lambda$

- ➤ At $Q^2 > 0.15$ GeV², F_K is masured in directly using the "proton's kaon cloud" through kaon electroproduction.
- > At sufficiently low -t, kaon pole process dominates the longitudinal cross-section, σ_L .
- > Kaon pole is further away from the pion pole.
- \succ In Born term model F_K appear as

$$\frac{d\sigma_L}{dt} \propto \frac{-t}{(t-m_K^2)} g_{KYN}(t) Q^2 F_K^2(Q^2, t)$$

> To access the pole diagram, need to measure σ_L through L/T separation.

Rosenbluth Separation

- For "Rosenbluth Separation technique" is used to separate σ_L and σ_T terms.
- > In parallel kinematics (i. e. $\theta_K = 0$)

$$2\pi \frac{d^2\sigma}{dtd\phi} = \epsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt}$$

> Here " ϵ " is polarization of virtual photon

$$\epsilon = \left[1 + 2\frac{(E_e - E_{e'})^2 + Q^2}{Q^2} \cdot tan^2 \frac{\theta_{e'}}{2}\right]^{-\frac{1}{2}}$$

▶ Perform two scattering measurement with different beam energies " E_e " to vary " ϵ " and separate different cross-section terms.

L/T/LT/TT Separated Cross-Section

> The physical cross-section can be decomposed into four structure functions.

$$2\pi \frac{d^2\sigma}{dtd\phi} = \epsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \epsilon \frac{d\sigma_{TT}}{dt} \cos2\phi$$

To study t-dependence of cross-section at fized Q² and W, we need to take data at non-parallel kinematics.

Kinematic Settings

- Data taken from Autumn 2018 Spring 2019.
- Unique kinematic settings including SHMS at smallest possible angle.
- Critical to understand all systematic uncertainties for LT separation

E (GeV)	Q² (GeV²)	W (GeV)	<i>x_b</i>	ε _{High} / ε _{Low}
10.6/8.2	5.5	3.02	0.40	0.53/0.18
10.6/8.2	4.4	2.74	0.40	0.72/0.48
10.6/8.2	3.0	3.14	0.25	0.67/0.39
10.6/6.2	3.0	2.32	0.40	0.88/0.57
10.6/6.2	2.115	2.95	0.21	0.79/0.25
4.9/3.8	0.5	2.40	0.09	0.70/0.45

 $\theta_{SHMS} = 5.69$

1/29/21

Ali Usman

COIN Time Stability

- Need to study the stability of COIN time across all run periods.
- Acceptance cut
 - \blacktriangleright δ on HMS and SHMS
 - \blacktriangleright X_{FP} and Y_{FP} on HMS and SHMS
- PID cuts
 - ➢ HGC, Cal and SHMS Aero cuts
 - $\succ \beta$ cuts on SHMS
- Fit simple but constrained Gaussian to determine the parameters of cointime peak.
- Easy to track and calculate the cointime peak position.
- Will do run by run calculation for physics analysis.
- More details can be found at

https://hallcweb.jlab.org/doc-private/ShowDocument?docid=1103

Plots and study by S. Kay

Calibrations - Aerogel

- Kaon-LT Experiment used dedicated equipment for kaon/pion separation.
- Multiple trays of different refractive indices (1.011-1.030) were used throughout the experiment.
- PMT spectra were plotted and fitting algorithm was validated.
- > Accounted for the experimental background.
- Analyzed stability of the parameters throughout different run periods.

Plots and study by V. Berdnikov & P. Stepanov

Calibrations - HGC

Calibrations scripts improved by doing cross checks.

New technique to study multiple NPEs as well as the poissonian background.

Checked the stability of calibration parameters throughout multiple run periods.

Kinematic Details

Run # 7045	E _{beam} = 4.9 <i>GeV</i>
P _{SHMS} = +2.583 <i>GeV/c</i>	$\theta_{SHMS} = 6.01$
$Q^2 = 0.5$	W = 2.4

More details can be found at

https://hallcweb.jlab.org/doc-public/ShowDocument?docid=1100

Plots and Study by V. Kumar Ali Usman

Tracking Efficiency (Default)

- Kaon-LT Experiment is a L/T commissioning experiment which ran at very high rates.
- Therefore it is critical to study tracking efficiency for different particles.
- Tracking Efficiency is calculated as follows $\epsilon_{tracking} = \frac{shmsscindid}{shmsscinshould}$ shmsscinshould = hod + PID
 hod = goodscinhit + goodstarttime + betanotrack
 shmsscindid = shmsscinshould + dc.ntrack > 0

Tracking efficiency drops rapidly with increase in rate therefore Track Parameter Optimization is needed.

Track Parameter Optimization

Tracking Efficiency (New)

- The SHMS tracking efficiency has improved after the optimization of tracking parameters.
- Efficiency slope for default and new parameters changed from -9.7%/MHz to -2.0%/MHz.
- Three tracking parameters have now been improved whereas others are unchanged.
- Still working to verify that the tracked normalized yield has little or no rate dependence with new tracking parameters.

Luminosity Analysis

- Measuring normalized yield v/s rate to make sure all the uncertainties are properly understood.
- Took luminosity data at different kinematics and targets.

Scalers \rightarrow Carbon data No-track \rightarrow LH₂ without tracking Track \rightarrow LH₂ with tracking

Scalers

$$Y_{scaler} = \frac{N_{scaler}}{Q_{tot}}$$
$$N_{scaler} = \Sigma(\text{trigscaler}) - \text{EDTM}_{scaler}$$

 $Q_{tot} = (H.BCM.scaler.charge)$

No track

$$Y_{No \ Track} = \frac{N_{electrons}}{Q_{tot}\epsilon_{cpuLT}}$$
$$N_{electrons} = \int (\frac{H}{P} \cdot hod. \ goodscinhits)$$

Track

$$Y_{Track} = \frac{N_{track}}{Q_{tot}\epsilon_{track}\epsilon_{cpuLT}}$$

 $N_{tracks} = tracks$

1/29/21

Ali Usman

Luminosity Analysis

- Scalers analysis is looking good and consistent with unity.
- The no-track analysis shows no obvious boiling but shows unexplained rate dependence.
- Currently investigating both notrack and track analysis.

Run # 5154, 5155, 4156, 5157, 5158

I (uA) – 55, 45, 30, 15, 5

Plots and Study by R. Trotta Ali Usman

PID Studies

- Hole in the center region of mirrors in Heavy Gas Cherenkov during 2018 is well known.
- Required precision by Kaon-LT Experiment needs a unique approach to deal with this issue.
- Dividing Cherenkov into various regions to understand efficiencies.

Kinematic Details

Run # 5018 (Before 2019 realignment) $E_{beam} = 10.6 GeV$

P_{SHMS} = +6.053 *GeV/c*

 $\theta_{SHMS} = 12.46$

HGC Regions

1st region \rightarrow NPE <= 1.5 2nd Region \rightarrow 1.5 < NPE < 5.0

 3^{rd} Region \rightarrow 5.0 < NPE < 7.0 4^{th} Region \rightarrow NPE > 7.0

Plots and Study by V. Kumar

PID Studies

- Efficiency plotted vs XatCer makes the efficiency dip more sharp than vs. Delta
 - Corresponds more closely to the actual configuration of the mirror setup
- Will perform a (Xcer, Ycer) 2D efficiency study for HGC, for both the 2018 and 2019 mirror configurations.

Outlook – Q⁻ⁿ Scaling

- ▷ QCD scaling predicts $\sigma_L \sim Q^{-6}$ and $\sigma_T \sim Q^{-8}$.
- > Will evaluate Q^2 dependence of σ_L and σ_T at fixed x and t.

Х	Q ²	W	-t
	(GeV ²)	(GeV)	(GeV/c) ²
0.25	1.7-3.5	2.5-3.4	0.2
0.40	3.0-5.5	2.3-3.0	0.5

- ➢ Will be first dedicated L/T separated measurement at high Q² (Q²~5.5 GeV²) to test this prediction.
- → Will compare data from Pion-LT Experiment (E12-19-006) to see π^+ and K^+ channels behave consistently, or not.

Outlook – Kaon Form Factor

- ➢ Kaon-LT Experiment gives access to highest possible Q² data (i.e Q²~5.5 GeV²).
- → Will perform pole dominance studies and attempt to extract F_K at Q^2 up to 5.5 GeV^2 .
- ➢ Includes both $p(e, e'K^+)\Sigma^0$ as well as $p(e, e'K^+)\Lambda^0$ which allows us to perform ratio between two channels.
- Low Q² data will help compare with results from Fermilab and CERN which used K⁺ beam

Outlook – Physics Channels

Pion Data-

- > In Kaon-LT, the $p(e, e'\pi^+)n$ real coincidence rate is much higher than the $p(e, e'K^+)\Lambda$ coincidence rate, giving high quality, high statistics pion data.
- Some of the Q² points have sufficiently low -t which allows to perform pion form factor measurement.
- > $p(e, e'\pi^+)\Delta^0$ is also available along with $p(e, e'\pi^+)n$ which will allow to measure the ratio for two reactions.

Watch out for Garth's talk on the upcoming Pion-LT Experiment (E12-19-006)

Ali Usman

Outlook – Physics Channels

U-channel Proton Data

- Another free dataset available within the Kaon-LT dataset.
- Key to study relatively unexplored backward angle physics.
- Will be challenging to precisely distinguish different particles.

 $Q^2 = 3$ W = 2.32W = 2.32

Plots and study by S. KayWatch out for Bill's talk on the new u-channel π^0 proposal.1/29/21Ali Usman

Summary

- Data taking and detector calibrations are now complete.
- Currently working on tedious but most important step of efficiencies, PID and offsets.
- > First iteration of cross-section will be out before the end of this year.
- Will need to re-check everything and make sure that all the uncertainties are well understood.

Will perform pole dominance studies and attempt to extract form factor.

Stay Tuned !!!

This research is funded by Natural Sciences and Engineering Research Council of Canada (NSERC) FRN: SAPIN-2016-00031,

and the National Science Foundation (NSF), PHY1714133 and PHY2012430