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QCD FACTORIZATION IS THE KEY!
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We need a probe to “see” quarks and gluons
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We need a probe to “see” quarks and gluons
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HADRON’S PARTONIC STRUCTURE
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Collinear Parton Distribution Functions

P
k

fq/P (x)
longitudinal

Probability density to find a quark with a momentum fraction x

Hard probe resolves the particle nature of partons, but is not 
sensitive to hadron’s structure at ~fm distances.

xP



HADRON’S PARTONIC STRUCTURE
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k

One large scale (Q) sensitive to particle nature of quark and 
gluons
One small scale (kT) sensitive to how QCD bounds partons and to 
the detailed structure at ~fm distances.

Transverse Momentum Dependent functions

fq/P (x, kT )

longitudinal & transverse

To study the physics of confined motion of quarks and gluons inside of 
the proton one needs a new type “hard probe” with two scales.

kT

xP



TRANSVERSE MOMENTUM DEPENDENT FACTORIZATION
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The confined motion (kT dependence) is encoded in TMDs

Collins, Soper (1983) 
Collins (2011)

Collins, Soper, Sterman (1985) 
Ji, Ma, Yuan (2004) 

Collins (2011)Meng, Olness, Soper (1992) 
Ji, Ma, Yuan (2005) 

Idilbi, Ji, Ma, Yuan (2004)  
Collins (2011)

� ⇠ fq/P (x, kT )Dh/q(z, kT )
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TMDs with Polarization

Gluons

Fragmentation functions

Nuclear targets

Nucleon  
Polarization

Quark  
Polarization

Analogous tables for: f1 � fg
1 etc

S �= 1
2

Quark TMDs

�[�+]
q h(x, b) = f1(x, b) + i✏

µ⌫
T bµs⌫Mf

?
1 (x, b)
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• There are eight TMD 
distributions in leading twist 

• TMD distributions provide a 
more detailed picture of the 
many body parton structure of 
the hadron 

• Interplay with the transverse 
momentum

Helicity

Boer-Mulders

Long-Transversity

Trans-Helicity
Sivers

Transversity

Pretzelosity

T

Kozinian-Mulders, 
“worm” gear

Kozinian-Mulders,“worm” gear

Unpolarized

�8

Our understanding of hadron evolves:
Nucleon emerges as a strongly interacting, 

relativistic bound state of quarks and gluons



SUCCESS OF TMD FACTORIZATION PREDICTIVE POWER

Upsilon production

Quarkonium production in hadronic collisions in TMD framework Kazuhiro Watanabe
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Figure 2: Differential cross section for °(1S) production in hadronic collisions at Tevatron and the LHC in
the middle rapidity region. All the input parameters are chosen to be the same as in Ref. [7]. Data are taken
from [13, 14].

section at RHIC energy. For the qq̄ channel, the b?-distribution of Wqq̄ is more broad so that the
nonperturbative form factor is more relevant. Nevertheless, in our calculations, we do not need to
worry too much about it because the size of contribution from the gg channel is more than an order
of magnitude larger than that from the qq̄ channel.

Figure 2 displays differential cross sections for °(1S) production in hadronic collisions at
Tevatron and the LHC by computing Eq. (2.3) with Eq. (2.1). We set µ = 0.5

q
M2 +P2

? for the
perturbation term. At Tevatron, we reproduce the early prediction in Ref. [7] by setting Fbb̄!° =

C° = 0.044 that was obtained by data fitting in Ref. [7], which is effectively a Color-Evaporation-
Model calculation [4]. To compare with data, we simply switch the resummation term to the NLO
perturbative term at the intersection of two curves around P? ⇠ M°/2, instead of using the Y -term.
We have also multiplied the resummation term by a factor Kr = 1.22 to match the perturbation result
at the intersection. At the LHC, there is more phase space for gluons shower, and we expect our
predictions with the same parameters set to be consistent with the data, which is confirmed nicely
by the data up to around P? = 10 GeV. It is worth noting that the matching point shifts toward
larger P? at the LHC compared to that at Tevatron. This is because an increase in the scattering
energy allows more phase space for incoming partons to radiate.

4. Summary

We have performed numerical calculations for ° production in high-energy hadronic colli-
sions in terms of the Collins-Soper-Sterman resummation formalism in the TMD framework. The
behavior of Wgg and Wqq̄ in the b?-space at Tevatron and the LHC clearly shows that our perturba-
tively calculated results are reliable without much ambiguities associated with the nonperturbative
Sudakov factor at large b?. Our results can naturally describe both the Tevatron data and the LHC
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Fig. 8. Compare the resummation prediction for Z boson production at the LHC.49–51 The data
in left one is from the ATLAS collaboration, the right one is for CMS collaboration. These data
are not included in our fit.

parameters are fitted only with the Drell–Yan type data. From the comparison to
the experimental data, we can see that the new form is equally good as compared
to the original BLNY parametrization.

4. Fitting Semi-Inclusive DIS Data with New Parametrization

The universality of the parton distribution functions (PDFs) is a powerful prediction
from QCD factorization. According to the TMD factorization, the nonperturbative
functions determined for the TMD quark distributions from the Drell–Yan type
of processes shall apply to that in the SIDIS processes. Of course, the transverse
momentum distribution of hadron production in DIS processes also depends on
the final state fragmentation functions, which we will parametrize. Following the
universality argument, we introduce the following parametrization form to describe
the nonperturbative form factors for SIDIS processes,

S(DIS)
NP = g2 ln(b/b∗) ln(Q/Q0) + g1b

2/2 + g3(x0/xB)
λ + ghb

2/z2h . (16)

In the above parametrization, named as SIYY-2 form, g1, g2 and g3 have been
determined from the experimental data of Drell–Yan lepton pair production. The
only unknown parameter gh will be determined by fitting to the HERMES and
COMPASS data. Although there has been evidence from a recent study34 that gh
could be different for the so-called favored and dis-favored fragmentation functions,
we will take them to be the same in this study, for simplicity. With more data
coming out in the future, we should be able to fit with separate parameters.

In principle, we can fit g1, g2, g3, and gh together to both Drell–Yan and SIDIS
data. However, the DIS data do not cover large range ofQ2. In addition, the differen-
tial cross-sections in SIDIS depend on the fragmentation function, which themselves
are not well constrained at the present time. Therefore, in this paper, we will take
the parameters g(1,2,3) fitted to the Drell–Yan data to compare to the SIDIS to
check if they are consistent with the SIDIS data.
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Z boson production at the LHC

➤ TMD factorization (with an appropriate matching to collinear results) aims at an 
accurate description (and prediction) of a differential in qT cross section in a 
wide range of qT


➤ LHC results at 7 and 13 TeV are accurately predicted from fits of lower energies
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Qiu, Watanabe arXiv:1710.06928 Sun, Isaacson, Yuan, Yuan arXiv:1406.3073
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Figure 2. Ratio of theoretical and experimental points as a function of the binned di-lepton transverse
momentum for the measured at ATLAS in the range 66 < Q < 116 GeV (dashed red lines). The exper-
imental points (blue dots) are surrounded by a box describing their error. The representation takes into
account the shifts as described in the text.

Figure 3. Ratio of theoretical and experimental points as a function of the binned di-lepton transverse
momentum for the measured at CMS and LHCb experiments (dashed red lines). The experimental points
(blue dots) are surrounded by a box describing their error. The representation takes into account the shifts
as described in the text.

due to large systematic uncertainties for this data. The reported correlated systematic error for
E288(E605, E772) experiments is 25%(15%, 10%) [35, 55, 56]. This systematic discrepancy has been
recently discussed in [68], where it was connected to the fixed-target nature of these experiments.

5.2 Extracted values of TMDPDF and rapidity anomalous dimension

We now turn to the values of the TMDPDFs and rapidity anomalous dimension as extracted from
the fit. Our results for the non-perturbative parameters are presented in tab. 4. The central values

– 13 –

Bertone, Scimemi, Vladimirov arXiv:1902.08474



TMD FITS OF UNPOLARIZED DATA
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Framework W+Y HERMES COMPASS DY Z 
production

N of points

KN 2006 
 hep-ph/0506225 LO-NLL W ✘ ✘ ✔ ✔ 98

QZ 2001 
 hep-ph/0506225 NLO-NLL W+Y ✘ ✘ ✔ ✔ 28 (?)

RESBOS 
 resbos@msu NLO-NNLL W+Y ✘ ✘ ✔ ✔ >100 (?)

Pavia 2013 
arXiv:1309.3507 LO W ✔ ✘ ✘ ✘ 1538

Torino 2014  
arXiv:1312.6261 LO W ✔  

(separately)
✔  

(separately)
✘ ✘ 576 (H) 

6284 (C)
DEMS 2014 

arXiv:1407.3311  NLO-NNLL W ✘ ✘ ✔ ✔ 223

EIKV 2014  
 arXiv:1401.5078  LO-NLL W 1 (x,Q2) bin 1 (x,Q2) bin ✔ ✔ 500 (?)

SIYY 2014 
arXiv:1406.3073 NLO-NLL W+Y ✘ ✔ ✔ ✔ 200 (?)

Pavia 2017 
arXiv:1703.10157 LO-NLL W ✔ ✔ ✔ ✔ 8059

SV 2017 
arXiv:1706.01473 NNLO-NNLL W ✘ ✘ ✔ ✔ 309

BSV 2019 
arXiv:1902.08474 NNLO-NNLL W ✘ ✘ ✔ ✔ 457

http://arxiv.org/abs/hep-ph/0506225
http://arxiv.org/abs/hep-ph/0506225
http://hep.pa.msu.edu/resum/
http://arxiv.org/abs/arXiv:1309.3507
http://arxiv.org/abs/arXiv:1407.3311
http://arxiv.org/abs/arXiv:1401.5078
http://arxiv.org/abs/arXiv:1406.3073
http://arxiv.org/abs/arXiv:1703.10157


Unpolarized cross section

UNPOLARIZED TMD MEASUREMENTS
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➤ Addresses the question of partonic confined motion

➤ Evolution with x and Q2

➤ Flavor dependence of unpolarized TMDs

➤ Interplay with collinear QCD at large qT 
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Figure 8. The down quark TMD PDF in b-space(left) and kT -space(right) presented at different values of
x. The color shows the size of the uncertainty relative the value of distribution.

6 Conclusions

We have extracted the unpolarized transverse momentum dependent parton distribution function
(TMDPDF) and rapidity anomalous dimension (also known as Collins-Soper kernel) from Drell-Yan
data. The analysis has been performed in the ⇣-prescription with NNLO perturbative inputs. We
have also provided an estimation of the errors on the extracted functions with the replica method.
The values of TMDPDF and rapidity anomalous dimension, together with the code that evaluates
the cross-section, are available at [45], as a part of the artemide package. We plan to release grids
for TMDPDFs extracted in this work also through the TMDlib [69].

Theoretical predictions are based on the newly developed concepts of ⇣-prescription and op-
timal TMD proposed in ref. [27]. This combination provides a clear separation between the non-
perturbative effects in the evolution factor and the intrinsic transverse momentum dependence.
Additionally, the ⇣-prescription permits the usage of different perturbative orders in the collinear
matching and TMD evolution. For that reasons, the precise values of the rapidity anomalous di-
mension (±1%(4%, 6%) accuracy at b = 1(3, 5) GeV�1) are relevant for any observable that obeys
TMD evolution.

In our analysis, we have included a large set of data points, which spans a wide range of
energies (4 < Q < 150 GeV) and x (x > 10

�4), see fig. 1. The data set can be roughly split into
the low-energy data, which includes experiments E288, E605, E772 and PHENIX at RHIC, and
the high-energy data from Tevatron (CDF and D0) and LHC (ATLAS, CMS, LHCb) in similar
proportion. To exclude the influence of power corrections to TMD factorization we consider only
the low-q

T

part of the data set, as described in sec. 3. A good portion of data is included in the fit
of TMD distributions for the first time, that is the data from E772, PHENIX, some parts of ATLAS
and D0 data. For the first time, the data from LHC have been included without restrictions (the
only previous attempt to include LHC data in a TMDPDF fit is [13], where systematic uncertainties
and normalization has been treated in a simplified manner). We have shown that the inclusion of
LHC data greatly restricts the non-perturbative models at smaller b (b . 2 GeV�1) and smaller x

(x . 0.05), and therefore they are highly relevant for studies of the intrinsic structure of hadrons.
A detailed comparison of fits with and without LHC data has been discussed in sec. 5.

The extracted TMDPDF shows a non-trivial x-dependence that is not dictated only by the
collinear asymptotic limit of PDFs. In particular, we find that the unpolarized TMDPDF is bigger
(in impact parameter space) at larger x, see fig. 7. This indirectly implies a smaller value of the

– 17 –

Bertone, Scimemi, Vladimirov, 
arXiv:1902.08474 ?
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Figure 1: Lowest order SIDIS graphs corresponding to (a) the current region (b) the target region and (c) the central (soft) region. The faded zigzag lines represent
non-perturbative and other interactions (e.g. hadronization) between the outgoing parton and the target jet.
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Figure 2: Simple parton-model graph for SIDIS with detected hadron in
current-fragmentation region.

model graph get converted into attachments to the Wilson lines
in the operators defining parton densities, fragmentation func-
tions, etc., after appropriate approximations in the proof of fac-
torization.

While the elementary formulation from Fig. 2 is a useful
starting point that captures the general structure of factorization,
detailed analyses of the limits of specific factorization treat-
ments require a more careful account of the full picture, includ-
ing soft gluons, hadronization, parton showering, and higher-
order corrections. A fuller picture might include, for example,
string-like fragmentation [7, 8]. Such e↵ects are relevant to this
paper since we are interested in the boundaries between regions.

The regions associated with the three graphs in Fig. 1 are
defined in terms of the kinematics of the produced hadron, and
each region in principle comes with its own specific factoriza-
tion theorem. The accuracy of a factorization treatment con-
cerns the precision with which its various approximations deal
with its design region. In all cases, we are concerned with Q2

made large, Q2 � ⇤2
QCD, with fixed xbj.

We summarize the theoretical status of each of the rapidity
regions at small PhT as follows:

1. Current Fragmentation Region: (Fig. 1(a)) This region
has a fully developed TMD factorization treatment [1–
6], with TMD parton densities and TMD fragmentation
functions. It applies when Q is made large, Q � ⇤QCD,
at fixed xbj, with large enough zh, and with small PhT.
Since it applies to a well-defined limiting case, we will
ask questions about its accuracy for non-asymptotic kine-
matics.

2. Target Fragmentation Region: (Fig. 1(b)) This region is
described in terms of fracture functions. [9–14]. More

precisely, given our interest in the cross section di↵eren-
tial in PhT, it is described in terms of extended fraction
functions [10, 11], especially those that are TMD in the
quark momentum [14]. The (extended) fracture function
formalism applies to the case that the detected hadron’s
momentum is collinear to the target, so it is also possible
to ask well-defined questions about the accuracy of target
region approximations and their kinematical range of ap-
plicability, though we will not perform such an analysis
specifically here.

3. Central (or soft) Fragmentation Region: (Fig. 1(c)) This
region refers to the case that the produced hadron rapid-
ity is much less than that of the target, but much greater
than that of the outgoing quark (or current jet). We ex-
pect that a factorization theorem for the central fragmen-
tation region is possible, although we know of very little
work on this topic. With the soft factor of TMD factor-
ization in mind, we expect the non-perturbative functions
associated with the soft region to have broadly universal
properties.

An important point is that the current and target fragmenta-
tion regions each overlap with the central fragmentation region.
For example, when the hadron rapidity yh is substantially nega-
tive but by much less than the highest values, both factorization
for the current fragmentation region and factorization for the
central region are valid to useful accuracy.

Thus once factorization for central region has been formu-
lated, it has the potential to unify the full range of zh. With-
out a fully developed central fragmentation function factoriza-
tion theorem, it is probably not possible to address the overlap
of di↵erent regions. We hope that our analysis will motivate
greater attention to central fragmentation and its theoretical de-
velopment.

A unified description with optimal accuracy requires match-
ing of the factorization properties of the individual regions.
This is similar to but more general than the situation for
the transverse-momentum distribution in the Drell-Yan pro-
cess, where matching of TMD and collinear factorization is
needed. [15] Naturally, for SIDIS treated over all PhT, we will
also need a matching of collinear factorization with the com-
bination of matched TMD factorizations for the three low-PhT
regions.
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Berger “back of the envelope” criterium is a popular choice

Berger, ’87, Mulders, 001.0199

factorizing into distribution and fragmentation functions, target fragmentation in-
volves a more complex soft part, namely fracture functions [7]. Here we want to
mention at least one check on the precision of current fragmentation. Up to mass
corrections of order M2/Q2 one has for current fragmentation the identities

x = −
q+

P+
≈

Q2

2P · q
≈ −

Ph · q
Ph · P

, (14)

z =
P−
h

q−
≈ −

2Ph · q
Q2

≈
P · Ph

P · q
. (15)

Actually incorporation of kinematical 1/Q2 corrections can be done by calculating
the lightcone ratios (first entries in both equations) in a frame in which neither of
the hadrons has a transverse momentum component.
Based on results in the EMC compilation in ref. [8] we take a rapidity interval

∆η ≈ 2 (sometimes referred to as Berger’s criterium) to estimate the z-values
for which one is most probably dealing with current fragmentation. For this we
construct a plot using the definition of rapidity

η =
1

2
ln

(

P−
h

P+
h

)

= ln

(

P−
h

√
2

Mh⊥

)

= − ln

(

P+
h

Mh⊥

)

, (16)
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Figure 1: Lowest order SIDIS graphs corresponding to (a) the current region (b) the target region and (c) the central (soft) region. The faded zigzag lines represent
non-perturbative and other interactions (e.g. hadronization) between the outgoing parton and the target jet.
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model graph get converted into attachments to the Wilson lines
in the operators defining parton densities, fragmentation func-
tions, etc., after appropriate approximations in the proof of fac-
torization.

While the elementary formulation from Fig. 2 is a useful
starting point that captures the general structure of factorization,
detailed analyses of the limits of specific factorization treat-
ments require a more careful account of the full picture, includ-
ing soft gluons, hadronization, parton showering, and higher-
order corrections. A fuller picture might include, for example,
string-like fragmentation [7, 8]. Such e↵ects are relevant to this
paper since we are interested in the boundaries between regions.

The regions associated with the three graphs in Fig. 1 are
defined in terms of the kinematics of the produced hadron, and
each region in principle comes with its own specific factoriza-
tion theorem. The accuracy of a factorization treatment con-
cerns the precision with which its various approximations deal
with its design region. In all cases, we are concerned with Q2

made large, Q2 � ⇤2
QCD, with fixed xbj.

We summarize the theoretical status of each of the rapidity
regions at small PhT as follows:

1. Current Fragmentation Region: (Fig. 1(a)) This region
has a fully developed TMD factorization treatment [1–
6], with TMD parton densities and TMD fragmentation
functions. It applies when Q is made large, Q � ⇤QCD,
at fixed xbj, with large enough zh, and with small PhT.
Since it applies to a well-defined limiting case, we will
ask questions about its accuracy for non-asymptotic kine-
matics.

2. Target Fragmentation Region: (Fig. 1(b)) This region is
described in terms of fracture functions. [9–14]. More

precisely, given our interest in the cross section di↵eren-
tial in PhT, it is described in terms of extended fraction
functions [10, 11], especially those that are TMD in the
quark momentum [14]. The (extended) fracture function
formalism applies to the case that the detected hadron’s
momentum is collinear to the target, so it is also possible
to ask well-defined questions about the accuracy of target
region approximations and their kinematical range of ap-
plicability, though we will not perform such an analysis
specifically here.

3. Central (or soft) Fragmentation Region: (Fig. 1(c)) This
region refers to the case that the produced hadron rapid-
ity is much less than that of the target, but much greater
than that of the outgoing quark (or current jet). We ex-
pect that a factorization theorem for the central fragmen-
tation region is possible, although we know of very little
work on this topic. With the soft factor of TMD factor-
ization in mind, we expect the non-perturbative functions
associated with the soft region to have broadly universal
properties.

An important point is that the current and target fragmenta-
tion regions each overlap with the central fragmentation region.
For example, when the hadron rapidity yh is substantially nega-
tive but by much less than the highest values, both factorization
for the current fragmentation region and factorization for the
central region are valid to useful accuracy.

Thus once factorization for central region has been formu-
lated, it has the potential to unify the full range of zh. With-
out a fully developed central fragmentation function factoriza-
tion theorem, it is probably not possible to address the overlap
of di↵erent regions. We hope that our analysis will motivate
greater attention to central fragmentation and its theoretical de-
velopment.

A unified description with optimal accuracy requires match-
ing of the factorization properties of the individual regions.
This is similar to but more general than the situation for
the transverse-momentum distribution in the Drell-Yan pro-
cess, where matching of TMD and collinear factorization is
needed. [15] Naturally, for SIDIS treated over all PhT, we will
also need a matching of collinear factorization with the com-
bination of matched TMD factorizations for the three low-PhT
regions.
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model graph get converted into attachments to the Wilson lines
in the operators defining parton densities, fragmentation func-
tions, etc., after appropriate approximations in the proof of fac-
torization.

While the elementary formulation from Fig. 2 is a useful
starting point that captures the general structure of factorization,
detailed analyses of the limits of specific factorization treat-
ments require a more careful account of the full picture, includ-
ing soft gluons, hadronization, parton showering, and higher-
order corrections. A fuller picture might include, for example,
string-like fragmentation [7, 8]. Such e↵ects are relevant to this
paper since we are interested in the boundaries between regions.

The regions associated with the three graphs in Fig. 1 are
defined in terms of the kinematics of the produced hadron, and
each region in principle comes with its own specific factoriza-
tion theorem. The accuracy of a factorization treatment con-
cerns the precision with which its various approximations deal
with its design region. In all cases, we are concerned with Q2

made large, Q2 � ⇤2
QCD, with fixed xbj.

We summarize the theoretical status of each of the rapidity
regions at small PhT as follows:

1. Current Fragmentation Region: (Fig. 1(a)) This region
has a fully developed TMD factorization treatment [1–
6], with TMD parton densities and TMD fragmentation
functions. It applies when Q is made large, Q � ⇤QCD,
at fixed xbj, with large enough zh, and with small PhT.
Since it applies to a well-defined limiting case, we will
ask questions about its accuracy for non-asymptotic kine-
matics.

2. Target Fragmentation Region: (Fig. 1(b)) This region is
described in terms of fracture functions. [9–14]. More

precisely, given our interest in the cross section di↵eren-
tial in PhT, it is described in terms of extended fraction
functions [10, 11], especially those that are TMD in the
quark momentum [14]. The (extended) fracture function
formalism applies to the case that the detected hadron’s
momentum is collinear to the target, so it is also possible
to ask well-defined questions about the accuracy of target
region approximations and their kinematical range of ap-
plicability, though we will not perform such an analysis
specifically here.

3. Central (or soft) Fragmentation Region: (Fig. 1(c)) This
region refers to the case that the produced hadron rapid-
ity is much less than that of the target, but much greater
than that of the outgoing quark (or current jet). We ex-
pect that a factorization theorem for the central fragmen-
tation region is possible, although we know of very little
work on this topic. With the soft factor of TMD factor-
ization in mind, we expect the non-perturbative functions
associated with the soft region to have broadly universal
properties.

An important point is that the current and target fragmenta-
tion regions each overlap with the central fragmentation region.
For example, when the hadron rapidity yh is substantially nega-
tive but by much less than the highest values, both factorization
for the current fragmentation region and factorization for the
central region are valid to useful accuracy.

Thus once factorization for central region has been formu-
lated, it has the potential to unify the full range of zh. With-
out a fully developed central fragmentation function factoriza-
tion theorem, it is probably not possible to address the overlap
of di↵erent regions. We hope that our analysis will motivate
greater attention to central fragmentation and its theoretical de-
velopment.

A unified description with optimal accuracy requires match-
ing of the factorization properties of the individual regions.
This is similar to but more general than the situation for
the transverse-momentum distribution in the Drell-Yan pro-
cess, where matching of TMD and collinear factorization is
needed. [15] Naturally, for SIDIS treated over all PhT, we will
also need a matching of collinear factorization with the com-
bination of matched TMD factorizations for the three low-PhT
regions.
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model graph get converted into attachments to the Wilson lines
in the operators defining parton densities, fragmentation func-
tions, etc., after appropriate approximations in the proof of fac-
torization.

While the elementary formulation from Fig. 2 is a useful
starting point that captures the general structure of factorization,
detailed analyses of the limits of specific factorization treat-
ments require a more careful account of the full picture, includ-
ing soft gluons, hadronization, parton showering, and higher-
order corrections. A fuller picture might include, for example,
string-like fragmentation [7, 8]. Such e↵ects are relevant to this
paper since we are interested in the boundaries between regions.

The regions associated with the three graphs in Fig. 1 are
defined in terms of the kinematics of the produced hadron, and
each region in principle comes with its own specific factoriza-
tion theorem. The accuracy of a factorization treatment con-
cerns the precision with which its various approximations deal
with its design region. In all cases, we are concerned with Q2

made large, Q2 � ⇤2
QCD, with fixed xbj.

We summarize the theoretical status of each of the rapidity
regions at small PhT as follows:

1. Current Fragmentation Region: (Fig. 1(a)) This region
has a fully developed TMD factorization treatment [1–
6], with TMD parton densities and TMD fragmentation
functions. It applies when Q is made large, Q � ⇤QCD,
at fixed xbj, with large enough zh, and with small PhT.
Since it applies to a well-defined limiting case, we will
ask questions about its accuracy for non-asymptotic kine-
matics.

2. Target Fragmentation Region: (Fig. 1(b)) This region is
described in terms of fracture functions. [9–14]. More

precisely, given our interest in the cross section di↵eren-
tial in PhT, it is described in terms of extended fraction
functions [10, 11], especially those that are TMD in the
quark momentum [14]. The (extended) fracture function
formalism applies to the case that the detected hadron’s
momentum is collinear to the target, so it is also possible
to ask well-defined questions about the accuracy of target
region approximations and their kinematical range of ap-
plicability, though we will not perform such an analysis
specifically here.

3. Central (or soft) Fragmentation Region: (Fig. 1(c)) This
region refers to the case that the produced hadron rapid-
ity is much less than that of the target, but much greater
than that of the outgoing quark (or current jet). We ex-
pect that a factorization theorem for the central fragmen-
tation region is possible, although we know of very little
work on this topic. With the soft factor of TMD factor-
ization in mind, we expect the non-perturbative functions
associated with the soft region to have broadly universal
properties.

An important point is that the current and target fragmenta-
tion regions each overlap with the central fragmentation region.
For example, when the hadron rapidity yh is substantially nega-
tive but by much less than the highest values, both factorization
for the current fragmentation region and factorization for the
central region are valid to useful accuracy.

Thus once factorization for central region has been formu-
lated, it has the potential to unify the full range of zh. With-
out a fully developed central fragmentation function factoriza-
tion theorem, it is probably not possible to address the overlap
of di↵erent regions. We hope that our analysis will motivate
greater attention to central fragmentation and its theoretical de-
velopment.

A unified description with optimal accuracy requires match-
ing of the factorization properties of the individual regions.
This is similar to but more general than the situation for
the transverse-momentum distribution in the Drell-Yan pro-
cess, where matching of TMD and collinear factorization is
needed. [15] Naturally, for SIDIS treated over all PhT, we will
also need a matching of collinear factorization with the com-
bination of matched TMD factorizations for the three low-PhT
regions.
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➤ Define ratios, R0, R1, R2, R3 that 
depend on parton’s kinematics

➤ Identify regions

Boglione et al, 1904.12882

P

PB

q

ki

kf

kX

Figure 3: Momentum labeling in the partonic subprocess.

that quantities like |k2
i | and |k2

f | are small, and much of the discussion in this section will
be about addressing the question of what is meant by “small.” So to summarize, “partonic"
dashed lines represent the flow of a momentum with small invariant energy. In practical
situations, they will often turn out to refer to actual quark and/or gluon lines, but they do
not need to generally.

The partonic subprocess in Fig. 3 is marked off in a blue box. A black dot indicates the
parton we associate with an observed hadron. The momentum ki is the incoming struck
parton momentum, and there is at least one hadronizing parton kf . The kX momentum
labels the total momentum of all other unobserved partons combined. Outside the box
in Fig. 3, the position of the hadron implies a current region picture, though an analo-
gous picture of course applies to the target region case. We ask questions about partonic
regions in the context of the steps needed to factorize graphical structure in a manner
consistent with particular partonic pictures. Our general view of factorization is based on
that of Collins [11, 33] and collaborators, though the same statements apply to most other
approaches.

We are interested in the kinematics of the ki + q ! kf + k
X

subprocess and how
closely it matches the overall P + q ! PB + X process under very general assumptions.
Specific realizations of the partonic subprocess, each of which can contribute to a different
kinematical region, are shown in Fig. 4. We will analyze the subprocess in the Breit frame
and write

kb
i =

 
Q

x̂N

p
2
,
x̂N(k2

i + k2
i,b,T)

p
2Q

,ki,b,T

!
, kb

f =

 
k2
f,b,T + k2

fp
2ẑNQ

,
ẑNQp

2
,kf,b,T

!
. (8.1)

Hats always indicate a partonic kinematical variable, whereas ⇠ and ⇣ are momentum
fractions (see below). We will write the transverse momentum as

kf,b,T = �ẑNqT + �kT . (8.2)

– 17 –

R0 R1 R2 R3 R0
1

TMD Current region small small small X large
Hard region small small large small (low order pQCD) large

small small large large (high order pQCD) large
Target region small large X X small
Soft region small large small X large

Table 1: Examples for sizes of ratios corresponding to particular regions of SIDIS. The “X”
means “irrelevant or ill-defined.” This ranking should be viewed as schematic since “small”
and “large” need to be defined quantitatively and can in general be scale-dependent.

Figure 12: Spectator virtuality ratio, R3, from Eq. (4.18) for fixed z
h

= 0.25, ⇣ = 0.3

and ⇠ = 0.2. Top panels show the ratio for M
B

= m
⇡

at (a) small transverse momentum
(qT = 0.3 GeV) and (b) qT = 2.0 GeV. Similar cases for M

B

= m
K

are shown in the bottom
panels, (c) and (d). Note that both xBj and Q axes are shown in logarithmic scale.

– 26 –
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➤ Define ratios
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Ratios depend on unknown parton 
momenta. Ho can we define and use 
them?

Current study

➤ Use a Monte Carlo* with 
parton momenta 

➤ Sample experimental bins 
for ratios 

* by saying Monte Carlo we do not intend Pythia!
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Figure 4: A selection of COMPASS data from [24]. The colored points correspond to the hadron moving with rapidity smaller than some maximum value, which
has been chosen to be a quarter-way between the largest estimate of yf and the value of yh for which R = 1. This ensures that for Q2 ⇠ 10 GeV2, R . 0.25.
Within our rough order of magnitude estimate, grey points are likely to receive important contributions from non-current regions. For detailed phenomenological
calculations, it is important to improve the estimates of Eq. (26) by more precise constraints on MiT and MfT, and also to use a range of rapidity cuto↵s.
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Figure 5: A selection of HERMES data from [25]. Points are as described in Fig. 4. The larger mass of the kaon results in a larger number of points that are likely
to receive significant contributions from the non-current regions, within our rough order of magnitude estimate. For detailed phenomenological calculations, it is
important to improve the estimates of Eq. (26) by more precise constraints on MiT and MfT, and also to use a range of rapidity cuto↵s.

positive and negative values for the struck quark rapidities yi
and yf (respectively). These are internal variables that are not
directly measured by experiment, so we made rough estimates
with the aid of results of fits to reasonable models of hadroniza-
tion. It is also necessary for the target remnant be in the target
fragmentation region. This requires something like the Berger
criterion [16] for the total available rapidity range. But the need
for appropriate hard scattering kinematics imposes additional
constraints compared with those of Berger.

After that, the hadron needs to have a su�ciently negative
Breit-frame rapidity yh to correspond to the final-state fragmen-
tation kinematics, at least a unit negative, preferably more. As
we go out of the current fragmentation region, yh becomes zero
and then positive. Figure 3 illustrates two ways this can occur:
by going to su�ciently smaller values of zh and/or larger val-
ues of PhT. (In terms of factorization, the latter behavior can be
handled by matching to large-PhT collinear factorization with a
Y-term, assuming su�ciently large Q.) However, at moderate

values of Q (of order a few GeVs), there is a danger that rapidi-
ties start to become central even for relatively small PhT. That
trend is illustrated by the left most columns of Fig. 3.

The above discussion highlights an important general point:
the value of zh by itself is not enough to determine the proximity
to the current region. The kinematic dependence of errors in
factorization derivations is dictated primarily by the size of the
hadron rapidity, which is sensitive to both zh and PhT, as is clear
from the top row of Fig. 3. Even for a small value of zh, it
is possible to be in the current region if PhT is likewise very
small. Conversely, even for large zh, the hadron will not be in
the current region for su�ciently large PhT. In all cases, if PhT
is comparable to Q, then the hadron is always out of the current
fragmentation region.

An upper limit on rapidity in data produces a wedge-shaped
region in plots of multiplicity versus PhT for di↵erent values of
zh. We show examples in Figs. 4 and 5. The latter, displays
the greater ambiguity about the border of the current region for

8

Where does this bin belong?
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➤ Define ratios

Boglione et al, 1904.12882

Ratios depend on unknown parton 
momenta. Ho can we define and use 
them?

Current study

➤ Use a Monte Carlo* with 
parton momenta 

➤ Sample experimental bins 
for ratios 

* by saying Monte Carlo we do not intend Pythia!

R0

R1

R2

Box that defines
appropriate values
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Boglione et al, 1611.10329
Boglione et al, 1904.12882
Current study

➤ Use a Monte Carlo* with parton momenta 
➤ Sample experimental bins for ratios 
➤ Affinity = #times in/(#times in + #times out)

* by saying Monte Carlo we do not intend Pythia!

R0

R1

R2

Box that defines
appropriate values

Affinity is from 0% to 100%
indicates affinity of a bin to
a particular region
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What about the 3D spin structure of the nucleon
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– Orbital motion. Most TMDs would vanish in the ab-
sence of parton orbital angular momentum, and thus
enable us to quantify the amount of orbital motion.

– Spin-orbit correlations. Most TMDs and related ob-
servables are due to couplings of the transverse mo-
mentum of quarks with the spin of the nucleon (or
the quark). Spin-orbit correlations in QCD, akin to
those in hydrogen atoms and topological insulators,
can therefore be studied.

– Gauge invariance and universality. The origin of some
TMDs and related spin asymmetries, at the partonic
level, depend on fundamental properties of QCD, such
as its color gauge invariance. This leads to clear differ-
ences between TMDs in different processes, which can
be experimentally tested.

The “simplest” TMD is the unpolarized function
fq
1 (x, kT ), which describes, in a fast moving nucleon,

the probability of finding a quark carrying the longitu-
dinal momentum fraction x of the nucleon momentum,
and a transverse momentum kT = |kT |. It is related to
the collinear (“integrated”) PDF by

∫
d2kT fq

1 (x, kT ) =
fq
1 (x). In addition to fq

1 (x, kT ), there are two other TMDs:
gq
1L(x, kT ) and hq

1(x, kT ), whose integrals correspond to
the collinear PDFs: the longitudinal polarized structure
function discussed in the previous section and the quark
transversity distribution. The latter is related to the ten-
sor charge of the nucleon. These three distributions can
be regarded as a simple transverse-momentum extension
of the associated integrated quark distributions. More im-
portantly, the power and rich possibilities of the TMD
approach arise from the simple fact that kT is a vector,
which allows for various correlations with the other vectors
involved: the nucleon momentum P , the nucleon spin S,
and the parton spin (say a quark, sq). Accordingly, there
are eight independent TMD quark distributions as shown
in fig. 16. Apart from the straightforward extension of the
normal PDFs to the TMDs, there are five TMD quark
distributions, which are sensitive to the direction of kT ,
and will vanish with a simple kT integral.

Because of the correlations between the quark trans-
verse momentum and the nucleon spin, the TMDs natu-
rally provide important information on the dynamics of
partons in the transverse plane in momentum space, as
compared to the GPDs which describe the dynamics of
partons in the transverse plane in position space. Mea-
surements of the TMD quark distributions provide infor-
mation about the correlation between the quark orbital
angular momentum and the nucleon/quark spin because
they require wave function components with nonzero or-
bital angular momentum. Combining the wealth of infor-
mation from all of these functions could thus be invalu-
able for disentangling spin-orbit correlations in the nu-
cleon wave function, and providing important information
about the quark orbital angular momentum. One partic-
ular example is the quark Sivers function f⊥q

1T which de-
scribes the transverse-momentum distribution correlated
with the transverse polarization vector of the nucleon.
As a result, the quark distribution will be azimuthally
asymmetric in the transverse-momentum space in a trans-

Fig. 17. The density in the transverse-momentum plane for
unpolarized quarks with x = 0.1 in a nucleon polarized along
the ŷ direction. The anisotropy due to the proton polarization
is described by the Sivers function, for which the model of [79]
is used. The deep red (blue) indicates large negative (positive)
values for the Sivers function.

versely polarized nucleon. Figure 17 demonstrates the de-
formations of the up and down quark distributions. There
is strong evidence of the Sivers effect in the DIS experi-
ments observed by the HERMES, COMPASS, and JLab
Hall A collaborations [80–82]. An important aspect of the
Sivers functions that has been revealed theoretically in last
few years is the process dependence and the color gauge
invariance [83–86]. Together with the Boer-Mulders func-
tion, they are denoted as naive time-reversal odd (T -odd)
functions. In SIDIS, where a leading hadron is detected
in coincidence with the scattered lepton, the quark Sivers
function arises due to the exchange of (infinitely many)
gluons between the active struck quark and the remnants
of the target, which is referred to as final-state interaction
effects in DIS. On the other hand, for the Drell-Yan lep-
ton pair production process, it is due to the initial-state
interaction effects. As a consequence, the quark Sivers and
Boer-Mulders functions differ by a sign in these two pro-
cesses. This non-universality is a fundamental prediction
from the gauge invariance of QCD [84]. The experimental
check of this sign change is currently one of the outstand-
ing topics in hadronic physics, and Sivers functions from
the Drell-Yan process can be measured at RHIC.

2.3.2 Opportunities for measurements of TMDs at the EIC

To study the transverse-momentum–dependent parton
distributions in high-energy hadronic processes, an addi-
tional hard momentum scale is essential, besides the trans-
verse momentum, for proper interpretation of results. This
hard momentum scale needs to be much larger than the
transverse momentum. At the EIC, DIS processes natu-
rally provide a hard momentum scale: Q, the virtuality
of the photon. More importantly, the wide range of Q2

values presents a unique opportunity to systematically in-
vestigate the strong interaction dynamics associated with
the TMDs. Although there has been tremendous progress
in understanding TMDs, without a new lepton-hadron col-
lider, many aspects of TMDs will remain unexplored —or
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Sivers function Transversity

➤ Describes unpolarized quarks inside of 
transversely polarized nucleon 

➤ Encodes the correlation of orbital motion 
with the spin

➤ The only source of information on tensor 
charge of the nucleon

➤ Couples to Collins fragmentation function 
or di-hadron interference fragmentation 
functions in SIDIS

POLARIZED TMD FUNCTIONS
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The tensor charge of the nucleon is one of its fundamental charges and is important 
for BSM studies (beta decay, EDM).  Processes sensitive to TMDs can play an 

important role in these efforts (Courtoy, et al. (2015); Yamanaka, et al. (2017), Liu, 
et al. (2018),…).  Lattice QCD has also calculated the tensor charges with great 
precision (Gupta, et al. (2018); Hasan, et al. (2019), Alexandrou, et. (2019),…).

TMDs

BSM Lattice

Tensor 
charge
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➤ Sign change of Sievers function is 
fundamental consequence of QCD 

Brodsky, Hwang, Schmidt (2002), Collins (2002)



Asymmetry survives with growing collision energy
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4 THE CONFINED MOTION OF PARTONS IN NU-
CLEONS  

 
A natural next step in the investigation of nu-

cleon structure is an expansion of our current 
picture of the nucleon by imaging the proton in 
both momentum and impact parameter space. 
From TMD parton distributions we can obtain an 
“image” of the proton in transverse as well as in 
longitudinal momentum space (2+1 dimensions).  
At the same time we need to further our under-
standing of color interactions and how they man-
ifest themselves in different processes. This has 
attracted renewed interest, both experimentally 

and theoretically, in transverse single spin 
asymmetries (SSA) in hadronic processes at high 
energies, which have a more than 30 year history. 
Measurements at RHIC have extended the obser-
vations from the fixed-target energy range to the 
collider regime, up to and including the highest 
center-of-mass energies to date in polarized p+p 
collisions. Figure 4-1 summarizes the measured 
asymmetries from different RHIC experiments as 
function of Feynman-x (xF ~ x1-x2). 

 

 
Figure 4-1: Transverse single spin asymmetry measurements for charged and neutral pions at different center-of-mass 
energies as function of Feynman-x. 
 

The surprisingly large asymmetries seen are 
nearly independent of  over a very wide 
range. To understand the observed SSAs one has 
to go beyond the conventional leading twist col-
linear parton picture in the hard processes. Two 
theoretical formalisms have been proposed to 
explain sizable SSAs in the QCD framework: 
These are transverse momentum dependent par-
ton distributions and fragmentation functions, 
such as the Sivers and Collins functions dis-
cussed below, and transverse-momentum inte-
grated (collinear) quark-gluon-quark correlations, 
which are twist-3 distributions in the initial state 
proton or in the fragmentation process. For many 
spin asymmetries, several of these functions can 
contribute and need to be disentangled to under-
stand the experimental observations in detail, in 
particular the dependence on pT measured in the 
final state.  The functions express a spin depend-
ence either in the initial state (such as the Sivers 

distribution or its Twist-3 analog, the Efremov-
Teryaev-Qui-Sterman (ETQS) function [21]) or 
in the final state (via the fragmentation of a po-
larized quarks, such as the Collins function). 

The Sivers function, , describes the corre-
lation of the parton transverse momentum with 
the transverse spin of the nucleon. A non-
vanishing  means that the transverse parton 
momentum distribution is azimuthally asymmet-
ric, with the nucleon spin providing a preferred 
transverse direction. The Sivers function, , is 
correlated with the ETQS functions, Tq,F, through 
the following relation: 
!!,! !, ! = − !!!! !! !

! !!!!! !, !!! |!"#"! [Eq. 4-1].  
In this sense, a measurement constraining the 

ETQS function indirectly also constrains the Siv-
ers function.  We will use this connection repeat-
edly in the following. 

s

f1T
⊥
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⊥
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⊥

“The RHIC SPIN Program: Achievements and Future Opportunities”, Aschenauer et al (15)
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Challenge: the Sivers Effect

  Single Transverse Spin Asymmetry:
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Sivers Effect:


"  Spin direction of colliding hadron

"  Motion direction of its confined partons


Quantum Correlation between


QCD:  Sign Change from SIDIS to Drell-Yan


D. Sivers, PRD41 (1990)83
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3

Observable Reactions Non-Perturbative Function(s) �2/Npts. Exp. Refs.
ASiv

SIDIS

e + (p, d)" ! e + (⇡+,⇡�,⇡0) + X f?

1T (x, k2

T ) 150.0/126 = 1.19 [67, 68, 70]
ACol

SIDIS

e + (p, d)" ! e + (⇡+,⇡�,⇡0) + X h
1

(x, k2

T ), H?

1

(z, z2p2

?

) 111.3/126 = 0.88 [68, 70, 73]
ACol

SIA

e+ + e� ! ⇡+⇡�(UC,UL) + X H?

1

(z, z2p2

?

) 154.5/176 = 0.88 [76–79]
ASiv

DY

⇡�+ p" ! µ+µ� + X f?

1T (x, k2

T ) 5.96/12 = 0.50 [75]
ASiv

DY

p" + p ! (W+,W�, Z) + X f?

1T (x, k2

T ) 31.8/17 = 1.87 [74]
Ah

N p" + p ! (⇡+,⇡�,⇡0) + X h
1

(x), FFT (x, x) = 1

⇡ f
?(1)

1T (x), H?(1)

1

(z) 66.5/60 = 1.11 [7, 9, 10, 13]

TABLE I. Summary of the SSAs analyzed in our global fit. There are a total of 18 observables when one accounts for the
various initial and final states. This includes the “unlike-charged” (UC) and “unlike-like” (UL) pion combinations for ACol

SIA

.
For f?

1T , h1

we have up and down quarks, while for H?

1

we have favored and unfavored fragmentation. This gives a total of 6
non-perturbative functions. We also include �2/N

pts. for each observable in our fit, where N
pts. is the number of data points.

For the TMD FFs, the unpolarized function is
parametrized as

D
h/q
1

(z, z2p2

?

) = D
h/q
1

(z) Gh/q
D1

(z2p2

?

) , (6)

while the Collins FF reads

H
?h/q
1

(z, z2p2

?

) =
2z2M2

h

hp2

?

ih/q

H?
1

H
?(1)

1 h/q(z) Gh/q

H?
1

(z2p2

?

) , (7)

where we have explicitly written its z dependence in
terms of its first moment H

?(1)

1 h/q(z) [84]. For fq
1

(x) and
Dq

1

(z) we use the leading order CJ15 [94] and DSS [95]
functions. The pion PDFs are taken from Ref. [96].

Note Eqs. (3), (5), (7) make clear that the underlying
non-perturbative functions, h

1

(x), FFT (x, x), H
?(1)

1

(z),
that drive the (TMD) SSAs ASiv

SIDIS

, ACol

SIDIS

, ASiv

DY

, and
ACol

SIA

, are the same collinear functions that enter the SSA
Ah

N (along with H̃(z)). We generically parametrize these
collinear functions as

F q(x)=
Nq xaq (1 � x)bq (1 + �q x↵q (1 � x)�q )

B[aq+2, bq+1] + �qB[aq+↵q+2, bq+�q+1]
,

(8)
where F q = hq

1

, ⇡F q
FT , H

?(1)

1 h/q (with x ! z for the Collins
function), and B is the Euler beta function. In the
course of our analysis, we found that H̃(z) was consistent
with zero within error bands. Moreover, if one considers
the relative error of the moment F (1) ⌘

R
1

0

dx xF (x) of
the various functions in our fit, h

1

(x), ⇡FFT (x, x), and
H

?(1)

1

(z) all have �F (1)/F (1) . 1.5, whereas for H̃(z),
�F (1)/F (1) � 1.5. This indicates that there is no signifi-
cant signal for H̃(z) from Ah

N data alone, and the func-
tion simply emerges as noise in our fit. Therefore, data
on the aforementioned (PhT -integrated) Asin �S

UT asymme-
try in SIDIS is needed to properly constrain H̃(z). For
now, we set H̃(z) to zero, which is consistent with pre-
liminary data from HERMES [97] and COMPASS [98]
showing a small Asin �S

UT .
For the collinear PDFs hq

1

(x) and ⇡F q
FT (x, x), we only

allow q = u, d and set anti-quark functions to zero. For
both functions we also set bu = bd. For the collinear
FF H

?(1)

1 h/q(z), we allow for favored (fav) and unfavored

(unf) parameters. We also found that the set of pa-
rameters {�, ↵, �} is needed only for H

?(1)

1 h/q(z), due to
the fact that the data for ACol

SIA

has a different shape at
smaller versus larger z. Since those data (and the ones
for ACol

SIDIS

) are at z & 0.2, we set ↵fav = ↵unf = 0,
similar to what has been done in fits of unpolarized
collinear FFs [95]. This gives us a total of 20 param-
eters for the collinear functions. There are also 4 pa-
rameters for the transverse momentum widths associated
with h

1

, f?

1T , and H?

1

: hk2

T iu
f?
1T

= hk2

T id
f?
1T

⌘ hk2

T if?
1T

;

hk2

T iu
h1

= hk2

T id
h1

⌘ hk2

T ih1 ; hp2

?

ifav

H?
1

and hp2

?

iunf

H?
1

.
We simultaneously extract unpolarized TMD widths

by including HERMES pion and kaon multiplicities [99]
in our fit, which involves 6 more parameters associated
with the valence and sea unpolarized PDF widths, and fa-
vored and unfavored unpolarized FF widths for pions and
for kaons: hk2

T ival
f1

, hk2

T isea
f1

, hp2

?

ifav

D
{⇡,K}
1

, hp2

?

iunf

D
{⇡,K}
1

. The
pion PDF widths are taken to be the same as those for
the proton. We include normalization parameters for each
data set that vary within the quoted experimental nor-
malization uncertainties. This results in an additional 77
“nuisance” parameters.

We use Bayesian inference in order to sample the pos-
terior distribution for all parameters. Due to the large
dimensionality of the parameter space, we use the multi-
step strategy in the Monte Carlo framework developed
in Ref. [100]. Our partonic distributions are inferred
from about 1000 Monte Carlo samples drawn from the
Bayesian posterior distribution.

We also implement a DGLAP-type evolution of
the collinear functions analogous to Ref. [101], where
a double-logarithmic Q2-dependent term is explicitly
added to the parameters. Note that the transverse mo-
mentum widths do not vary with Q2. We leave a more
rigorous treatment of the complete TMD and CT3 evo-
lution for future work.
Phenomenological Results. Using the above method-
ology, we fit SSA data from HERMES [67, 73], COM-
PASS [68, 70, 75], Belle [76], BaBar [77, 78], BESIII [79],
BRAHMS [9], and STAR [7, 10, 13, 74]. For ASiv

SIDIS

,
ACol

SIDIS

, ACol

SIA

, and Ah
N , we focus on pion production data,

while for ASiv

DY

we use both the µ+µ� pair production data

JAM uses Bayesian inference in order to sample the   
posterior distribution of all parameters.
Multistep strategy in the Monte Carlo framework is used.

Around 1000 MC samples are drawn from Bayesian 
posterior distributions and are analyzed.  

Sato, Andres, Ethier, Melnitchouk  (2019)

Jefferson Lab Angular Momentum Collaboration  
https://www.jlab.org/theory/jam
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FIG. 1. The extracted functions h
1

(x), f
?(1)

1T (x), and
H

?(1)

1

(z) at Q2 = 4 GeV2 from our (JAM20) global analy-
sis (red solid curves with 1-� CL error bands). The functions
from other groups [84, 87–89, 92, 102–104] are also shown.

from COMPASS and the weak gauge boson production
data from STAR. For ACol

SIA

we have only included the so-
called A

0

asymmetry since this observable has a TMD
factorization theorem. We only include A⇡

N data with
PhT > 1 GeV in order to stay within the regime where
the CT3 formalism is applicable. Similarly, we do not
include low-energy SSA data from JLab due to concerns
about the pion production mechanism at relatively low
energies [105–107]. The standard cuts [108] of 0.2 < z <
0.6, Q2 > 1.63 GeV2, and 0.2 < PhT < 0.9 GeV have
been applied to all SIDIS data sets, giving us a total of
517 SSA data points in the fit along with 807 HERMES
multiplicity [99] data points.

The extracted functions [109] and their comparison
to other groups are shown in Fig. 1. We obtain a
good agreement between theory and experiment, as illus-
trated in Figs. 2–4. Specifically we find (�2/N

pts.)SSA

=
520/517 = 1.01 for SSA data alone, and �2/N

pts. =
1373/1324 = 1.04 for all data, including HERMES mul-
tiplicities.

FIG. 2. Theory compared to experiment for ACol

SIA

.

FIG. 3. Theory compared to experiment for A
Col/Siv

SIDIS

.

FIG. 4. Theory compared to experiment for A⇡
N and ASiv

DY

.

Figure 5 gives our extracted tensor charges of the nu-
cleon. The individual flavor charges �q ⌘

R
1

0

dx [hq
1

(x) �
hq̄

1

(x)] are shown along with the isovector combination
gT ⌘ �u � �d. We compare our results to those from lat-
tice computations at the physical point [110–112], other
phenomenological extractions [84, 87, 102–104, 113, 114],
and a calculation using Dyson-Schwinger equations [115].
One clearly notices the strong impact of including more
SSA data sets in our fit, which highlights the importance
of carrying out a simultaneous extraction of partonic
functions in a global analysis. In going from SIDIS !



UNIVERSAL GLOBAL FIT 2020

�28

Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, Sato (2020)

SIDIS
Collins asymmetry 

Sivers asymmetry 

�

2

npoints

=
107.1

126
= 0.85

<latexit sha1_base64="mIYk7++qvpbk5qT3EFYXPd3bKWA=">AAACGnicbVDLSsNAFJ34rPVVdelmsAiuQqZU241QdOOygn1AE8tkOmmHTiZhZiKUkO9w46+4caGIO3Hj3zhpu9DWAxcO59zLvff4MWdKO863tbK6tr6xWdgqbu/s7u2XDg7bKkokoS0S8Uh2fawoZ4K2NNOcdmNJcehz2vHH17nfeaBSsUjc6UlMvRAPBQsYwdpI/RJyA4lJ6pIRu69kqYgjJrTK4CWcGcip2ShLUeUi1xy7ft4vlR3bmQIuEzQnZTBHs1/6dAcRSUIqNOFYqR5yYu2lWGpGOM2KbqJojMkYD2nPUIFDqrx0+loGT40ygEEkTQkNp+rviRSHSk1C33SGWI/UopeL/3m9RAd1L2UiTjQVZLYoSDjUEcxzggMmKdF8YggmkplbIRlhE4k2aRZNCGjx5WXSrtioaldvq+XG1TyOAjgGJ+AMIFADDXADmqAFCHgEz+AVvFlP1ov1bn3MWles+cwR+APr6wcSyZ7s</latexit>

�

2

npoints

=
85.4

88
= 0.97

<latexit sha1_base64="Fhfck1dcQ3EdDXy4Iy+sWJK5aTs=">AAACGHicbVDLSgMxFM3UV62vUZdugkVwNc6UkdaFUHTjsoJ9QFtLJs20oZlkSDJCGeYz3Pgrblwo4rY7/8b0sdDWAxcO59zLvfcEMaNKu+63lVtb39jcym8Xdnb39g/sw6OGEonEpI4FE7IVIEUY5aSuqWakFUuCooCRZjC6nfrNJyIVFfxBj2PSjdCA05BipI3Usy86oUQ47eAhfSxlKY8F5Vpl8BrOjcql42dppTJVXOeq3LOLruPOAFeJtyBFsECtZ086fYGTiHCNGVKq7bmx7qZIaooZyQqdRJEY4REakLahHEVEddPZYxk8M0ofhkKa4hrO1N8TKYqUGkeB6YyQHqplbyr+57UTHVa6KeVxognH80VhwqAWcJoS7FNJsGZjQxCW1NwK8RCZQLTJsmBC8JZfXiWNkuP5jn/vF6s3izjy4AScgnPggTKogjtQA3WAwTN4Be/gw3qx3qxP62vemrMWM8fgD6zJDzOanoo=</latexit>

4

FIG. 1. The extracted functions h
1

(x), f
?(1)

1T (x), and
H

?(1)

1

(z) at Q2 = 4 GeV2 from our (JAM20) global analy-
sis (red solid curves with 1-� CL error bands). The functions
from other groups [84, 87–89, 92, 102–104] are also shown.

from COMPASS and the weak gauge boson production
data from STAR. For ACol

SIA

we have only included the so-
called A

0

asymmetry since this observable has a TMD
factorization theorem. We only include A⇡

N data with
PhT > 1 GeV in order to stay within the regime where
the CT3 formalism is applicable. Similarly, we do not
include low-energy SSA data from JLab due to concerns
about the pion production mechanism at relatively low
energies [105–107]. The standard cuts [108] of 0.2 < z <
0.6, Q2 > 1.63 GeV2, and 0.2 < PhT < 0.9 GeV have
been applied to all SIDIS data sets, giving us a total of
517 SSA data points in the fit along with 807 HERMES
multiplicity [99] data points.

The extracted functions [109] and their comparison
to other groups are shown in Fig. 1. We obtain a
good agreement between theory and experiment, as illus-
trated in Figs. 2–4. Specifically we find (�2/N

pts.)SSA

=
520/517 = 1.01 for SSA data alone, and �2/N

pts. =
1373/1324 = 1.04 for all data, including HERMES mul-
tiplicities.
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Figure 5 gives our extracted tensor charges of the nu-
cleon. The individual flavor charges �q ⌘

R
1

0

dx [hq
1

(x) �
hq̄

1

(x)] are shown along with the isovector combination
gT ⌘ �u � �d. We compare our results to those from lat-
tice computations at the physical point [110–112], other
phenomenological extractions [84, 87, 102–104, 113, 114],
and a calculation using Dyson-Schwinger equations [115].
One clearly notices the strong impact of including more
SSA data sets in our fit, which highlights the importance
of carrying out a simultaneous extraction of partonic
functions in a global analysis. In going from SIDIS !
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FIG. 1. The extracted functions h
1

(x), f
?(1)

1T (x), and
H

?(1)

1

(z) at Q2 = 4 GeV2 from our (JAM20) global analy-
sis (red solid curves with 1-� CL error bands). The functions
from other groups [84, 87–89, 92, 102–104] are also shown.

from COMPASS and the weak gauge boson production
data from STAR. For ACol

SIA

we have only included the so-
called A

0

asymmetry since this observable has a TMD
factorization theorem. We only include A⇡

N data with
PhT > 1 GeV in order to stay within the regime where
the CT3 formalism is applicable. Similarly, we do not
include low-energy SSA data from JLab due to concerns
about the pion production mechanism at relatively low
energies [105–107]. The standard cuts [108] of 0.2 < z <
0.6, Q2 > 1.63 GeV2, and 0.2 < PhT < 0.9 GeV have
been applied to all SIDIS data sets, giving us a total of
517 SSA data points in the fit along with 807 HERMES
multiplicity [99] data points.

The extracted functions [109] and their comparison
to other groups are shown in Fig. 1. We obtain a
good agreement between theory and experiment, as illus-
trated in Figs. 2–4. Specifically we find (�2/N

pts.)SSA

=
520/517 = 1.01 for SSA data alone, and �2/N

pts. =
1373/1324 = 1.04 for all data, including HERMES mul-
tiplicities.
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Figure 5 gives our extracted tensor charges of the nu-
cleon. The individual flavor charges �q ⌘

R
1

0

dx [hq
1

(x) �
hq̄

1

(x)] are shown along with the isovector combination
gT ⌘ �u � �d. We compare our results to those from lat-
tice computations at the physical point [110–112], other
phenomenological extractions [84, 87, 102–104, 113, 114],
and a calculation using Dyson-Schwinger equations [115].
One clearly notices the strong impact of including more
SSA data sets in our fit, which highlights the importance
of carrying out a simultaneous extraction of partonic
functions in a global analysis. In going from SIDIS !
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FIG. 1. The extracted functions h
1

(x), f
?(1)

1T (x), and
H

?(1)

1

(z) at Q2 = 4 GeV2 from our (JAM20) global analy-
sis (red solid curves with 1-� CL error bands). The functions
from other groups [84, 87–89, 92, 102–104] are also shown.

from COMPASS and the weak gauge boson production
data from STAR. For ACol

SIA

we have only included the so-
called A

0

asymmetry since this observable has a TMD
factorization theorem. We only include A⇡

N data with
PhT > 1 GeV in order to stay within the regime where
the CT3 formalism is applicable. Similarly, we do not
include low-energy SSA data from JLab due to concerns
about the pion production mechanism at relatively low
energies [105–107]. The standard cuts [108] of 0.2 < z <
0.6, Q2 > 1.63 GeV2, and 0.2 < PhT < 0.9 GeV have
been applied to all SIDIS data sets, giving us a total of
517 SSA data points in the fit along with 807 HERMES
multiplicity [99] data points.

The extracted functions [109] and their comparison
to other groups are shown in Fig. 1. We obtain a
good agreement between theory and experiment, as illus-
trated in Figs. 2–4. Specifically we find (�2/N

pts.)SSA

=
520/517 = 1.01 for SSA data alone, and �2/N

pts. =
1373/1324 = 1.04 for all data, including HERMES mul-
tiplicities.
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Figure 5 gives our extracted tensor charges of the nu-
cleon. The individual flavor charges �q ⌘

R
1

0

dx [hq
1

(x) �
hq̄

1

(x)] are shown along with the isovector combination
gT ⌘ �u � �d. We compare our results to those from lat-
tice computations at the physical point [110–112], other
phenomenological extractions [84, 87, 102–104, 113, 114],
and a calculation using Dyson-Schwinger equations [115].
One clearly notices the strong impact of including more
SSA data sets in our fit, which highlights the importance
of carrying out a simultaneous extraction of partonic
functions in a global analysis. In going from SIDIS !
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Isovector tensor charge gT = 𝜹u-𝜹d
gT = 0.89   0.12 compatible with lattice results 

    𝜹u and 𝜹d Q2=4 GeV2

   𝜹u= 0.65     0.22

   𝜹d= -0.24    0.2

Tensor charge  from up and down quarks
 is constrained and compatible with lattice 
 results 

±

±
±

D. PitonyakD. Pitonyak

Simultaneous fit of SSAs in SIDIS, Drell-Yan, e+e- annihilation, and proton-proton 
collisions (JAM20) using a Gaussian ansatz for the TMDs

Only after a simultaneous QCD global analysis of SSAs does the phenomenological 
extraction of the tensor charges agree with lattice, but still with large uncertainties

Cammarota, Gamberg, Kang, Miller, DP, Prokudin, Rogers, Sato, PRD 102 (2020) 

13



TENSOR CHARGE AND FUTURE FACILITIES

EIC data will allow to have gT extraction at the precision at the level of lattice 
QCD calculations

Lab 12 data will allow to have complementary information on tensor charge 
to test the consistency of the extraction and expand the kinematical region

�32

D. Pitonyak

Gamberg, Kang, DP, Prokudin, Sato, Seidl, arXiv:2101.06200, submitted to PLB

SoLID (at Jefferson Lab) will offer needed complementary measurements to the EIC in 
order to test that a consistent picture emerges across multiple experiments on the 
extracted value of the tensor charge

20

Gamberg, Kang, Pitonyak, Prokudin, Sato, Seidl (2021)



N3LO EXTRACTION OF THE SIVERS FUNCTION
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Bury, Prokudin, Vladimirov (2020)

 The first next-to-next-to-next-to-
leading order N3LO global QCD 
analysis of SIDIS, Drell-Yan and 
W   /Z production data.
 Uses the unpolarized functions 
extracted at the same N3LO 
precision
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FIG. 1. Examples of data description of SIDIS+DY N3LO
fit for HERMES SIDIS [60], COMPASS pion-induced DY [48]
and STAR W

±
/Z data [49]. Open symbols: data not used in

the fit. Orange line is the CF and the blue box is 68%CI.

scriptions [52], but is not consistent in the resummation-
like schemes e.g. used in Refs [30, 33, 34].

Fit of the data. The TMD factorization theorems
are derived in the limit of large-Q and a small relative
transverse momentum �, defined as � = |P

hT

|/(zQ) in
SIDIS, � = |q

T

|/Q in DY. We apply the following selec-
tion criteria [37, 38] onto the experimental data

hQi > 2 GeV and � < 0.3. (12)

The Sivers asymmetry has been measured in SIDIS and
DY [48, 49, 60–64]. In total, after data selection cuts (12),
we use 76 experimental points. We have 63 points from
SIDIS measurements collected in ⇡

± and K

± production
off polarized proton target at HERMES [60], off deu-
terium target from COMPASS [62], and 3He target from
JLab [64, 65], h

± data on the proton target from COM-
PASS [66]. We use 13 points from DY measurements
of W

±
/Z production from STAR [49] and pion-induced

DY from COMPASS [48]. Let us emphasize that the re-
cent 3D binned data [60] from HERMES allowed us to
select sufficient number of data (46 points) from SIDIS
measurements. COMPASS and JLab measurements in
SIDIS are done by projecting the same data onto x, z,
and P

hT

. In order not to use the same data multiple
times and for better adjustment to TMD factorization
limit, we use only P

hT
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timation of uncertainties utilizes the replica method [68],
which consists of the fits of data replicas generated in
accordance with experimental uncertainties. From the
obtained distribution of 500 replicas, we determine the
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N3LO EXTRACTION OF THE SIVERS FUNCTION
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Bury, Prokudin, Vladimirov (2020)

 Consistency of the formalism and new benchmark for future studies
(a) (b)

(c) (d)

Figure 11. Qiu-Sterman function at µ = 10GeV for different quark flavors, derived from the Sivers function
(6.10). Our results are labeled as BPV20. The black line shows the CF value. Blue band shows 68%CI
without gluon contribution. The brown band shows the band obtained by adding the gluon contribution
G(+) = ±T . JAM20 is the extraction from Ref. [21]. PV20 is the extraction from Ref. [20]. ETK20 is the
extraction from Ref. [22].

a function of two variables (x1, x2,�x1 � x2). To reduce the number of unknowns we set

µ = µ
b

= 2e��E/b, (6.9)

such that L
µ

= 0. This choice essentially reduces number of function and parameteric freedom since
the remaining functions are only T

q

(�x, 0, x) and G(+)
(�x, 0, x), i.e. QS-functions for the quark
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Bury, Prokudin, Vladimirov (2021)
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Figure 10. Tomographic scan of the nucleon via the momentum space quark density function
⇢1;q h"(x,kT , µ) defined in Eq. (6.6) at x = 0.1 and µ = 2 GeV. Panel (a) is for u-quarks, panel (b)
is for d-quark, panel (c) is for ū-quark, and panel (d) is for s-quark. The variation of color in the plot is due
to variation of replicas and illustrates the uncertainty of the extraction. The nucleon polarization vector is
along ŷ-direction. White cross indicates position of the origin (0, 0) in order to highlight the shift of the
distributions along x̂-direction due to the Sivers function.

where F
µ⌫

is the gluon-strength tensor, n is a light-cone vector. The function G(+) is a similar
matrix element with three F

µ+’s. Its explicit form is not important for the present discussion
and can be found in Ref. [53]. The notation P ⌦ T refers to the leading order evolution kernel
for T

q

(�x, 0, x). It has the form of a complicated integral convolution that involves function T
q

,
�T

q

(the analog of T with �µ ! �µ�5) and G(±). The expression for this kernel can be found
in Refs. [53, 76]. It is crucial that this integral convolution involves twist-3 function for generic
(x1, x2, x3), but not just (�x, 0, x) as for QS matrix element. Moreover, the dominant contribution
to this convolution is given by the integral along (�x, x � ⇠, ⇠)-line with ⇠ 2 [x, 1], whereas the
contribution from the QS-component (�⇠, 0, ⇠) is suppressed by almost two orders of magnitude
[76, 87]. The scale µ in (6.7) is the scale of OPE. The scale µ is present only on the right-hand-side
of Eq. (6.7). The sum of all terms becomes µ independent, so that the left-hand-side, corresponding
to the optimal Sivers function, does not depend on µ.

The right-hand side of Eq. (6.7) depends on four non-perturbative functions, each of which is

– 24 –
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NEW DATA FROM COMPASS AND JLAB
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COMPASS is in “full swing” mode. JLAB 12 data are following.

Transverse-momentum-dependent Multiplicities of Charged Hadrons in Muon- . . . 11
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Fig. 6: Same as Fig. 5 for 0.3 < z < 0.4.

  1

1.7

  3

  7

 16

 81

0.003 0.008 0.013 0.020 0.032 0.055 0.1 0.21 0.4 0.7

2)c(GeV/2Q

x

1 2 3
0

0.5
1 2 3

3−10

1−10
1

1 2 3
0

0.5
1 2 3

3−10

1−10
1

1 2 3
0

0.5
1 2 3

3−10

1−10
1

1 2 3
0

0.5
1 2 3

3−10

1−10
1

1 2 3
0

0.5
1 2 3

3−10

1−10
1

1 2 3
0

0.5
1 2 3

3−10

1−10
1

1 2 3
0

0.5
1 2 3

3−10

1−10
1

1 2 3
0

0.5
1 2 3

3−10

1−10
1

1 2 3
0

0.5
1 2 3

3−10

1−10
1

1 2 3
0

0.5
1 2 3

3−10

1−10
1

1 2 3
0

0.5
1 2 3

3−10

1−10
1

1 2 3
0

0.5
1 2 3

3−10

1−10
1

1 2 3
0

0.5
1 2 3

3−10

1−10
1

1 2 3
0

0.5
1 2 3

3−10

1−10
1

1 2 3
0

0.5
1 2 3

3−10

1−10
1

1 2 3
0

0.5
1 2 3

3−10

1−10
1

1 2 3
0

0.5
1 2 3

3−10

1−10
1

1 2 3
0

0.5
1 2 3

3−10

1−10
1

1 2 3
0

0.5
1 2 3

3−10

1−10
1

1 2 3
0

0.5
1 2 3

3−10

1−10
1

1 2 3
0

0.5
1 2 3

3−10

1−10
1

1 2 3
0

0.5
1 2 3

3−10

1−10
1

2)c (GeV/2
hTP

2-)c (GeV/2
hTPdzd
hM2d

+h
−h

 <0.6z0.4< 

Fig. 7: Same as Fig. 5 for 0.4 < z < 0.6.
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Multidimensional 
binning

6

FIG. 6: PT dependence of F sin�
LU /FUU for increasing z bins

(left to right) and for di↵erent Q2-xB bins (bin 1: Q2 = 1.71
GeV2, xB = 0.13, bin 2: Q2 = 2.02 GeV2, xB = 0.19, bin 7:
Q2 = 4.89 GeV2, xB = 0.39, bin 9: Q2 = 6.55 GeV2, xB =
0.52) . The systematic uncertainty is given by the histogram
just above the horizontal axis. The predictions of the di↵erent
theoretical models are shown by the bold lines (blue: model
1, red: model 2, magenta: model 3). For models 1 and 2 the
contribution from eH?

1 (dashed line) and g?D1 (dotted line)
are shown in the same color as the final result.

provide sizable contributions in some kinematic regions.
Therefore, including the multidimensional data points
presented in this work will help to further constrain the
TMDs and FFs in global fits.

In addition to the z and PT dependence, the xB de-
pendence can also provide valuable insights into the kine-
matic dependence of the involved TMDs and FFs. The
result for the xB dependence are shown in Fig. 7. To ob-
tain these dependences, the same multidimensional bin-
ning is used. Owing to the correlation between xB and
Q2, the xB dependence is integrated/averaged over Q2.
Therefore, only discrete points are shown for the theory
calculations. Also as a function of xB a strong kinematic
dependence of the behaviour can be observed, with a
more flat behaviour at small z and PT and an increasing
trend for larger PT and z values. As for the z and PT

dependence, the best agreement is provided by model 2.
The xB dependence clearly shows that model 3, which
uses only the eH?

1

term, provides a su�cient description
at small z and PT , but cannot reproduce the trend at the
largest PT and z values.

The structure function ratio F sin�
LU /FUU correspond-

ing to the polarized electron beam single spin asymme-
try in semi-inclusive deep inelastic scattering has been

FIG. 7: xB dependence of F sin�
LU /FUU for selected PT and z

bins. The result is integrated over Q2. The systematic un-
certainty is given by the histogram just above the horizontal
axis. The predictions of the di↵erent theoretical models are
shown as open symbols (blue triangles: model 1, red squares:
model 2, magenta circles: model 3).

measured over a wide range of kinematics in a fully mul-
tidimensional study for the first time. The comparison
with calculations allows a clear di↵erentiation between
competing reaction models, e.g. highlighting the impor-
tance of the poorly known T-odd chiral-even TMD g? at
large PT and z, while providing new empirical informa-
tion in support of an important role for axial-vector di-
quark correlations in the proton’s wave function. There-
fore, including this multidimensional measurement into
global fits, in combination with future measurements of
unpolarized cross sections, as well as polarized target spin
asymmetries, will provide new, strong constraints on the
participating TMDs and FFs. Such progress will set us
firmly on the path to a deeper understanding of nucleon
structure in the 3-D space most natural to picturing com-
posite objects in relativistic quantum field theory.
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of Energy, the National Science Foundation (NSF), the
Italian Istituto Nazionale di Fisica Nucleare (INFN),
the French Centre National de la Recherche Scientifique
(CNRS), the French Commissariat pour l0Energie Atom-
ique, the UK Science and Technology Facilities Coun-

4

Positive pions were identified by time-of-flight measure-
ments. For the selection of deeply inelastic scattered
electrons, cuts on Q2 > 1GeV2, y < 0.75 and on the
invariant mass of the hadronic final state W > 2 GeV,
were applied. In addition, it was required that the e0⇡+X
missing mass be larger than 1.5GeV to minimize the con-
tribution from exclusive channels.

Figure 2 shows the new CLAS12 data as a function of
xB , z and PT integrated over all other kinematic variables
in comparison to the available world data for F sin�

LU /FUU

from previous experiments. Details on the multidimen-
sional analysis for CLAS12 follow. Even though F sin�

LU

FIG. 2: CLAS12 data (filled squares), compared with the
available world data from HERMES [19] (open squares),
COMPASS [20] (open triangles) and CLAS [21] (filled trian-
gles) for F sin�

LU /FUU as a function of xB , z and PT integrated
over all other kinematic variables. It has to be noted that
the di↵erent experiments apply slightly di↵erent cuts on the
kinematic variables and that in the case of COMPASS all pos-
itive hadrons are considered. The Asin�

LU values stated in the

References were transformed to F sin�
LU /FUU following Eq. (2).

The grey histogram shows the systematic uncertainty of the
present data.

has been studied at HERMES [18, 19], COMPASS [20]
and CLAS [21] during the last two decades, there is still
no consistent understanding of the contribution of each
part to the total structure function. One of the main
reasons for this can be seen in the low statistics and the
resulting large uncertainties or limited kinematic cover-
age of many previous experiments. The high statistics
on an extended kinematic range, which is available with
the new CLAS12 data, enables a fully di↵erential multi-
dimensional analysis for the first time and therefore pro-
vides an excellent basis for the extraction of TMDs and
FFs.

For the multidimensional binning, first the electron
variables are sorted in 9 bins in Q2 and xB (see Fig. 3).
For each of these Q2 - xB bins a binning is applied to z
and PT as shown for the example of Q2 - xB bin 1 in Fig.
3.

The beam SSA and its statistical uncertainty were de-
termined experimentally from the number of counts with
positive and negative helicity (N±

i ) in a specific bin i as:

SSA =
1

Pe

N+

i �N�
i

N+

i +N�
i

, �SSA =
1

Pe

s
1� (Pe SSA)2

N+

i +N�
i

, (4)

FIG. 3: Left: Correlation between Q2 and xB . The bin bor-
ders are shown as black lines and the bin numbering is given.
Right: Correlation between z and PT for Q2 - xB - bin 1. The
black lines indicate the bin borders.

where Pe is the average magnitude of the beam polar-
ization. Pe was measured with a Møller polarimeter up-
stream of CLAS12 and was 86.3%±2.6%.
To extract the sin� moment, Asin�

LU , the beam SSA
was measured as a function of the azimuthal angle �.
Then the data was fit with a sin� function. Figure 4
shows the beam SSA as a function of � for two typical
multidimensional bins. As expected the �-dependence

FIG. 4: Beam SSA as a function of � for two typical bins (left:
Q2 = 1.98 GeV2, xB = 0.20, PT = 0.25 GeV, z = 0.65; right:
Q2 = 6.5 GeV2, xB = 0.53, PT = 0.29 GeV, z = 0.44). The
vertical bars show the statistical uncertainty of each point,
while the horizontal bars correspond to the bin width. The
red line shows the fit with a sin� function.

can be well described by a sin� function. The obtained
Asin�

LU moment is then related to F sin�
LU /FUU via Eq. (2).

Several sources of systematic uncertainty were investi-
gated, including beam polarization, radiative e↵ects, par-
ticle identification and contamination from baryon reso-
nances and exclusive ⇢ meson production. A detailed
Monte Carlo simulation was performed to study accep-
tance and bin-migration e↵ects, which were both found
to be negligible compared to the other contributions. The
influence of additional azimuthal modulations cos� and
cos 2� on the extracted sin� amplitude was also evalu-
ated, and found to be negligible. The total systematic
uncertainty in each bin is defined as the square-root of
the quadratic sum of the uncertainties from all sources.
It is typically on the order of 6.4% and dominated by the
uncertainty from radiative e↵ects (3.0%) and from the
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➤ High luminosity: (~1034 cm−2 s−1) (~1000 times 
that of HERA)

➤ Variable CM energy: ~20 — ~140 GeV
➤ Highly polarized ~70% electron and nucleon 

beams
➤ Protons and other nuclei
➤ Possibility of more than one interaction region 

(none of the major facilities operates with one 
detector only - important for discovery potential)

THE ELECTRON-ION COLLIDER @ BNL
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White Paper (2012)
Accardi et al, arXiv:1212:1701 



LHCb FIXED TARGET, INCLUDING POLARIZATION 
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Polarised target

VELO 
and SMOG2

Well consolidated technique 

Design follows the successful HERMES Polarised Gas Target  which ran at HERA 1996 – 
2005, and the follow-up PAX target operational at COSY (FZ Jülich)

!16

PGT experimental set-up

IH (100 % HERMES ABS flow) = 6.5·1016/s by a cell 30 cm long, 1.0 cm i.d., at 100K, with feed tube 10 cm long, 1.0 cm i.d.  
The resulting 100% PGT density is θ = 1.2 · 1014 cm-2  
For the future HL-LHC-25ns, the maximum Luminosity would be up to 8.3· 1032 cm-2 s-1  

https://indico.cern.ch/event/755856/

SMOG2  

not only a 
project itself

R&D

Phase II 
transversely 

polarised H and 
D target

!15

Polarised target

VELO 
and SMOG2

Well consolidated technique 

Design follows the successful HERMES Polarised Gas Target  which ran at HERA 1996 – 
2005, and the follow-up PAX target operational at COSY (FZ Jülich)

!16

PGT experimental set-up

IH (100 % HERMES ABS flow) = 6.5·1016/s by a cell 30 cm long, 1.0 cm i.d., at 100K, with feed tube 10 cm long, 1.0 cm i.d.  
The resulting 100% PGT density is θ = 1.2 · 1014 cm-2  
For the future HL-LHC-25ns, the maximum Luminosity would be up to 8.3· 1032 cm-2 s-1  



ALICE FIXED TARGET
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https://indico.cern.ch/event/755856/

7

Possible target locations and acceptance

Target z = 0

Target z = -2.75 m

Target z = -4.7 m

LHCb, target z = 0

TPC Muon det.

The acceptances of the TPC calculated 
assuming reduced track length (1/3 of the full 
radial track length), which results in |η|<1.5 in 
a collider mode.

Possible fixed-target positioning
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How to identify 
universal proton 

structure properties 
from measured 

kT-dependence? 

What is the 2D 

confined transverse 

motion of quarks and 
gluons inside 


a proton? 

How does 
the confined motion 
change along with 

probing x, Q2? 

How is the motion correlated with  
macroscopic proton properties, as well 

as microscopic parton properties, 
such as the spin? 

Can we extract 
QCD color force 
responsible for 
the confined 

motion?

kT

xP


