HCANA/Software Update

- Substantial changes to HCANA in April 2020 Branch
 - New tree variables of the reference time used in each detector.
 - Impossible to determine TRUE ADC/TDC reference time for every event. Rate dependent.
 - Difficulty exacerbated by multiple hits in reference time (for HODO3/4, EL_REAL, EL_CLEAN triggers)
 - Best to put cuts on these variables to skip events with bad reference time and then correct data for fraction of events that were skipped.
 - Modified the way detectors handled the hits with FADC PulseAmpRaw ==0.
 - Previously discarded these hits which meant a rate dependent loss of events
 - Modified THcHodoscope
 - ProcessHits changed so that it finds match between TDC and ADC hits in PMT regardless of the cut on the ADC time-TDC time.
 - Updated algorithm to find Start Time and focal plane time
 - Need to have hit in 3 planes to determine Start Time (previously 1 plane was enough).
 - Should set p(h)tof_tolerance to 3-5ns range.
 - Important to cut events that do not have good start time (hod.goodstarttime==0) which are accidental singles triggers. Coincidence time is not calculated for these events.
- Pushed changes to main "develop" branch on Jan 27, 2021.

Difference in time between successive FADC Reference time pulses in an event

- No pulses are closer than 100ns. 100ns is the width of the pulse integration programmed for FADC
- This allows random HODO 3of4 trigger which do not cause a coincidence trigger (accidental or true) to block the pulse from the HODO 3of 4 which form the coincidence trigger.
- See the same with the HMS FADC reference time, HGCER Cherenkov FADC and other detectors

Difference in time between successive SHMS TDC Reference time pulses in an event

• Trigger Module, DC and Hodo TDC reference minimums are 25ns, 30ns and 30ns

New tree variables of the Reference time used by the detector

- For HGCER and Aerogel P.hgcer.RefTime, P.aero.RefTime
- For each HODO plane, P.hod.1x.AdcRefTime or P.hod.1x.TdcRefTime
- For each DC plane , P.hod.u1.RefTime
- The ADC reference time spectra should be the same for all detectors.
- Can put cut on the hodoscope to skip events with bad reference time.

New tree variables of time difference between good Reference Time pulse and previous for hodoscope

- The good reference time in the coincidence region should only have a random pulse previous to it.
- If time difference is between 170 to 200ns then the previous pulse was actually the El_REAL associated with the random HODO 3of4.
- Can reject events in the 170 to 200ns region.

HCANA changes for other detectors

- Modified the way FADC PulseAmpRaw ==0 events are handled
 - Need to set up Default pedestals for all detectors
 - SHMS HG Cerenkov comparison
- New tree variables of the Reference time used by the detector
 - Can put cut on the reference time to skip events with bad reference time outside the good real + accidental coincidence region
- New tree variables of time difference between good Reference Time pulse and previous pulse (if it exists)
 - Can put cut of time difference to exclude events in which
- Add calculation of the difference between the average difference between raw ADC times and TDC times for paddles with "good" hits at both ends.
 - Corrects for picking different reference time in FADC and TDC due to deadtime (mainly in the caused by FADC 100ns deadtime)
 - Tree variable P(H).hod.adctdcoffset
 - Created hodoscope method GetOffSetTime that can be used by other detectors
 - Set the ADCTDCDiffTime for detectors to HodStartTime AdcPulseTime + Hod.adctdcoffset

Modified the way FADC PulseAmpRaw == 0 events are handled

- The FADC uses the first four samples of the FADC time window to determine the pedestal.
- In a pulse is detected in the first four samples
 - FADC sets the raw pulse amp for all pulses in the window to zero
 - The pedestal is not the true pedestal for later pulses in the window.
- Old Code : Throw out the detector hits when found PulseAmpRaw ==0
- New Code: When PulseAmpRaw ==0
 - Uses an average pedestal value, PedDefault, that is a parameter for each detector PMT.
 - Calculates the PulseInt = PulseIntRaw PedDefault
 - Set PulseAmp=0. Can be used as tag to look for these events.
 - Hodoscope detector is special. It does not use PedDefault. The PulseAmp is used for time walk correction. So when PulseAmpRaw==0, set PulseAmp=200.

SHMS HG Cerenkov comparison

- Normalized histogram of SHMS HGCer Pulse Integral for PMT1 and PMT2.
 - Black histogram is all events.
 - Red histogram is events will PulseAmp=0 and Multiplicity > 1.
 - Interested in events with FADC channel has pulse in the pedestal region and pulse in the good ADC time Starttime region.

Need to set up Default pedestals for all detectors

- Created new subdirectory set_peddefault in hallc_replay/CALIBRATION .
 - The 2d histograms of goodADCPed versus the paddle number are contained in HMS_PedDefault.def and SHMS_PedDefault.def
 - Move files to DEF-files/SHMS/PRODUCTION/SHMS_PedDefault.def and DEF-files/HMS/PRODUCTION/HMS_PedDefault.def
 - Include the files in your tree/histogram def file set in replay script.
 - #include "DEF-files/SHMS/PRODUCTION/SHMS_PedDefault.def"
 - #include "DEF-files/HMS/PRODUCTION/HMS_PedDefault.def"
 - Replay the data
 - Start root in set_peddefault
 - a) .L run_ped_default.C
 - b) run_shms_ped_default("entirepath/DirName/filename.root")
 - c) run_hms_ped_default("entirepath/DirName/filename.root")
 - The SHMS does HGCER, NGCER, AERO, Preshower and Shower
 - The HMS does CER and CAL.
 - By hand copy each set of Pedestal defaults into the detector "cuts" file
 - For example: phgcer_PedDefault= 2086, 2153, 2320, 1987

Updates to HCANA for Hodoscope

- 1. Added additional THcHodoHit::SetCorrectedTimes method for hits with just one PMT
- 2. ScintillatorPlane::ProcessHits
 - Save the TDC and ADC good reference time used for each plane.
 - **Tree variable:** P(H).hod.*pl*.PosTdcRefTime , NegTdcRefTime, PosAdcRefTime , NegAdcRefTime
 - Save the TDC and ADC difference between good reference time and time of previous pusle used for each plane.
 - **Tree variable:** P(H).hod.*pl*.PosTdcRefDiffTime , NegTdcRefDiffTime , PosAdcRefDiffTime , NegAdcRefDiffTime
 - Changed matching of ADC hit to TDC hit.
 - If ADC Raw AMP = 0, test that hit instead of skipping it.
- 3. Updated algorithm to find Start Time and focal plane time
- 4. Add calculation of the difference between the average difference between raw ADC times and TDC times for paddles with "good" hits at both ends.
 - Tree variable P(H).hod.adctdcoffset
 - Created hodoscope method GetOffSetTime that can be used by other detectors

ScintillatorPlane::ProcessHits Changed method of matching of ADC to TDC hits

ScintillatorPlane::ProcessHits

- Selects first TDC PMT hit within the TDC_min and TDC_max windows.
- Old code
 - If Raw ADC Amp = 0 , then do not use hit.
 - First ADC hit within ADCTDC_min < TDC_time ADC_time < ADCTDC_max
 - If no ADC hit is found then PMT hit is not "good". Need both ADC and TDC info for "good" PMT hit.
- New Code
 - If Raw ADC amp = 0, then use hit and test ADC hit setting ADC Amp =200.
 - Adc Amp=200 sets the timewalk correction to zero.
 - First ADC hit within ADCTDC_min < TDC_time ADC_time < ADCTDC_max with largest ADC value
 - If none found then selects one with smallest TDC_time ADC_time .
 - So if there is an ADC hit for paddle PMT, then it will set "good" PMT hit if there is TDC PMT hit.

New code ensures that if there is a TDC hit within the selection window and any ADC hit for the paddle PMT , then it will find a "good" hit.

Reminder about the Start Time and focal plane time

- Start Time determined only using Hodoscope.
 - Accounts for the fluctuations in trigger time due different paddles hit, where it hits in paddle, cable lengths etc.
 - Only uses paddles with both ends hit.
- Focal Plane Time is the same as Start Time but uses track information to determine TOF correction.
 - Includes paddles with only end hit.
 - Used in the coincidence time calculation.

Updated algorithm to find Start Time and focal plane time

- Loops through hits (Note if no hits found after Decode then Start Time = -1000)
 - When hit HasCorrectedTime = kTRUE then fill histogram with hit times PosTofTime and NegTofTime over 0-200ns
- Need to determine the peak time =TPEAK with maximum number of hits.
 - Old code would just determine the peak time from the 0.5ns time bin with the maximum number of hits.
 - New method DetermineTimePeak which scans the histogram and gets running sum in 5ns bin.
 - If the bin has > 3 hits, then peak found. Can find multiple peaks in histogram.
 - If more than one peak chooses one closest to the fStartTimecenter which is a parameter that can be set.
- Again loop through hits in each plane
 - If HasCorrectedTime = kTRUE and PosTofTime and NegTofTime are within TPEAK +/- tof_tolerance
 - Adds the times to the TimeSum and NTimeSum++
 - If plane has good hit, NumPlanes++
- Set the Start Time = fStartTimecenter (fStartTimecenter is parameter p(h)
 - Old code: If NTimeSum>0 then Start Time = TimeSum/NTimeSum
 - New Code : If NumPlanes >= 3 then Start Time = TimeSum/NTimeSum
- With new code will have more failures where Start Time = fStartTimecenter
- > But is better at ignoring the accidental singles triggers at high rates.
- For focal plane time if NumPlanes < 3</p>
 - If GoodStartTime then fptime=fStartTime otherwise -2000;
 - In THcCoinTime do not calculate CoinTime if fptime=-2000;

Compare Starttime Hits for "good" to "bad" Starttime

- If HCANA does not find a StartTime, then it sets P.hod.goodstarttime==0 and P.hod.starttime=p_start_time_center
- Look at coincidence run 5371, Hodo 3of4 rate about 600kHz.
- When HCANA finds a "good" starttime then Starttime_hits peaks at 8
- When HCANA does not "good" starttime, then Starttime_hits peaks at 4
 - Typically particle passes through two planes (so they are close in time giving a peak of 4 hits)
 - HODO 3of4 trigger formed because of random coincidence with 3rd plane which is out of time by more than 5ns.

Compare Starttime Sigma for "good" to "bad" Starttime

- If HCANA does not find a StartTime, then it sets P.hod.goodstarttime==0 and P.hod.starttime=p_start_time_center
- Look at coincidence run 5371, Hodo 3of4 rate about 600kHz.
- When HCANA finds a "good" starttime then Starttime_sigma has large peak at 0.2ns
- When HCANA does not "good" starttime, then Starttime_sigma has a relatively smaller peak at 0.2ns
 - Wider spread in sigma

Compare Starttime Peak for "good" to "bad" Starttime

- If HCANA does not find a StartTime, then it sets P.hod.goodstarttime==0 and P.hod.starttime=p_start_time_center
- Look at coincidence run 5371, Hodo 3of4 rate about 600kHz.
- Hodo 3of4 trigger has usually S1X set the timing with peak at around 54ns
 - When S2Y sets the timing, then peak is at about 38ns
 - When S2X sets the timing, then peak is at about 64ns
- The "bad" starttime shows more random HODO 3of4

Conclusion

- Trigger change:
 - STOF has been eliminated from EL_REAL trigger, so only the HODO ¾ in the trigger. Now only HODO ¾ in the reference signal.
 - Eliminates problem of random EL_REAL pulse in reference time blocking the TRUE HODO ¾ pulse in reference time.
- FADC250 firmware change:
 - When pulse found during first 4 time bins, now it calculates the PulseAmp for second pulse in time window.
- Need to look at rate dependence and effect of cut on reference time.
 - New tree variables so that cuts can be placed on the reference time and reference time difference between consecutive pulses.
 - Eliminate bad reference times.
- Cannot eliminate the 100ns FADC deadtime.
 - Large area detectors like the Cherenkov, need to account for this deadtime.