Measurement of ³He Elastic Electromagnetic Form Factor Diffractive Minima Using Polarization Observables

On behalf of the E12-06-121 collaboration

Michael Nycz

This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contracts No DE-FG02-94ER4084 and DE-SC0016577

Measurement of ³He Elastic Electromagnetic Form Factor

Diffractive Minima Using Polarization Observables

S. K. Barcus (Spokesperson),* E. McClellan,
D. W. Higinbotham (Spokesperson), B. Sawatzky, and D. Mack Jefferson Lab, Newport News, VA 23606

> S. Li (Spokesperson) University of New Hampshire, Durham, NH 03824

> T. Averett and M. Satnik College of William and Mary, Williamsburg, VA 23185

F. Hauenstein Old Dominion University, Norfolk, VA 23529

S. Širca and M. Mihovilovič University of Ljubljana and Jozef Stefan Institute, 1000 Ljubljana, Slovenia

> T. Kolar Jozef Stefan Institute, 1000 Ljubljana, Slovenia

X. Zheng, M. Chen, and J. Zhang University of Virginia, Charlottesville, VA 22904

 d_2^n Collaboration

³He Elastic Scattering Form Factors

$$\left(\frac{d\sigma}{d\Omega}\right)_{\rm exp} = \left(\frac{d\sigma}{d\Omega}\right)_{\rm Mott} \frac{1}{1+\tau} \left[G_E^2(Q^2) + \frac{\tau}{\epsilon} G_M^2(Q^2)\right]$$

Rosenbluth Separation

$$\left(\frac{d\sigma}{d\Omega}\right)_{\rm red} = \left[\epsilon G_E^2(Q^2) + \tau G_M^2(Q^2)\right]$$

- $G_E \& G_M$ extracted from a linear fit of the cross section with respect to ϵ
 - $G_E^2 = \text{slope}$
 - τG_M^2 = intercept

$$\epsilon \equiv \left(1 + 2(1+\tau)\tan^2\left(\frac{\theta}{2}\right)\right)^{-1}$$
$$\tau \equiv \frac{Q^2}{4M^2}$$

Fit to world data

Electron Scattering Charge Radii from Nuclei

Fourier Transformation of Ideal Charge Distributions.

Example Plots Made By R. Evan McClellan

Slide credit to D. Higinbotham

3

Experimental and Theoretical Comparison

•	Discrepancies in location of minima of the magnetic form factor
•	Rosenbluth separations in diffractive minima are non-trivial
•	Sharp minima from a shallow cross section minima

4

1/28/21

Polarization Measurement

- How to disentangle these differences?
 - Double-polarization measurement
- An independent method to constrain the ³He Form Factor
- First high Q² elastic asymmetry measurement for ³He
- Help to explain the differences between theory and experimental results

Polarized ³He cell

Details of the polarized ³He target can be found in Mingyu Chen's talk

5

Double Polarization Measurement

Polarized electron beam and polarized target

$$A_{phys} = \frac{-2\sqrt{\tau(1+\tau)}\tan\left(\frac{\theta}{2}\right)}{G_E^2 + \frac{\tau}{\epsilon}G_M^2} \left[\sin(\theta^*)\cos(\varphi^*)G_E \ G_M + \sqrt{\tau\left[1 + (1+\tau)\tan^2\left(\frac{\theta}{2}\right)\right]}\cos(\theta^*)G_M^2\right]}$$

$$\begin{split} A_{meas} &= \frac{N^+ - N^-}{N^+ + N^-} \\ A_{meas} &= P_t P_l \ A_{phys} \\ \hline & \underline{Where} \\ \theta^* \& \ \varphi^* \ \text{- polar \& azimuthal angles of polarization vector of target} \\ P_t \& P_l \ \text{- Polarization of target and electron beam} \end{split}$$

Experiment E12-06-121A

- Ran parasitically in Hall C during d_2^n
 - Configured with d_2^n planned 1st pass systematic measurements
- Target cells
 - Polarized ³He cell
 - Reference ³He cell
- Beam energy: 2.18 GeV
- Beam current: 30 μ A (glass cells)
- Detect elastically scattered electrons independently in both HMS and SHMS
- Collected ≈17 hours of data

Measured Kinematic Points

Summary

- Experiment E12-06-121A ran parasitically at the end of the d_2^n experiment during the Fall* 2020 run period
- First high Q² ³He elastic asymmetry points measured
- Analysis status
 - First Pass calibrations already preformed by A_1^n and d_2^n students!
 - Detector Calibrations See Talks by Melanie Rehfuss and Junhao Chen
 - Beginning stages of simulation
- Thank you to the Hall C Scientific and Technical staff as well as shift workers for their support!

Thank You

Backup

Kinematics

Spectrometer	θ [°]	P ₀ [GeV]	Q ² [fm ⁻²]
SHMS	8.5	2.12	2.60
SHMS	13.0	2.12	6.10
HMS	11.7	2.08	4.88
HMS	17.0	2.08	10.25

Particles and Nuclei

Polarized ³He Physical Asymmetry at 2.216 GeV