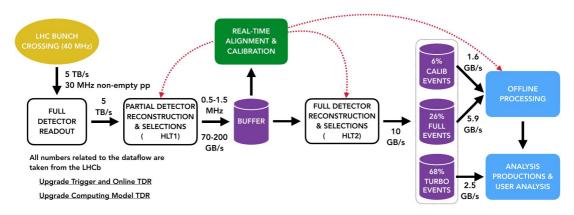
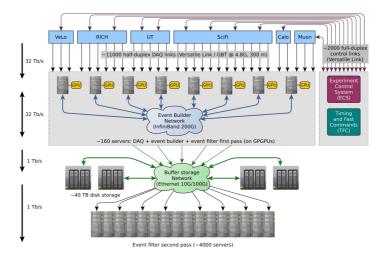

Allen: Processing 4 TB/s of Streaming Data From the LHCb Experiment on GPUs.

Roel Aaij

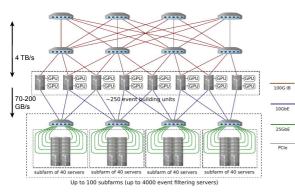
October 19th, 2021


LHCb Upgrade in a Single Slide

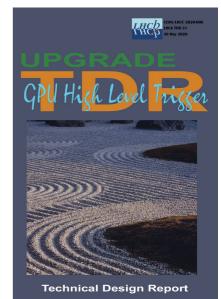
30 MHz (4 TB/s) of input contains a MHz of signal, while we can only store 10 GB/s long-term



LHCb Upgrade Dataflow

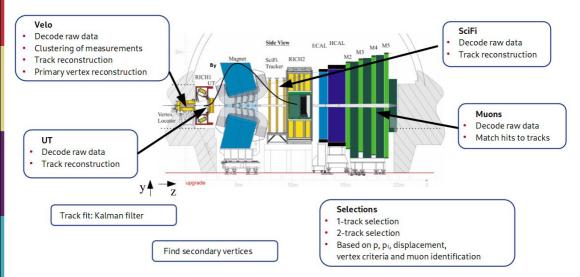

HLT1 challenge: reduce 5 TB/s to 70-200 GB/s in real-time with high physics efficiency

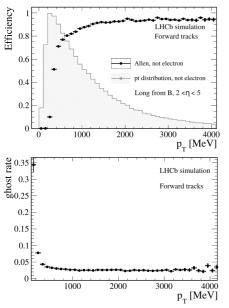
DAQ Architecture

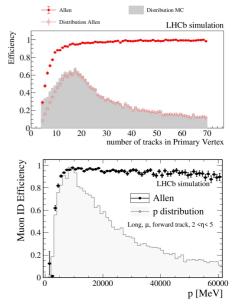


30 MHz (5 TB/s) of event building and processing in a data center

HLT1 on GPUs: Allen


GPU solution (Allen) selected as baseline HLT1; up to 3 GPUs installed in each event builder server


HLT1 on GPUs: Allen


- Fully standalone software project: <u>https://gitlab.cern.ch/lhcb/Allen</u>
- Dependencies: C++17 compliant compiler, boost, ZeroMQ, cppgsl
- Built-in physics validation
- Configurable algorithm sequence, custom memory manager
- Cross-architecture compatibility (CPU, CUDA, HIP)
- Approximately 100k LOC, 90% written from scratch
- Integrated with LHCb stack and LHCb DAQ and control system
- Project started in February 2018
- After 15 months of development time:
- project reviewed as viable solution for Run 3 (starting in 2022)
- Accepted as baseline solution in May 2020

Reconstruction and Selection

Reconstruction Performance

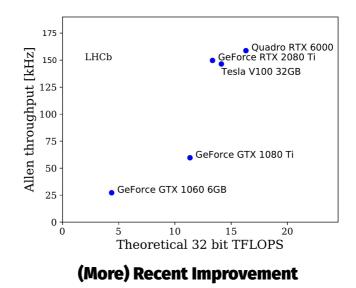
Selection Performance

Signal	GEC	TIS -OR- TOS	TOS	$\operatorname{GEC} \times \operatorname{TOS}$
$B^0 \to K^{*0} \mu^+ \mu^-$	89 ± 2	91 ± 2	89 ± 2	79 ± 3
$B^0 \to K^{*0} e^+ e^-$	84 ± 3	69 ± 4	62 ± 4	52 ± 4
$B_s^0 \to \phi \phi$	83 ± 3	76 ± 3	69 ± 3	57 ± 3
$D_s^+ \to K^+ K^- \pi^+$	82 ± 4	59 ± 5	43 ± 5	35 ± 4
$Z ightarrow \mu^+ \mu^-$	78 ± 1	99 ± 0	99 ± 0	77 ± 1

Trigger	Rate [kHz]
1-Track	215 ± 18
2-Track	659 ± 31
High- p_T muon	5 ± 3
Displaced dimuon	74 ± 10
High-mass dimuon	134 ± 14
Total	999 ± 38

_

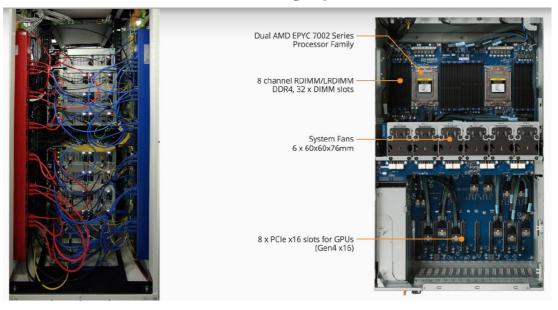
Throughput Evolution Since TDR

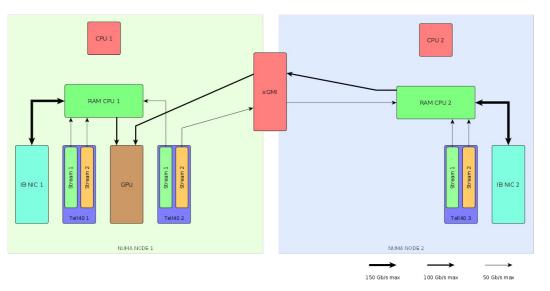

Trigger Rate [kHz] vs TFlops (32bit)

Performance at the time of the TDR; Approximately linear scaling with theoretical FLOPS

GPU Theoretical 32 bit TFLOPS

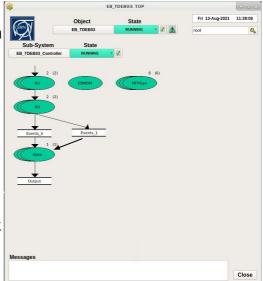
Throughput Evolution Since TDR




Integration

- DAQ:
 - Data input (event-builder layout)
 - Data output (event-by-event layout)
- Avoid large-scale transposition of data
 - Process data in the layout provided by the event builder
 - \circ Batches of 30k grouped by frontend, not by event
 - Process in batches of 1k events
- Steering by the experiment control system
- Error handling and failover
- Detector information such as geometry and alignment
 - Obtain from "regular" LHCb stack on the fly
 - Deal with changing conditions
- Monitoring for data quality and shifters
- HLT1 hardware and processes share the server with event building: keep a close eye on CPU and memory usage

Event Builder Server (Gigabyte G481-Z51)

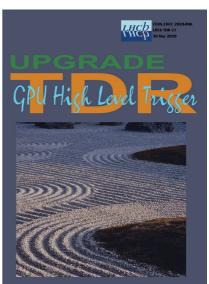


Event Builder Server

Throughput Test

- 10 event builder nodes
- event builder generates data with scaled up events
- HLT1 consumes generated data on (single) GPU-equipped node
- HLT1 without reconstruction, only copy data to and from GPU
- Frontends in data-generator mode
- Goal: verify that data I/O and throughput requirements are met
- Goal: Verify that a single GPU works

Throughput Test


- 10 event builder nodes
- event builder generates data with scaled up events
- HLT1 consumes generated data on (single) GPU-equipped node
- HLT1 without reconstruction, only copy data to and from GPU
- Frontends in data-generator mode

Buffer Na	anager Monitor [Fri 13 Aug 2021 11:41:31] pid:50767 on TBEB01
Buffer "Events_0_TIET" Occupancy [Events]:	Events: Produced:3508 (0,003 kHz) Seen:3535 (0,003 kHz) Wey: 0 Map: 0 Wal: 0 Space(kB):[Tot:25956575 Free:62595615] Users:[Tot:3 Hax:20] Perding:5 Hax:150
[Space]: Buffer "Events_1_TIET" Occupancy [Events]: [Space]:	Events: Produced:3589 (0,004 kHz) Seen:3595 (0,003 kHz) Mev: 0 Mey: 0 Maj: 0 Space(kB):[[0t:25950875 Free:6258455] Waers:[Tot:3 Hax:20] Pending:5 Hax:150
Buffer "Output_TDET" Occupancy [Events]: [Space]:	Events: Produced:0 (0.000 kHz) Seen:0 (0.000 kHz) Hev: 0 Uep: 0 Uel: 0 Space(kB):[Tot:439877 Free:45877] Users:[Tot:0 Max:5] Pending:0 Max:150
Occupancy [Events]: [Space]: ScovNaze	Space(kB):[Tot:458977 Free:458972] Users:[Tot:0 Hw:5] Pending:0 Hw:150 Partilion Pid Type State Produced Zorod Recen Zoron Reg Buffer
Occupancy [Events]: [Space]:	Search(UB):[Int:458977 Free:458977] Users:[Int:0 HardS] Pending:0 Nat:150

- Test successful: can reach 43 MHz
- Bottleneck: PCIe throughput to GPU
- Important takeaway: NUMA and and (device) runtime considerations very important
- Need more monitoring

Summary

- GPU HLT1 (Allen) selected as the baseline solution for LHCb
- Hardware has been purchased (RTX A5000)
- Work continues to improve performance; both physics and throughput
- Shifting to commissioning mode: focus on integration, consolidation and testing
- Careful consideration of dataflow memory and networks - crucial to success
- Larger-scale integration tests a success
- Exciting times ahead!

Technical Design Report