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AI for Design Relatively new but active area of research. 

Many applications in, e.g., industrial material, molecular and drug design.

B. Sanchez-Lengeling, A. Aspuru-Guzik. Science 361.6400 (2018): 360-365.

Guo, Kai, et al. Materials Horizons 8.4 (2021): 1153-1172. Z. Zhou et al., Scientific Reports, vol. 9, no. 1, pp. 1–10, 2019

Usage of ML/DL typically requires large datasets 
(design points)…



AI for Experimental Design in NP/HEP 
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● Detector design needs advanced simulations which are computationally expensive (Geant). Deal with 
non-differentiable terms, noisy functions. We want to reduce computing budget. 

● In general the full detector design is studied once the subsystem prototypes are ready (phase constraints from 
the full detector or outer layers are taken into consideration). This is what is typically done without AI.

● When it comes to designing detectors with AI this is an area at its “infancy”. 

● Complex detector designs typically entail:

○ Many parameters (and multiple objective functions): curse of dimensionality [1].

○ Incorporating a complex body of instructions [2]. 

○ Some degree of customization: the choice of a suitable algorithm is a challenge itself (no free lunch 
theorem [3]). 

AI offers SOTA solutions to solve complex optimization problems in an efficient way. 

Opportunity for new experiments in their design and R&D phase   

[1] Bellman, Richard. Dynamic programming. Vol. 295. RAND CORP SANTA MONICA CA, 1956.
[2] CF et al. JINST 15.05 (2020): P05009. 

[3] Wolpert, D.H., Macready, W.G., 1997. Trans. Evol. Comp 1, 67–82



Electron-Ion Collider 

● Physics Goals (findings from NAS Committee):  
○ How does the mass of the nucleon arise? 
○ How does the spin of the nucleon arise? 
○ What are the emergent properties of dense systems of gluons?  

● The Machine will be capable to perform
○ High luminosity measurements (1033 cm-2 s-1  - 1034 cm-2 s-1 )
○ Flexible center-of-mass energy range. √s = √4EeEp
○ Deliver highly polarised electron and proton/ light ion beams
○ Almost 4𝞹 hermetic detector

● Worldwide interest in the EIC

● Three proto-collaborations (ATHENA, CORE, ECCE) working for the detector 
proposal 
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Will be built at Brookhaven National Laboratory in ~2030. 
Use existing infrastructure of RHIC.

arXiv:1212.1701, arXiv:2103.05419 
 A machine ÿor delvinĀ deeper than ever 
beÿore into the buildinĀ blocks oÿ matter
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https://www.bnl.gov/ec/
https://arxiv.org/abs/1212.1701
https://arxiv.org/abs/1212.1701
https://arxiv.org/abs/2103.05419
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Overview of an example EIC Central Detector

Magnet coil

2021 JLUO Annual Meeting, June 22nd 2021

Electron Endcap Hadron Endcap

Barrel
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In what follows: 1st example 

2021 JLUO Annual Meeting, June 22nd 2021

dual-RICH



72021 JLUO Annual Meeting, June 22nd 2021

Inner Tracker

In what follows: 2nd example 



Detector 
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compute intensive (Geant4)

customization



Why Design with AI? 

● We want to use these algorithms to:

 (1) steer the design and suggest 
parameters that a “manual” optimization 
will likely miss to identify; 

(2) further optimize 

● AI allows to capture hidden correlations 
among the design parameters.

● All “steps” (physics, detector) involved in 
the AI optimization, strong interplay 
between working groups  

AI promotes interaction among Working Groups

DWG’s:
● Technology Selection 
● Baseline Design 
● Alternate Configuration(s)

PWG’s:
● Physics Signal Selection 
● Physics Performance 

Evaluation

CWG’s:
● Simulation Support 
● AI Optimization 
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Optimization does not mean necessarily “fine-tuning”



Bayesian Optimization
● BO is a sequential strategy 

developed for global 
optimization.

● After gathering evaluations 
we builds a posterior 
distribution used to 
construct an acquisition 
function.
 

● This cheap function 
determines what is next 
query point.

1. Select a Sample by Optimizing the Acquisition Function.
2. Evaluate the Sample With the Objective Function.
3. Update the Data and, in turn, the Surrogate Function.
4. Go To 1.

t(n) t(n+1)

http://krasserm.github.io/2018/03/21/bayesian-optimization/
http://krasserm.github.io/2018/03/19/gaussian-processes/
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http://krasserm.github.io/2018/03/21/bayesian-optimization/
http://krasserm.github.io/2018/03/19/gaussian-processes/
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Dual RICH Example

● 6 Identical open sectors (petals)
● Optical sensor elements: 

8500 cm2/sector, 3 mm pixel
● Large focusing mirror 

● Continuous momentum coverage. 
● Simple geometry and optics, cost effective.
● Legacy design from INFN, see EICUG2017 

aerogel (4 cm, n(400 nm): 1.02) 
+ 3 mm acrylic filter 
+ gas (1.6 m, n(C2F6): 1.0008)

E. Cisbani, A. Del Dotto, CF*, M. Williams et al.  
JINST 15.05 (2020): P05009. 

AI-optimized detector design for the future Electron-Ion Collider: 
the dual-radiator RICH case.

https://agenda.infn.it/event/13037/contributions/17199/attachments/12476/14030/deldotto_EICUG2017.pdf
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Construction Constraints   

3σ

(2σ bands)

Ranges depend mainly on mechanical constraints and optics requirements.
These requirements can change in the next future based on inputs from prototyping.
 

The idea is that we have a bunch of parameters to optimize that characterize the detector design. 
We know from previous studies their ranges and the construction tolerances. 
 Variations below these 

values are irrelevant
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The Model and
the Optimized FoM

Model built from observations
black points: observations

           optimal design



EARLY STOPPING

AI-Optimized dRICH

curves shown as 68% CL bands 

E. Cisbani, A. Del Dotto, CF*, M. Williams et al.  
JINST 15.05 (2020): P05009.

● Statistically significant Improvement in both parts.
● In particular in the gas region where the 5σ threshold shifted 

from 43 to 50 GeV/c and the 3σ one extended up to 
● Notice that before this study we did not know “how well” the 

legacy design was performing.
aerogel (4 cm, n(400 nm): 1.02) 
+ 3 mm acrylic filter 
+ gas (1.6 m, n(C2F6): 1.0008) 15
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EARLY STOPPING

Comparison with Random Search

● BO with GP scales cubically with number of observations. 

● Bayesian optimization methods are more promising because they offer principled approaches to weighting the 
importance of each dimension. 

● For this 8D problem - even with 50 cores, RS looks unfeasible due to the curse of dimensionality. 

○ Recall that the probability of finding the target with RS is 1-(1-v/V)T, where T is trials, v/V is the volume of 
target relative to the unit hypercube 
        Bergstra, Bengio, “Random search for hyper-parameter optimization”, J. Mach. Learn. Res.13 (Feb) (2012) 281–305.

Each call:
400 tracks generated/core  
20 cores  

1 design point ~ 10 mins/CPU

Budget: 100 calls



uRWELL FSTITS3

EGEM uRWELL

dRICH

FTTL (2 layers)

DIRC

ETTL (2 layers)

FGEM

CTTL

mRICH
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snapshot of few months ago

ECCE Tracker Example



● Geometric parameters have significant impact in the performance of the 
tracker

● Effective parameterization of the detector design can reduce dimensionality 

● Encode different geometric and structural constraints 

○ ITS3 constrained (fixed strip length) 

○ Mechanical constraints due to support structures

● The performance can be characterised by multiple figures of merit, a.k.a. 
“objectives” (e.g., resolution, reconstruction efficiency for the tracks). Analyses 
with 3 and 4 objectives…

ECCE Inner Tracker 

ALICE Si Vertex tracker

Fine grained 
implementation

Support Structures

[arXiv:2102.08337]
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https://alice-collaboration.web.cern.ch/menu_proj_items/ITS-3
https://indico.cern.ch/event/1071914/attachments/2316015/3942587/2021-09-24_DetectorSeminar-ITS3.pdf
https://arxiv.org/abs/2102.08337


Multi-Objective Optimization
● The problem becomes challenging when the objectives are of conflict to each other, 

that is, the optimal solution of an objective function is different from that of the 
other. 

● In solving such problems, with or without constraints, they give rise to a trade-off 
optimal solutions, popularly known as Pareto-optimal solutions.  

● Due to the multiplicity in solutions, these problems were proposed to be solved suitably using 
evolutionary algorithms which use a population approach in its search procedure.

● MO-based solutions are helping to reveal important hidden knowledge about a problem – a matter 
which is difficult to achieve otherwise. 

ÿ2

ÿ1
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V. Pareto
 1848-1923

The ECCE Inner Tracker Design Optimization considers simultaneously:

● momentum resolution 
● angular resolution
● Kalman filter efficiency
● (pointing resolution)  
● Mechanical constraints

https://en.wikipedia.org/wiki/Vilfredo_Pareto


Frameworks 
● Notice that MOO with dynamic/evolutionary 

algorithms (see, e.g., [1-3]) are probably the most 
utilized approaches, followed by more recent 
developments on multi-objective bayesian 
optimization (see, e.g., [4-7]). Using them has the 
advantage of having an entire community 
developing those tools. 

● Agent-based approaches to MOO are also possible 
(see, e.g., [8]), but won’t be discussed here. 

● Remarkably these approaches can accommodate 
mechanical and geometrical constraints during the 
optimization process.

https://github.com/topics/multi-objective-optimization

[1] J. J. Durillo and A. J. Nebro, “jMetal: A Java framework for multi-objective optimization,” 
Advances in Engineering Software, vol. 42, no. 10, pp. 760–771, 2011.

[2] F.-A. Fortin, F.-M. De Rainville, M.-A. G. Gardner, M. Parizeau, and C. Gagné, “DEAP: 
Evolutionary algorithms made easy,” The Journal of Machine Learning Research, vol. 13, no. 
1, pp. 2171–2175, 2012. 

[3] J. Blank and K. Deb, “pymoo: Multi-objective Optimization in Python,” IEEE Access, vol. 8, 
pp. 89497–89509, 2020

[4] M. Laumanns and J. Ocenasek, “Bayesian optimization algorithms for multi-objective 
optimization,” in International Conference on Parallel Problem Solving from Nature, pp. 
298–307, Springer, 2002.

[5] M.  Balandat,  B.  Karrer,  D.  R.  Jiang,  S.  Daulton,  B.  Letham,  A.  G.  Wilson,  and E. 
Bakshy, “Botorch: Programmable bayesian optimization in pytorch,” arXiv preprint 
arXiv:1910.06403, 2019.

[6] P. P. Galuzio, E. H. de Vasconcelos Segundo, L. dos Santos Coelho, and V. C. Mariani, 
“MOBOpt—multi-objective Bayesian optimization,” SoftwareX, vol. 12, p. 100520, 2020.

[7] A. Mathern, O. S. Steinholtz, A. Sjöberg, M. Önnheim, K. Ek, R. Rempling, E. Gustavsson, 
and M. Jirstrand, “Multi-objective constrained Bayesian optimization for structural design,” 
Structural and Multidisciplinary Optimization, pp. 1–13, 2020.

[8] R. Yang, X. Sun, and K. Narasimhan, “A generalized algorithm for multi-objective 
reinforcement learning and policy adaptation,” in Advances in Neural Information Processing 
Systems, pp. 14636–14647, 2019
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Elitist Non-Dominated 
Sorting Genetic 

Population
@(t)

Offspring
Population

@(t+1)

Front

Offspring

Population

[1] Deb, K., et al. "A fast and elitist multiobjective 
genetic algorithm" IEEE transactions on 
evolutionary computation 6.2 (2002): 182-197. 

This is one of the most popular approach 
(>35k citations on google scholar), characterized by:

● Use of an elitist principle
● Explicit diversity preserving mechanism
● Emphasis in non-dominated solutions

The population Rt is classified in non-dominated fronts. 
Not all fronts can be accommodated in the N slots of available in the new 
population Pt+1. We use crowding distance to keep those points in the last 

front that contribute to the highest diversity. 

The crowding distance di of point 
i is a measure of the objective 

space around i which is not 
occupied by any other solution in 

the population. 

i

f1

f2

i+1

i-1

crossover

mutation
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Under the hood… 
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2) Extract resolutions in bins of the phase-space (P,η).
Do this for baseline and for each new design. 

For each bin we can calculate ratios.

✅ Kalman filter (in)efficiency  

1) Start with the definitions:
3) We use global weighted quantities for the objectives 

representing the resolutions. Weights are obtained 
propagating uncertainties from the fits.

4) We directly calculate the global KF inefficiency as:

✅ momentum resolution 
✅ angular resolution

from fits

Ratio wrt 
reference 

Fine-grained 
analysis in 

phase-space



Software Stack
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Simulating 
80000 in 
total for each 
evaluation, 
1 evaluation 
takes 
<=80 mins

Simulation Time

GA + sorting Time

● 2-level parallelization 
[Launch multiple design points in 
parallel; each point is parallelized]

● With 11 variables and 3 objectives 
~10k CPUhours 

Used a test problem DTLZ1

Verified scaling ~ MN2 and 
convergence to true front 

1s/call with 104 size
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Optimal Design Solutions
This is (already) an unprecedented 

attempt in detector design for 
complexity! 

● ≥  11 parameters 
● 3 (4) objectives 
● ≥ 5 mechanical constraints
● Population size 100 
● Offspring distr. over ≥ 30 cores
● 80000 tracks / design point 
● ~1h  / design point

Can take a 
snapshot any time 
during evaluation

Select one solution (e.g., D) 
from the Pareto front and 

evaluate performance

dP/P Resolution dθ Resolution 

Shown for 
|η|<1. 

Performance 
is  studied in 

the entire 
acceptance 
(other bins)

KF inefficiency



Validation and decision making

Reconstruction Efficiency
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The decision making process done 
after optimization.

For each design solution in the 
Pareto Front one can study the 

corresponding detector 
performance.

d𝞅 Resolution

Validation is done by looking at 
other figures of merit characterizing 
the detector performance that have 

not been directly used in the 
optimization process



Different Technologies/Multiple Pipelines
1

2

3

4

DWG’s:
● Technology Selection 
● Baseline Design 
● Alternative 

Configuration(s)

PWG’s:
● Physics Signal 

Selection 
● Physics Performance 

Evaluation

CWG’s:
● Simulation Campaign 

Support 
● AI Optimization 

E.g. Inner Tracker Barrel (+ disks in the h-endcap and e-endcap)

● Configuration 1: 2-vtx (ITS3) + 2-sagitta (ITS2) + 2-outer layer (ITS2) 

● Configuration 2: 2-vtx (ITS3) + 2-sagitta (ITS3) + 2-outer layer (ITS2)

● Configuration 3: 2-vtx (ITS3) + 2-sagitta (ITS2) + 2-outer layer (uRwell)

● Configuration 4: 2-vtx (ITS3) + 2-sagitta (ITS3) + 2-outer layer (uRwell)

updated configurations with any 
additional requirements

New optimization pipelines 26

Pareto solutions for 1

Pareto solutions for 2

Pareto solutions for 3

Pareto solutions for 4



Novel Aerogel Material aefib
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resolution

stability

Simple Ring Imaging CHerenkov Geant4 based simulation
Aerogel + Optical Fibers 

Gmsh - define geometry and produce mesh 
ElmerGrid - convert the gmsh mesh to elmer compatible mesh 

ElmerSolver - do modeling (solve linear and nonlinear equation) 
Paraview - visualize Elmer Solver and provide a python interface to automate 

S
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● Aerogels with low refractive indices are very fragile tiles break during 
production and handling, and their installation in detectors.

● To improve the mechanical strength of aerogels, Scintilex developed a 
reinforcement strategy.  The general concept consists of introducing fibers 
into the aerogel that increase mechanical strength, but do not affect the 
optical properties of the aerogel.

● Paper in preparation.

The team: V. Berdnikov, J. Crafts, E. Cisbani, CF, T. Horn, R. Trotta

Aerogel tile with 
random fiber orientation
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Detector 
Simulation 

Analysis of 
High-level 

reconstruction of 
events

Injection of 
Physics 
Events 

Design parameters objectives

✔

X Y

…with large datasets

✔

A.I.
gathers observations and 

suggests new points

(Considerations)



29

Summary
● EIC can be one of the first experiments to systematically leverage on AI during the 

R&D and Design phase.  

● ECCE created an AI WG to lead these efforts with an unprecedented attempt in 
detector design (multidimensional design and multiple objectives). 

● None ever accomplished a multi-dimensional / multi-objective optimization of many 
sub-detectors combined together within the global design.  

○ costs can be included provided reliable parametrization  
○ speed-up bottlenecks (sim/reco steps)

● Larger populations of design points can improve accuracy of the Pareto front.   
A recent trend in MOO is distributed optimizations and implementation on 
supercomputers [1].

● AI can assist the development of a detector during the design phase. This can be 
extended to other instrumentation designs in the industry (e.g., medical imaging) 

One of the conclusions from the DOE Town Halls on AI for Science on 2019 [2] was that 
“AI techniques that can optimize the design of complex, large-scale experiments have the 

potential to revolutionize the way experimental nuclear physics is currently done”.

[1] Liu, Xin, et al. IEEE Trans Parallel Distrib Syst 32.4 (2020): 975-987.
[2] R. Stevens, et al. AI for Science. No. ANL-20/17. ANL, IL (US), 2020.
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