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Al for Design

Guo, Kai, et al. Materials Horizons 8.4 (2021

Table 1 Popular ML methods in design of mechanical materials

:1163-1172.

ML method Characteristics

Example applications in mechanical materials design

Linear regression;

Model the linear or polynomial relationship
polynomial regression i

between input and output variables

Support vector machine; Separate high-dimensional data space with
SVR one or a set of hyperplanes

Random forest Construct multiple decision trees for

classification or prediction

Feedforward neural
network (FFNN); MLP

Connect nodes (neurons) with information
flowing in one direction

Capture features at different hierarchical
levels by calculating convolutions; operate
on pixel-based or voxel-based data

Recurrent neural network
(RNN); LSTM; GRU

Connect nodes (neurons) forming a directed
graph with history information stored in
hidden states; operate on sequential data

Generative adversarial
networks (GANs)

Train two opponent neural networks to
generate and discriminate separately until
the two networks reach equilibrium;
generate new data according to the
distribution of training set

Gaussian process
regression (GPR);
Bayesian learning

Treat parameters as random variables and
calculate the probability distribution of
these variables; quantify the uncertainty of
model predictions

Active learning Interacts with a user on the fly for labeling
new data; augment training data with
post-hoc experiments or simulations

Genetic or evolutionary
algorithms

Mimic evolutionary rules for optimizing
objective function

Reinforcement learning Maximize cumulative awards with agents
reacting to the environments.

Graph neural networks Operate on non-Euclidean data structures;
(GNNs) applicable tasks include link prediction,
node i ion and graph ication

Modulus'*? or strength'** prediction

Strength'?* or hardness'?* prediction; structural topology
optimization'**

Modulus™* or toughness**® prediction

Prediction of modulus,”’!!? strength,** toughness'* or i
hardness;” prediction of hyperelastic o plastic behaviors"*>*4*
identification of collision load conditions; "’ design of spinodoid
metamaterials'®*

05 o
104,10 102,103 o

Prediction of strain fields' or elastic properties’
high-contrast composites, modulus of unidirectional
composites,'** stress fields in cantilevered structures,'* or yield
strength of additive-manufactured metals;'*' prediction of
fatigue crack propagation in polycrystalline alloys;'*® prediction
of crystal plasticity; *° design of tessellate composites;'*” "
design of stretchable graphene kirigami;'**
structural topology optimization'*®***

Prediction of fracture patterns in crystalline solids;'**
of plastic behaviors in

prediction

144

modeling of porous media'”

Prediction of modulus distribution by solving inverse
elasticity problems;*** prediction of strain or stress fields in
composites;'*? composite design;'®* structural topology

D afio 165167 s jals design®s®

Modulus** or strength'*'** prediction; design of
supercompressible and recoverable metamaterials''®

Strength prediction***

Hardness Prediction;”" designs of active

materials; ®*! design of modular metamaterials’®*

Deriving microstructure-based traction-... on laws'”*

Functional space

Desired properties (redox
potential, solubility, toxicity)

simulation (Schrodinger

Chemical space

(Drug-like, photovoltaics,
polymers, dyes)

Z. Zhou et al., Scientific Reports, vol. 9, n

Direct

Experiment or

equation)

Relatively new but active area of research

Inverse

High-throughput virtual
screening (e.g., with 3
filtering stages)

Many applications in, e.g., industrial material, molecular and drug design.

1, pp. 1-10, 2019

Inverse

Optimization
evolutionary strategies
generative models (VAE

GAN,RL)

Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts
from desired properties and ends in chemical space, unlike the direct approach that leads from

chemical space to the properties.

B. Sanchez-Lengeling, A. Aspuru-Guzik. Science 361.6400 (2018

Usage of ML/DL typically
(design points)...




IAI for Experimental Design in NP/HEP

[1] Bellman, Richard. Dynamic programming. Vol. 295. RAND CORP SANTA MONICA CA, 1956.
[2] CF et al. JINST 15.05 (2020): P05009.

[3] Wolpert, D.H., Macready, W.G., 1997. Trans. Evol. Comp 1, 67-82

e Detector design needs advanced simulations which are computationally expensive (Geant). Deal with
non-differentiable terms, noisy functions. We want to reduce computing budget.

e In general the full detector design is studied once the subsystem prototypes are ready (phase constraints from
the full detector or outer layers are taken into consideration). This is what is typically done without Al.

e When it comes to designing detectors with Al this is an area at its “infancy”.

e Complex detector designs typically entail:
o Many parameters (and multiple objective functions): curse of dimensionality [1].
o Incorporating a complex body of instructions [2].

o Some degree of customization: the choice of a suitable algorithm is a challenge itself (no free lunch
theorem [3]).

Al offers SOTA solutions to solve complex optimization problems in an efficient way.

Opportunity for new experiments in their design and R&D phase



EIeCtron- I On COI I Id e r A machine for delving deeper than ever

arXiv.1212.1701, arXiv:2103.05419 ' Saaaa e before into the building blocks of matter

Will be built at Brookhaven National Laboratory in ~2030.
Use existing infrastructure of RHIC.

o Physics Goals (findings from NAS Committee):
o How does the mass of the nucleon arise?

o How does the spin of the nucleon arise?
o What are the emergent properties of dense systems of gluons?
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https://www.bnl.gov/ec/
https://arxiv.org/abs/1212.1701
https://arxiv.org/abs/1212.1701
https://arxiv.org/abs/2103.05419

I Overview of an example EIC Central Detector
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Tracking Particle Id
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I In what follows: 15 example
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I In what follows: 2"¥ example

Tracking Particle Id

2021 JLUO Annual Meeting, June 22" 2021




Detector
optimization
workflow

customization

Design parameters

|

Detector
Simulation

compute intensive (Geant4)



| Why Design with Al?

Optimization does not mean necessarily “fine-tuning”

We want to use these algorithms to:

(1) steer the design and suggest
parameters that a “manual” optimization
will likely miss to identify;

(2) further optimize

Al allows to capture hidden correlations
among the design parameters.

All “steps” (physics, detector) involved in
the Al optimization, strong interplay
between working groups

Al promotes interaction among Working Groups

Detector
optimization
workflow

Detector
Simulation




I Bayesian Optimization

BO is a sequential strategy
developed for global
optimization.

After gathering evaluations
we builds a posterior
distribution used to
construct an acquisition
function.

This cheap function
determines what is next

query point.

Posterior

Acquisition function

t(n) t(n+1)

New
observation

Posterior

w_/—\_e

Next
point

Acquisition function

1. Select a Sample by Optimizing the Acquisition Function.
2. Evaluate the Sample With the Objective Function.

3. Update the Data and, in turn, the Surrogate Function.

4. Go To 1.

http://krasserm.qgithub.io/2018/03/21/bayesian-optimization/
http://krasserm.qithub.io/2018/03/19/gaussian-processes/



http://krasserm.github.io/2018/03/21/bayesian-optimization/
http://krasserm.github.io/2018/03/19/gaussian-processes/
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| Dual RICH Example

E. Cisbani, A. Del Dotto, CF*, M. Williams et al.
JINST 15.05 (2020): P0O5009.

Al-optimized detector design for the future Electron-lon Collider:
the dual-radiator RICH case.
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aerogel

Continuous momentum coverage.
Simple geometry and optics, cost effective.
Legacy design from INFN, see EICUG2017

e 6 Identical open sectors (petals)

e  Optical sensor elements:

8500 cm?/sector, 3 mm pixel

e Large focusing mirror

aerogel (4 cm, n(400 nm): 1.02)
+ 3 mm acrylic filter
+gas (1.6 m, n(C,F,): 1.0008)

PhotoSensor

. K
Aerogel + Filter,

charged
particle

~160cm

Sector Side View

‘ L Gasvolume

1

"\ PhotoSensor

—_ Aerogel + Filter !



https://agenda.infn.it/event/13037/contributions/17199/attachments/12476/14030/deldotto_EICUG2017.pdf

I Construction Constraints

The idea is that we have a bunch of parameters to optimize that characterize the detector design.
We know from previous studies their ranges and the construction tolerances.

Variations below these
values are irrelevant

I parameter | description ~_range [units] ) tolerance [units]
R mirror radius [290,300] [cm] 100 [pm]
pos r radial position of mirror center [125,140] [cm] 100 [pm]

pos 1 longitudinal position of mirror center | [-305,-295] [cm] 100 [pm]

tiles x shift along x of tiles center [-5,5] [cm] 100 [um]
tiles y shift along y of tiles center [-5,5] [cm] 100 [pm]
tiles z shift along z of tiles center [-105,-95] [cm] 100 [pm]
Naerogel aerogel refractive index [1.015,1.030] 0.2%
tacrogel aerogel thickness [3.0,6.0] [cm] 1 [mm]

Ranges depend mainly on mechanical constraints and optics requirements.
These requirements can change in the next future based on inputs from prototyping.



The MOdeI and . Model built from observations

black points: observations
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Al-Optimized dRICH

E. Cisbani, A. Del Dotto, CF*, M. Williams et al.
JINST 15.05 (2020): P05009.

charged
particle

3D Downstream View . . 3D Upstream view
Spherical Mirror

~ 160cm
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gas (optimal)
aerogel (legacy)
+ gas (legacy)

aerogel (optimal) ||

momentum [GeV/c]

Statistically significant Improvement in both parts.

In particular in the gas region where the 50 threshold shifted
from 43 to 50 GeV/c and the 30 one extended up to

Notice that before this study we did not know “how well” the
legacy design was performing.




I Comparison with Random Search

Each call:
400 tracks generated/core
20 cores

[
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1 design point ~ 10 mins/CPU
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e BO with GP scales cubically with number of observations.

e Bayesian optimization methods are more promising because they offer principled approaches to weighting the
importance of each dimension.

e For this 8D problem - even with 50 cores, RS looks unfeasible due to the curse of dimensionality.

o Recall that the probability of finding the target with RS is 1-(1-v/V)T, where T is trials, v/V is the volume of
target relative to the unit hypercube

Bergstra, Bengio, “Random search for hyper-parameter optimization”, J. Mach. Learn. Res.13 (Feb) (2012) 281-305.



I ECCE Tracker Example

uRWELL

ETTL (2 layers) mRICH

FTTL (2 layers)

snapshot of few months ago
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I ECCE Inner Tracker

[arXiv:2102.08337]

Fine grained

implementation

dRICH
FTTL (2 layers)

:

|

Geometric parameters have significant impact in the performance of the
tracker

Effective parameterization of the detector design can reduce dimensionality
Encode different geometric and structural constraints

o ITS3 constrained (fixed strip length)

o Mechanical constraints due to support structures

The performance can be characterised by multiple figures of merit, a.k.a.
“objectives” (e.g., resolution, reconstruction efficiency for the tracks). Analyses
with.3.and.4 objectives...

ﬁ
=LA B
| "

Support Structures

18


https://alice-collaboration.web.cern.ch/menu_proj_items/ITS-3
https://indico.cern.ch/event/1071914/attachments/2316015/3942587/2021-09-24_DetectorSeminar-ITS3.pdf
https://arxiv.org/abs/2102.08337

[] [ ] [ ] [] [ ] [ ] _.
- f g I
IMuItl Objective Optimization TR
n P
. . . . @ .[‘ (et
e The problem becomes challenging when the objectives are of conflict to each other, ). 115, | _—
that is, the optimal solution of an objective function is different from that of the p &
other. L.
e In solving such problems, with or without constraints, they give rise to a trade-off
optimal solutions, popularly known as Pareto-optimal solutions.

e Due to the multiplicity in solutions, these problems were proposed to be solved suitably using
evolutionary algorithms which use a population approach in its search procedure.

e MO-based solutions are helping to reveal important hidden knowledge about a problem — a matter
which is difficult to achieve otherwise.

The ECCE Inner Tracker Design Optimization considers simultaneously:

) max=1
momentum resolution oo
angular resolution 8 resolution
Kalman filter efficiency v

(pointing resolution)
Mechanical constraints max=0.04

Ratio = New / Baseline



https://en.wikipedia.org/wiki/Vilfredo_Pareto

I Frameworks

Notice that MOO with dynamic/evolutionary
algorithms (see, e.g., [1-3]) are probably the most
utilized approaches, followed by more recent
developments on multi-objective bayesian
optimization (see, e.g., [4-7]). Using them has the
advantage of having an entire community
developing those tools.

https://github.com/topics/multi-objective-optimization —>

Agent-based approaches to MOO are also possible
(see, e.g., [8]), but won't be discussed here.

Remarkably these approaches can accommodate
mechanical and geometrical constraints during the
optimization process.

[1] J. J. Durillo and A. J. Nebro, “iMetal: A Java framework for multi-objective optimization,”
Advances in Engineering Software, vol. 42, no. 10, pp. 760-771, 2011.

[2] F.-A. Fortin, F.-M. De Rainville, M.-A. G. Gardner, M. Parizeau, and C. Gagné, “DEAP:
Evolutionary algorithms made easy,” The Journal of Machine Learning Research, vol. 13, no.
1, pp. 2171-2175, 2012.

[3] J. Blank and K. Deb, “pymoo: Multi-objective Optimization in Python,” IEEE Access, vol. 8,
pp. 89497-89509, 2020

[4] M. Laumanns and J. Ocenasek, “Bayesian optimization algorithms for multi-objective
optimization,” in International Conference on Parallel Problem Solving from Nature, pp.
298-307, Springer, 2002.

[5] M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A. G. Wilson, and E.
Bakshy, “Botorch: Programmable bayesian optimization in pytorch,” arXiv preprint
arXiv:1910.06403, 2019.

[6] P. P. Galuzio, E. H. de Vasconcelos Segundo, L. dos Santos Coelho, and V. C. Mariani,
“MOBOpt—multi-objective Bayesian optimization,” SoftwareX, vol. 12, p. 100520, 2020.

[7]1A. Mathern, O. S. Steinholtz, A. Sjéberg, M. Onnheim, K. Ek, R. Rempling, E. Gustavsson,
and M. Jirstrand, “Multi-objective constrained Bayesian optimization for structural design,”
Structural and Multidisciplinary Optimization, pp. 1-13, 2020.

[8] R. Yang, X. Sun, and K. Narasimhan, “A generalized algorithm for multi-objective
reinforcement learning and policy adaptation,” in Advances in Neural Information Processing
Systems, pp. 14636-14647, 2019

Pymoo




Elitist Non-Dominated Non-dominated  Crowding

sorting distance

Sorting Genetic SSEEing

Population

@(t+1)

-« Rejected

[1] Deb, K., et al. "A fast and elitist multiobjective
genetic algorithm" IEEE transactions on
evolutionary computation 6.2 (2002): 182-197.

This is one of the most popular approach

(>35k citations on google scholar), characterized by: f The crowding distance d, of point
" . . 2 [ ) iis a measure of the objective
e Use of an elitist principle _ space around i which is not
e  Explicit diversity preserving mechanism i+1 cocuptedbyany °I2§rpi‘:!ﬂf;‘i!2,'n“.
e Emphasis in non-dominated solutions 14 1
| | I
| ) "
The population R, is classified in non-dominated fronts. :_ -‘ i1
Not all fronts can be accommodated in the N slots of available in thenew |~~~ 777 - °
population P, .. We use crowding distance to keep those points in the last
front that contribute to the highest diversity. f



I Under the hood...

1) Start with the definitions:

_ Pr('('() -
Ptrue

- Gre('o - @Irue

Fine-grained
analysis in
phase-space

2) Extract resolutions in bins of the phase-space (P,n).
Do this for baseline and for each new design.
For each bin we can calculate ratios.

3) We use global weighted quantities for the objectives
representing the resolutions. Weights are obtained
propagating uncertainties from the fits.

from fits

N .
Z (Z/) Wp.np R(f )p,l])
Ratio wrt Z/; “'[7.17
reference

WA momentum resolution
WA angular resolution

4) We directly calculate the global KF inefficiency as:

N(bad tracks)

R(KF) = ———MMM ——
(KF) N(tot. tracks)

W2 Kalman filter (in)efficiency

22



Software Stack Simulation Time

The Wrapper

o e B e e L
. 1000 events . 2000 events

. 3000 events 4000 events

Initialise Design Population Simulating
(Can “modify” genes in population)

y
Al-assisted design

80000 in

total for each B
evaluation,

1 evaluation

takes -
<=80 mins : J
i " ™

1 . 13
100 20 300

Time in seconds

5000 events

The Paralleliser / Scheduler
2 Level Parallelisation

Q Evaluate Design Points
Parallelise the Evaluations

}

Multi-objective
Optimization

GA + sorting Time

Population 300 &,
W,

2-level parallelization .
[Launch multiple design points in i R _— §  Verified scaling ~ MN? and
parallel; each point is parallelized] cpuaton 160 puaton 000 R COM R e BRI

With 11 variables and 3 objectives " I

~10k CPUhours

Used a test problem DTLZ1




IOptlmaI Design Solutions I —

This is (already) an unprecedented Convergence for New Optimisation
attempt in detector design for

complexity!

° = 11 parameters

° 3 (4) objectives E . Sonton ®
° 2 5 mechanical constraints 2 snapshot any time

° Population size 100 during evaluation

° Offspring distr. over =2 30 cores

° 80000 tracks / design point

° ~1h / design point *** Function Evaluations

dP/P Resolution dO Resolution

PWG requirement

nfig 4 + FST Disk h <1

lution Config 4 + FST Disk fn <1

KF inefficiency

Summary of KF Inefficiency of (Optimal/Baseline -1) Design
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I Validation and decision making

d¢ Resolution

—E— Baseline Config 4 + FST Disks; 25 < <3.5

—IT— Optimal Solution Config 4 + FST Disks; 2.5 < 1 < 3.5

T ’ ) . ~
T Baseline Config 4 + FST Disks; <1 —} Baseline Config 4 + FST Disks; 1< <25

sl sl
——$—— Optimal Solution Config 4 + FST Disks; <1 ——$—— Optimal Solution Config 4.+ FST Disks; 1< 1 <25
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Validation is done by looking at
other figures of merit characterizing
the detector performance that have

not been directly used in the
optimization process

dg [mr%d]

—
el
<
=]
=
=
<
o

9
8
7
6
5
4
3
2
1
0

o
)

y (€)

_ = e e =

The decision making process done
after optimization.

For each design solution in the
Pareto Front one can study the
corresponding detector
performance.
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Different Technologies/Multiple Pipelines

Pareto solutions for 1

E.g. Inner Tracker Barrel (+ disks in the h-endcap and e-endcap)
° Configuration 1: 2-vtx (ITS3) + 2-sagitta (ITS2) + 2-outer layer (ITS2)
° Configuration 2: 2-vtx (ITS3) + 2-sagitta (ITS3) + 2-outer layer (ITS2)
° Configuration 3: 2-vix (ITS3) + 2-sagitta (ITS2) + 2-outer layer (uURwell)

° Configuration 4: 2-vtx (ITS3) + 2-sagitta (ITS3) + 2-outer layer (uURwell)

updated configurations with any
additional requirements

New optimization pipelines




Software Stack

The team: V. Berdnikov, J. Crafts, E. Cisbani, CF, T. Horn, R. Trotta

Aerogels with low refractive indices are very fragile tiles break during
production and handling, and their installation in detectors.

To improve the mechanical strength of aerogels, Scintilex developed a
reinforcement strategy. The general concept consists of introducing fibers
into the aerogel that increase mechanical strength, but do not affect the
optical properties of the aerogel.

Paper in preparation.

=

~resolution
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I ...with large datasets

Al

gathers observations and
suggests new points

. Py ¢ ; .
] N { Design parameters i: :I )
¢

Injection of IS )
JPh sics Detector High-level
y Simulation reconstruction of
Events

events



[1] Liu, Xin, et al. IEEE Trans Parallel Distrib Syst 32.4 (2020): 975-987.

S u I I I I ' la r [2] R. Stevens, et al. Al for Science. No. ANL-20/17. ANL, IL (US), 2020
June 2021

e EIC can be one of the first experiments to systematically leverage on Al during the
R&D and Design phase.

e ECCE created an Al WG to lead these efforts with an unprecedented attempt in
detector design (multidimensional design and multiple objectives).

e None ever accomplished a multi-dimensional / multi-objective optimization of many

sub-detectors combined together within the global design.
o  costs can be included provided reliable parametrization
o  speed-up bottlenecks (sim/reco steps)

e Larger populations of design points can improve accuracy of the Pareto front.
A recent trend in MOO is distributed optimizations and implementation on
supercomputers [1].

e Al can assist the development of a detector during the design phase. This can be
extended to other instrumentation designs in the industry (e.g., medical imaging)

One of the conclusions from the DOE Town Halls on Al for Science on 2019 [2] was that
“Al techniques that can optimize the design of complex, large-scale experiments have the
potential to revolutionize the way experimental nuclear physics is currently done”.






