<u>30 structure of</u>

the nucleon

Alexei Prokudin

see, e.g., C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105 (11) 2

QCD FACTORIZATION IS THE KEY!

QCD FACTORIZATION IS THE KEY!

HADRON'S PARTONIC STRUCTURE

Collinear Parton Distribution Functions

Probability density to find a quark with a momentum fraction x

Hard probe resolves the particle nature of partons, but is not sensitive to hadron's structure at ~fm distances.

HADRON'S PARTONIC STRUCTURE

To study the physics of *confined motion of quarks and gluons* inside of the proton one needs a new type "hard probe" with two scales.

Transverse Momentum Dependent functions

One large scale (Q) sensitive to particle nature of quark and gluons

One small scale (k_T) sensitive to how QCD bounds partons and to the detailed structure at ~fm distances.

TRANSVERSE MOMENTUM DEPENDENT FACTORIZATION

Small scale $q_T \ll Q$ — Large scale

The confined motion (k_T dependence) is encoded in TMDsSemi-Inclusive DISDrell-YanDihadron in e+e- $\sigma \sim f_{q/P}(x, k_T) D_{h/q}(z, k_T)$ $\sigma \sim f_{q/P}(x_1, k_T) f_{\bar{q}/P}(x_2, k_T)$ $\sigma \sim D_{h_1/q}(z_1, k_T) D_{h_2/\bar{q}}(z_2, k_T)$

Meng, Olness, Soper (1992) Ji, Ma, Yuan (2005) Idilbi, Ji, Ma, Yuan (2004) Collins (2011)

Collins, Soper, Sterman (1985) Ji, Ma, Yuan (2004) Collins (2011)

Collins, Soper (1983) Collins (2011) $\Phi_{q \leftarrow h}^{i \prime - 1}(x, b) = f_1(x, b) + i \epsilon_T^{\mu\nu} b_\mu s_\nu M f_1^{\perp}(x, b)$ Our understanding of hadron evolves: TMDs with Polarization

Nucleon emerges as a strongly interacting, 1 relativistic bound state of quarks and gluo $\overline{ns_1}$

Analogous tables for: \bigcirc Gluons $f_1 \rightarrow f_1^g$ etc

xp,

- Fragmentation functions
- Nuclear targets $S \neq \frac{1}{2}$

SUCCESS OF TMD FACTORIZATION PREDICTIVE POWER

Qiu, Watanabe arXiv:1710.06928

Sun, Isaacson, Yuan, Yuan arXiv:1406.3073 Bertone, Scimemi, Vladimirov arXiv:1902.08474

Upsilon production

Z boson production at the LHC

- ➤ TMD factorization (with an appropriate matching to collinear results) aims at an accurate description (and prediction) of a differential in q_T cross section in a wide range of q_T
- ► LHC results at 7 and 13 TeV are accurately predicted from fits of lower energies

TMD FITS OF UNPOLARIZED DATA

	Framework	W+Y	HERMES	COMPASS	DY	Z production	N of points
KN 2006 hep-ph/0506225	LO-NLL	W	×	×	~	~	98
QZ 2001 hep-ph/0506225	NLO-NLL	W+Y	×	×	~	~	28 (?)
RESBOS resbos@msu	NLO-NNLL	W+Y	×	×	~	~	>100 (?)
Pavia 2013 arXiv:1309.3507	LO	W	~	×	×	×	1538
Torino 2014 arXiv:1312.6261	LO	W	✓ (separately)	✓ (separately)	×	×	576 (H) 6284 (C)
DEMS 2014 arXiv:1407.3311	NLO-NNLL	W	×	×	~	~	223
EIKV 2014 arXiv:1401.5078	LO-NLL	W	1 (x,Q²) bin	1 (x,Q ²) bin	~	~	500 (?)
SIYY 2014 arXiv:1406.3073	NLO-NLL	W+Y	×	~	~	~	200 (?)
Pavia 2017 arXiv:1703.10157	LO-NLL	W	>	~	>	~	8059
SV 2017 arXiv:1706.01473	NNLO-NNLL	W	×	×	~	~	309
BSV 2019 arXiv:1902.08474	NNLO-NNLL	W	×	×	~	~	457

.

UNPOLARIZED TMD MEASUREMENTS

Unpolarized cross section

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157

- Addresses the question of partonic confined motion
- Evolution with x and Q²
- Flavor dependence of unpolarized TMDs
- ► Interplay with collinear QCD at large q_T

Fast progress in TMD determinations is taking place, but still many open questions

SEMI INCLUSIVE DEEP INELASTIC SCATTERING

Consider electron - hadron collisions in DIS regime

Detect a pion in the final state

SPACE-TIME PICTURE OF THE COLLISION

CURRENT REGION FACTORIZATION

Boglione et al, 1611.10329

Example of pinch-singular surfaces for e+e-

CURRENT REGION FACTORIZATION

Berger "back of the envelope" criterium is a popular choice

CURRENT REGION FACTORIZATION

Fresh look:

Define ratios of kinematical variables and identify regions

REGIONS IN SIDIS AND RATIOS

- Boglione et al, 1611.10329 Boglione et al, 1904.12882
- Define ratios, R₀, R₁, R₂, R₃ that depend on parton's kinematics
- Identify regions

	R_0	R_1	R_2	R_3
TMD Current region	small	small	small	Х
Hard region	small	small	large	small (low order $pQCD$)
	small	small	large	large (high order pQCD)
Target region	small	large	Х	Х
Soft region	small	large	small	Х

Table 1: Examples for sizes of ratios corresponding to particular regions of SIDIS. The "X" means "irrelevant or ill-defined." This ranking should be viewed as schematic since "small" and "large" need to be defined quantitatively and can in general be scale-dependent.

REGIONS IN SIDIS AND RATIOS

Boglione et al, 1611.10329 Boglione et al, 1904.12882 Current study

them?

Use a Monte Carlo* with parton momenta

► Define ratios

Sample experimental bins for ratios

 \mathbf{R}_0

REGIONS IN SIDIS AND RATIOS

Boglione et al, 1611.10329 Boglione et al, 1904.12882 Current study

20

* by saying Monte Carlo we do not intend Pythia!

AFFINITY

Boglione et al, 1611.10329

Boglione et al, 1904.12882

JEFFERSON LAB 12

Current study

What about the 3D spin structure of the nucleon

POLARIZED TMD FUNCTIONS

Sivers function

- Describes unpolarized quarks inside of transversely polarized nucleon
- Encodes the correlation of orbital motion with the spin
 xf1(x, kT, ST)

Sign change of Sievers function is fundamental consequence of QCD

Brodsky, Hwang, Schmidt (2002), Collins (2002)

Transversity

The only source of information on tensor is 'the nucleon

Lebanon Valley College

Couples to Collins fragmentation function or dispadrom interior [ce] fragmentationd functions⁰ in SIDIS

$$\delta q \equiv g_T^q = \int_0^1 dx \; \left[h_1^q(x, Q^2) - h_1^{\bar{q}}(x, Q^2) \right]$$

CHALLENGE OF QCD: UNDERSTANDING SPIN ASYMMETRIES

Consider polarized

hadron - hadron collisions

Asymmetry survives with growing collision energy

Figure 47h Transfer Spingle some any manetre veragines and for the gold por neutral of Ascheifferent equation of Feynman-x.

Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, Sato (2020)

UNIVERSAL GLOBAL FIT 2020

Jefferson Lab Angular Momentum Collaboration

https://www.jlab.org/theory/jam

Observable	Reactions	Non-Perturbative Function(s)	$\chi^2/N_{ m pts.}$
$A_{\rm SIDIS}^{\rm Siv}$	$e + (p,d)^{\uparrow} \to e + (\pi^+,\pi^-,\pi^0) + X$	$f_{1T}^{\perp}(x,k_T^2)$	150.0/126 = 1.19
$A_{ m SIDIS}^{ m Col}$	$e + (p, d)^{\uparrow} \to e + (\pi^+, \pi^-, \pi^0) + X$	$h_1(x,k_T^2), H_1^{\perp}(z,z^2p_{\perp}^2)$	111.3/126 = 0.88
$A_{\rm SIA}^{\rm Col}$	$e^+ + e^- \to \pi^+ \pi^- (UC, UL) + X$	$H_1^\perp(z,z^2p_\perp^2)$	154.5/176 = 0.88
$A_{ m DY}^{ m Siv}$	$\pi^- + p^\uparrow \to \mu^+ \mu^- + X$	$f_{1T}^{\perp}(x,k_T^2)$	5.96/12 = 0.50
$A_{\mathrm{DY}}^{\mathrm{Siv}}$	$p^{\uparrow} + p \to (W^+, W^-, Z) + X$	$f_{1T}^{\perp}(x,k_T^2)$	31.8/17 = 1.87
A_N^h	$p^{\uparrow} + p \to (\pi^+, \pi^-, \pi^0) + X$	$h_1(x), F_{FT}(x,x) = \frac{1}{\pi} f_{1T}^{\perp(1)}(x), H_1^{\perp(1)}(z)$	66.5/60 = 1.11

▶JAM uses Bayesian inference in order to sample the posterior distribution of all parameters.

Multistep strategy in the Monte Carlo framework is used.

Sato, Andres, Ethier, Melnitchouk (2019)

Around 1000 MC samples are drawn from Bayesian posterior distributions and are analyzed.

Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, Sato (2020)

Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, Sato (2020)

Drell-Yan

Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, Sato (2020)

proton-proton A_N

$$\frac{\chi^2}{npoints} = \frac{72.0}{60} = 1.2$$

30

Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, Sato (2020)

 Tensor charge from up and down quarks is constrained and compatible with lattice results

• Isovector tensor charge $g_T = \delta u \cdot \delta d$ $g_T = 0.89 \pm 0.12$ compatible with lattice results

 δu and δd Q²=4 GeV²

 δu = 0.65 ± 0.22

Lebanon Valley College TENSOR CHARGE AND FUTURE FACILITIES

EIC data will allow to have g_T extraction at the precision at the level of lattice QCD calculations

Lab 12 data will allow to have complementary information on tensor charge to test the consistency of the extraction and expand the kinematical region

N3LO EXTRACTION OF THE SIVERS FUNCTION

- The first next-to-next-to-next-toleading order N³LO global QCD analysis of SIDIS, Drell-Yan and W[±]/Z production data.
- Uses the unpolarized functions extracted at the same N³LO precision

N3LO EXTRACTION OF THE SIVERS FUNCTION

Consistency of the formalism and new benchmark for future studies

NUCLEON TOMOGRAPHY

THE FUTURE

CLAS Collab., ArXiv:<u>2101.03544</u>

COMPASS is in "full swing" mode. JLAB 12 data are following.

THE ELECTRON-ION COLLIDER @ BNL

LHCb FIXED TARGET, INCLUDING POLARIZATION

https://indico.cern.ch/event/755856/

ALICE FIXED TARGET

https://indico.cern.ch/event/755856/

Possible fixed-target positioning

What is the 2D confined transverse motion of quarks and gluons inside a proton?

How does the confined motion change along with probing x, Q²? How to identify universal proton structure properties from measured k_T-dependence?

> Can we extract QCD color force responsible for the confined motion?

How is the motion correlated with macroscopic proton properties, as well as microscopic parton properties, such as the spin?

 k_T