SOFTWARE & COMPUTING ROUND TABLE: STREAMING READOUT, OCTOBER 19, 2021

Streaming Readout for sPHENIX and EIC

Jin Huang

Brookhaven National Lab

Thanks to the inputs from many colleagues! Also with reference to talks at <u>Streaming Readout VIII</u> and <u>AI4EIC workshops</u>

Relativistic Heavy Ion Collider

RHIC transition to the EIC

Jin Huang <jihuang@bnl.gov>

sPHENIX magnet installation RHIC IP8 Hall, Oct 7, 2021

Í

88

000

13/32 sPHENIX hadronic
 calorimeter sectors installed

Related streaming readout electronics

Associated test projects

Precision timing digitizer DRS4GIO (SBIR/LDRD)

Brookhaven

ational Laboratorv

sPHENIX streaming DAQ for tracker

High density multiplexer+ ADCMVTX RU, 200M chINTT ROC, 400k chRFSoC Digitizer (LDRD)ALPIDE (ALICE/sPHENIX), FPHX (PHENIX)

TPC FEE, 160k ch BNL-712 / FELIX v2 x38 (ATLAS/sPHENIX) SAMPAv5 (ALICE/sPHENIX)

> FELIX Ref: <u>10.1109/tim.2019.2947972</u> Similar role as PICe40 in LHCb [R. Aaij's talk]

Jin Huang <jihuang@bnl.gov>

Software & Computing Round Table

sPHENIX Streaming data flow

Streaming readout status at sPHENIX

- All three sPHENIX tracking detector uses streaming readout
- Developed plan to take streaming data for heavy flavor physics program (next slides), commended by RHIC PAC.
- Completed construction of sPHENIX FELIX DAQ interface (~50) and procurement of DAQ servers, network infrastructure and online disk buffers
- Data taking start in 2023!

RHIC PAC 2020 report

We commend sPHENIX for developing the continuous streaming readout option for the detector, which increases the amount of data that can be collected in Run-24 by orders of magnitude. In particular in the sector of open heavy flavor, this technique will give access to a set of qualitatively novel measurements that would otherwise not be accessible. Given the tight timeline for completing the RHIC physics program before construction of the EIC begins, this is a tremendous and highly welcome achievement.

TPC data stream in sPHENIX triggered DAQ

Jin Huang <jihuang@bnl.gov>

SRO-Mode1-Simple [Recommended]

Simply prolong L1-Acceptance signal to each subsystem, from 1 BCO to T_{SRO} ~67 beam crossings (~7us or 10% SRO data)

 \rightarrow x500 increase of hard-to-trigger p+p sample

 \rightarrow at cost only 50% increase in data vol. (by piggy back on long TPC readout window of 13us)

Streaming-DAQ enabled scientific connection: e.g. gluon dynamics via heavy flavor A_N

onal Laboratory

Universality test on gluon Sievers

sPHENIX D⁰ trans. spin asymmetry, $A_N \rightarrow$ Gluon Sievers via tri-g cor. EIC SIDIS D⁰ transverse spin asymmetry \rightarrow Gluon Sievers

Jin Huang <jihuang@bnl.gov>

Software & Computing Round Table

EIC: unique collider → unique real-time system challenges

	EIC	RHIC	LHC → HL-LHC
Collision species	$\vec{e} + \vec{p}, \vec{e} + A$	$\vec{p} + \vec{p}/A$, $A + A$	p + p/A, $A + A$
Top x-N C.M. energy	140 GeV	510 GeV	13 TeV
Bunch spacing	10 ns	100 ns	25 ns
Peak x-N luminosity	10 ³⁴ cm ⁻² s ⁻¹	10 ³² cm ⁻² s ⁻¹	$10^{34} \rightarrow 10^{35} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
x-N cross section	50 µb	40 mb	80 mb
Top collision rate	500 kHz	10 MHz	1-6 GHz
dN _{ch} /dη in p+p/e+p	0.1-Few	~3	~6
Charged particle rate	4M <i>N</i> _{ch} /s	60M <i>N</i> _{ch} /s	30G+ <i>N</i> _{ch} /s

• EIC luminosity is high, but collision cross section is small ($\propto \alpha_{EM}^2$) \rightarrow low collision rate

- But events are precious and have diverse topology \rightarrow hard to trigger on all process
- ▶ Background and systematic control is crucial → avoiding a trigger bias

EIC DAQ in Fun4All-EIC simulation

Refs: EIC CDR, sPH-cQCD-2018-001: https://indico.bnl.gov/event/5283/

Beam gas event p + p(gas), 275 GeV/c at z=-4 m

e+p DIS 18+275 GeV/c Q² ~ 100 (GeV/c)²

Signal data rate -> DAQ strategy

- What we want to record: total collision signal ~ 100 Gbps @ 10³⁴ cm⁻² s⁻¹
 - Assumption: sPHENIX data format, 100% noise, Less than sPHENIX peak disk rate. 10⁻⁴ comparing to LHC collision
- Therefore, we could choose to stream out all EIC collisions data
 - In addition, DAQ may need to filter out excessive beam background and electronics noise, if they become dominant.
 - Very different from LHC, where it is necessary to filter out uninteresting p+p collisions (CMS/ATLAS/LHCb) or highly compress collision data (ALICE)

Strategy for an EIC real-time system

EIC streaming DAQ

- → Triggerless readout front-end (buffer length : µs)
- → DAQ interface to commodity computing (e.g. FELIX/CRU). Background filter if excessive background rate
- → Disk/tape storage of streaming time-framed zero-suppressed raw data (buffer length : s)
- →Online monitoring and calibration (latency : minutes)
- → Final Collision event tagging in offline production (latency : days+)

Ref: EIC-CDR

Jin Huang <jihuang@bnl.gov>

Blured boundary with offline computing

Countesy: David Lawrence ECCE computing model [link]

See also: last talk M. Battaglieri

Real-time computing for streaming data pipeline

- Despite low signal rate, the raw data rate can be filled with noises and background
 - Need low background & low noise detector & electronics design
- An essential job of EIC real-time computing: reliable streaming data reduction to fit permanent storage (next topics)
- And more traditional roles for online/offline server farm:
 - Online monitoring/fault det.
 - Calibration
 - $\circ~$ Production \rightarrow Initial analysis pass

Online computing for streaming data – trigger throttling

- At the beginning of the EIC operation, background & noise rate could be unpredictable and high
- A contingency method: throttling streaming data with triggering
 - Immediately reduce streaming data by orders of magnitudes
 - Widely used hardware producing trigger, fix latency or HLT (Aaji's talk)
 - Has physics loss, added systematic uncertainty for hardware trigger efficiency
- Can utilize ML to produce more complex triggering on FPGA
 - PID trigger, e.g. ref: S. Furletov @ streaming workshop VIII [link]
 - Tracking-event topology trigger: D. Yu @ AI4EIC workshop [link]

Online computing for streaming data - compression

Lossless compression

- Compress by ~1/2
- Well established fast compression algorithm

Lossy compression

- Opportunity for unsupervised machine learning based on data, e.g.
- Auto-encoder on ASIC for HGCal @ CMS [link]
- **Bicephalous Convolutional Neural** 0 Encoder for zero-suppressed data (next)

Bicephalous Convolutional Auto-Encoder for zerosuppressed data

- Some detector ADC data is challenging for Auto-Encoder, e.g. features such as zero-suppression cut off
- A dual-output auto encoder is designed to output both a region of interest and decompressed ADC.
 Possibility for further noise filtering
- Ref: Y. Huang @ AI4EIC workshop [link]

Compression comparison with published compressor tested on busiest sPHENIX TPC timeframes

Online computing for streaming data - feature building

- Another effective way of suppressing background is feature building, e.g.
- Clustering on calorimeter
 - Effective in suppressing single tower noise
 - e.g. CLAS12 test as in M. Battaglieri's talk
- Tracklet building on tracker:
 - Effective in suppressing isolated noise, such as the synchrotron background
 - e.g. ALICE TPC streaming data [arXiv:1910.12214]. D. Yu @ AI4EIC workshop [link]
- ADC timeseries -> amplitude extraction
 - e.g. Specialized filters: C. Crawford @ Streaming readout VIII [link];
 - Neural network on ASIC: S. Miryala @ Streaming readout VIII [link]

Summary

- sPHENIX under construction for start of data taking in 2023
 - Recent development on streaming data (on top of streaming readout) for sPHENXI tracker show significant increase of physics capability
 - Strong link with EIC both technical implementation and physics program
- EIC is a unique collider with low x-section, high luminosity and stringent requirement on systematic control.
 - Streaming readout fit well, wide adoption in community [YR, CDR]
 - EIC collision signal data rate is low, but noise/background rate uncertain
 - EIC online computing: key development on reliable noise/background filtering

Remix credit: Dave Morrison

Extra information

Jin Huang <jihuang@bnl.gov>

EIC x-sec : further quantification [Courtesy E. Aschenauer]

- Inelastic e+p scattering x-sec:
 - For a luminosity of 10³⁴ cm⁻²s⁻¹
 50ub corresponds to 500 kHz
- Elastic e+p cross-section:
 - For EIC central barrel, elastic cross section is small comparing to the inclusive QCD processes
- Beam gas interaction:
 - Beam proton beam gas fix target inelastic interactions. The pp elastic cross section is smaller (~7 mb)
 - For a vacuum of 10⁻⁹ mbar in the detector volume (10m) this gives

Bea	am [GeV]	HERA	5 x 50	10 x 100	18 x 275
Q ² >	>10 ⁻⁹ GeV	65.6	29.9	41.4	54.3 ub
Q	² >1 GeV	1.29	0.45	0.65	0.94 ub
Bear	n [GeV]	HERA	5 x 50	10 x 100	18 x 275
σ [y	_{Exp} >-4]	5 pb	5 ub	0.7 ub	0.06 ub
σ [y	_{Exp} >-6]	11 ub	420 ub	100 ub	29 ub
E _p :	50 Ge\ 38.4 m	/ 10 b 38	0 GeV .4 mb	275 GeV 39.4 mb	920 GeV 41.8 mb

Results I: AE v.s. Bicephalous AE

Compression ratio is 1:27 (1:3 for SAMPA ASIC for this busiest event)

Result III. Ablation Study

