Qweak- Newest Results

A search for new PV physics at the TeV scale by measuring the proton's weak charge Q_w^p

Greg Smith (Jefferson Lab) for the Qweak **Collaboration**

1.16 GeV, 7.9° *ep* elastic scattering asymmetry at the intensity/precision frontier

Exploits PV nature of the weak interaction

Jefferson Lab

son National Accelerator Facility

Hall C winter meeting Jan. 28, 2021

https://rdcu.be/OIW2

Nature 557, 207-211 (2018) doi:10.1038/s41586-018-0096-0 PROBING NATURE'S SECRETS in the search for new physics

- Commissioning result: PRL 111, 141803 (2013)
- Apparatus: NIM A781, 105 (2015)
- Final Q_w^p result & SM test: Nature 557, 207 (2018)
- Q_w^p cookbook & perspectives: ARNS 69, 191 (2019)
- Layman's description: NPN 29, 15 (2019) -
 - 3-pass A_{inel} in resonance region: PRC 101, 055503 (2020)
- → ¹H BNSSA: PRL 125, 112502 (2020):
- → ¹²C & ²⁷Al BNSSA: to pre-readers next week, → PRC
 - ²⁷Al Longitudinal (A_{PV}^{27Al} , Q_{w}^{27Al} , δR_{np}^{27Al}): partial draft
 - $N \rightarrow \Delta$ Inelastic PV asymmetry (d_{Δ})
 - $N \rightarrow \Delta BNSSA$
 - 27 students/theses, several instrumentation papers

Past

Future

Sensitivity to New Physics Coupling to the Proton

We rule out new PV SL physics below mass scales A, using the coupling strength "g" assumed for that new physics

• Proton: $\theta_h = \tan^{-1}(1/2) = 26.6^{\circ}$

- Then
$$\frac{\Lambda_{\pm}}{g} = v \sqrt{\frac{4\sqrt{5}}{|Q_W^p \pm 1.96\Delta Q_W^p - Q_W^p(SM)|}} = \boxed{7.5 \text{ TeV}}$$
 @ 95% CL,
where $v = (G_F \sqrt{2})^{-1/2}$

For the "extreme" contact interaction corresponding to e-q compositeness (Eichten et al., PRL50, 811 (1983)), $g^2 = 4\pi \rightarrow \Lambda_+ = 26.6 \text{ TeV}$

At the other extreme, the coupling usually assumed for leptoquarks (PDG Live) $g^2 = 4\pi\alpha \rightarrow \Lambda_+ = 2.3 \text{ TeV}$

These are the highest mass reaches <u>in the world</u> for compositeness & LQs to date!

<u>Future</u> Q_W^p <u>Expt's</u>

- P2 @ MESA/Mainz: $\vec{e}p \rightarrow ep A_{ep} \& Q_W^p$
 - Weak vector quark charges, $\Delta sin^2 \theta_w$ to ± 0.00033
 - Λ /g to 13.8 TeV. Installs 2021? arXiv: 1802.04759.
 - $A_{ep} \sim -40 \pm 0.56$ ppb (1.4%) (requires 0.25 ppb (syst)!) Q²=0.0045 GeV². 155 MeV. 60 cm LH2 (3+ kW). 150 μ A.

Flavor (θ_h) independent Mass Reach Λ/g (TeV) and Impact of new Experiments

<u>Qweak Ancillary Results</u>

Systematic studies made to support our primary A_{PV} result on ¹H are interesting in their own right:

- PV ep A_{inel} above the resonance region
 - **3-pass data, J. Dowd thesis,** PRC 101, 055503 (2020)
- Elastic ¹H BNSSA

Inel, QE,

discrete

state, &

alloy

bkg

dilutions

- B. Waidyawansa thesis, PRL 125, 112502 (2020)
- Elastic ¹²C & ²⁷Al BNSSA
 - M.J. McHugh & K. Bartlett theses
 - Inelastic ep \rightarrow e' Δ BNSSA
 - Nuruzzaman thesis
 - Elastic A_{PV}^{27Al} , Q_w^{27Al} , δR_{np}^{27Al}
 - K. Bartlett thesis
 - Inelastic $ep \rightarrow e'\Delta A_{PV}$
 - A. Lee, H. Nuhait, T. AlShayeb theses

QE bkg B_n

Inel bkg B_n

<u>Beam Normal Single Spin Asymmetries</u>

Beam polarization orientation:

- Longitudinal \rightarrow PV asymmetries $A_{PV} \rightarrow Q_w^p$
- Transverse (Vertical or Horizontal)
 - \rightarrow PC asymmetries **B**_n or BNSSA

B_n manifests itself as the amplitude of an azimuthal variation of the asymmetry when beam is polarized transverse to its incident p

- B_n=0 in OPE
- B_n≠0 → TPE (Im(TPE))
- TPE is leading explanation for proton FF puzzle (LT vs PT G_E^p/G_M^p)
- Re(TPE) from e[±]p xsecs
 OR

from Im(TPE) via dispersion relations

 Test predictions of Im(TPE) by comparing to B_n

Pasquini & Vanderhagen: model intermediate hadronic state (VVCS) with electro-absorption amplitudes. Limited to πN states only (bad), but should apply at all angles (good).

Afanasev & Merenkov, and Gorchtein : use the optical theorem to relate the VVCS amplitude to the total photo-absorption σ . Includes all intermediate states (good), but only strictly valid in the forward-angle limit (bad).

<u>Global ¹H BNSSA Data prl 125, 112502 (2020)</u>

Predictions (open squares) at different kinematics from each group are connected by solid (Gorchtein), dashed (Pasquini & Vanderhagen) & dash-dot (Afanasev & Merenkov) lines to guide the eye.

Agreement of predictions with the far-forward angle (θ <10°) data (solid symbols) is better than for the θ >10° data (open symbols).

¹²C & ²⁷AI BNSSA Corrections

- <u>Pro</u>: Qweak's 8 detectors arrayed azimuthally about the beam axis <u>ideal</u> for B_n msrmnts!
 - B_n is the amplitude of the azimuthal asymmetry variation
 - Statistics come in quickly compared to other expt.'s
- <u>**Con</u>**: Q_{weak} apparatus was designed for ¹H: 10% $\Delta p/p!$ </u>
 - If A>1, detectors don't separate elastics from QE, Inelastic eN→e'Δ, discrete excited states, GDR, or other elements in (AI) tgt alloy
 - If A>1, to report an elastic B_n, we have to make corrections for all of these non-elastic processes, which other expt.'s don't have to make
 - Where possible, employ our own data. Where not, use literature & sims!
 - Use <u>conservative uncertainties</u> for these corrections

¹²C & ²⁷Al BNSSA Corrections

- QE & Inel: dilutions from simulations using a generator based on phenomonological fits from Bosted/Mamyan, later scaled to Christy's fits
 - HUGE improvement over Bosted/Mamyan at (our) low Q²!

- QE B_n from our ¹H result ± 10* msrd error (to account for medium effects & n's)

- Inel B_n from our eN \rightarrow e' Δ preliminary result (Nuruzzaman's thesis)
- − Discrete state dilutions from literature \rightarrow sims, $B_n \approx elastic \pm 100\%$
- GDR: dilution from Goldhaber-Teller (NP43, 242 (1963)), B_n ≈ elastic ± 100%
- 8 ²⁷Al alloy dilutions from assay, 10% RMF calc's, & simulation, $B_n \approx \alpha A/ZQ \pm 30\%$, scaled from our ¹H elastic $\alpha = -33$ ppm/GeV with Q=0.157 GeV 12

eak

Beam Normal Single Spin Asymmetry in Δ Resonance

 $= 5.1 \pm 0.4$ (stat) ± 0.1 (sys) ppm €_{reg} Q-weak has measured Beam Measured Asymmetry [ppm] 8 45° . 90° 135° 180° 225° 315° Normal Single Spin Asymmetry 6 Horizontal (B_n) in the N-to- Δ transition on H₂ not corrected for pol. and bkg $B_{n} = \frac{\sigma \uparrow - \sigma \downarrow}{\sigma \uparrow + \sigma \downarrow} = \frac{2 Im(T_{1\gamma} \times T_{2\gamma})}{|T_{1\gamma}|^{2}}$ Vertical After correcting for polarization and -4 -6 backgrounds -8 2 3 6 5 8 4 $B_{\rm n} = 43 \pm 16 \, \rm ppm$ Octant 70 - Q-weak • <*E*> = 1.16 GeV • <θ> = 8.3° 60 **B**.Pasquini • <Q²> = 0.021 GeV² <*W*> = 1.2 GeV 50 [udd] 40 g 30 43 ± 16 Unique tool to study $\gamma^* \Delta \Delta$ form factors Sum $(N+\Delta)$ Q-weak along with world data has 20 potential to constrain models and study 10 charge radius and magnetic moment of Δ N 0<u></u>5 12 6 8 9 10 11 θ_{lab} [degree]

13

PV ep A_{inel} above the resonance region

- Helps validate modeling of the γ Z interference structure functions $F_1^{\gamma Z} \& F_2^{\gamma Z}$, used for determination of the two-boson exchange γ Z box diagram contribution to PV elastic scattering measurements
- A positive PV asymmetry for inclusive π– production was observed, as well as a positive BNSSA for scattered electrons, and a negative BNSSA for inclusive π– production

- Q_{weak} Expt. msrd ep A = -226.5 ± 9.3 ppb @ Q² = 0.0248 GeV²
 - Determined $Q_W(p) = 0.0719 \pm 0.0045$, < 0.2 σ from SM
 - $-\sin^2 \theta_W = 0.2383 \pm 0.0011$ (MS-bar), Avg(APV, E158, Q_{weak}) = 0.23861 \pm 0.00077
 - Mass reach Λ = 26.6 TeV (uud, g²=4 π =compositeness, 95% CL)
 - $\Lambda = 2.3 \text{ TeV}$ (uud, g²=4 $\pi\alpha$ =leptoquarks, 95% CL)
 - $\Lambda/g = 7.5 \text{ TeV}$ (proton, ie uud, 95% CL), $\Lambda/g = 3.6 \text{ TeV}$ (flavor-independent, 95% CL)
- BNSSA:
 - ¹H B_n = -5.19 ± 0.07 (stat) ± 0.08 (syst) ppm (published)
 - Consistent with calculations & other far-forward angle data
 - ¹²C & ²⁷Al elastic results ready for pre-readers
 - − Inelastic ep \rightarrow e' Δ preliminary (thesis) result B_n = 43 ± 16 ppm, paper "soon"
- Elastic A_{PV}^{27Al} , Q_w^{27Al} , δR_{np}^{27Al} paper this summer?
- Inelastic ep \rightarrow e' Δ APV at 3.3 GeV (published) and at 1.1 GeV ("soon")

Thank you!

