

Science and **Technology Facilities Council**

Can we really "Re"-interpret data from the LHC?

Nicholas Wardle

Software & Computing Round Table (2021) Analysis II: Reproducibility

06/07/2021

Short answer ...

Yes! We even have a forum dedicated to doing just that ...

TWiki > LHCPhysics Web > LHCPhysics > InterpretingLHCresults (2019-10-26, SabineKraml)

Forum on the Interpretation of the LHC Results for BSM studies

The quest for new physics beyond the Standard Model is arguably the driving topic for Run 2 of the LHC. Indeed, the LHC collaborations are pursuing searches for new physics in a vast variety of channels. While the collaborations typically provide themselves interpretations of their results, for instance in terms of simplified models, **the full understanding of the implications of these searches requires the interpretation of the experimental results in the context of all kinds of theoretical models.** This is a very active field, with close theory-experiment interaction and with several public tools being developed.

With this forum, we want to provide a platform for continued discussion of topics related to the BSM (re)interpretation of LHC data, including the development of the necessary **public** RecastingTools and related infrastructure.

If you have questions or want to contribute, contact Sabine Kraml, sabine.kraml@gmail.com, or any of the topical contacts given below.

Current Members → ~ 100 participants from pheno & experimental communities

Starting point : <u>https://twiki.cern.ch/twiki/bin/view/LHCPhysics/InterpretingLHCresults</u> Join the mailing list : <u>info-LHC-interpretation@cern.ch</u>

~ Regular workshops – latest 15th - 19th February 2021 : <u>https://indico.cern.ch/event/982553/</u>

- Dedicated sessions on LLP searches, EFT (re)interpretations & non-LHC experiments (neutrino, dark matter...)
- Tutorial sessions for public re-interpretation tools (all recorded, have a go yourself!)

Recommendations for re-interpretations

S. Kraml @Reinterp2021

Recommendations emphasise:

1. Prompt availability of numerical analysis data in digitised electronic form to enable re-use.

2. More complete publication of full-detail experimental data:

- correlation information
- public likelihoods
- Open Data
- forensic analysis code preservation
-

3. Community-wide dialogue regarding re-use of unbinned fits and machine-learning algorithms.

Moreover, theorists should (start) to follow the same reproducibility requirements as we ask them from the experiments.

"Re-use means a **longer legacy** for analyses, as well as compliance with ever stricter requirements of data-publication and reusability for publicly funded research."

Sci Post

<u>SciPostPhys.9.2.022</u> (2020)

Reinterpretation of LHC results for new physics: status and recommendations after run 2

The LHC BSM Reinterpretation Forum

Abstract

We report on the status of efforts to improve the reinterpretation of searches and measurements at the LHC in terms of models for new physics, in the context of the LHC Reinterpretation Forum. We detail current experimental offerings in direct searches for new particles, measurements, technical implementations and Open Data, and provide a set of recommendations for further improving the presentation of LHC results in order to better enable reinterpretation in the future. We also provide a brief description of existing software reinterpretation frameworks and recent global analyses of new physics that make use of the current data.

Copyright W. Abdallah *et al.* This work is licensed under the Creative Commons Attribution 4.0 International License. Published by the SciPost Foundation. Received 02-04-2020 Accepted 06-08-2020 Published 21-08-2020 doi:10.21468/SciPostPhys.9.2.022

Can't spell "re"-interpretation without interpretation

Impossible to summarize the breadth of experimental results (and ways they are presented) in one slide or even one seminar

pp

w

Ζ

112.69 ± 3.1 nb (data) DYNNLO + CT14NNLO (theor

98.71 ± 0.028 ± 2.191 nb (dat DYNNLO + CT14NNLO (theo 58.43 ± 0.03 ± 1.66 nb (data)

4.24 ± 0.03 ± 0.92 nb (data)

29.53 ± 0.03 ± 0.77 nb (data) DYNNLO+CT14 NNLO (theor

Standard Model Total Production Cross Section Measurements November 2019 [fb⁻¹]

ATLAS Preliminary

Run 1.2 $\sqrt{s} = 7.8.13$ TeV

Reference

Nucl. Phys. B, 486-548 (2014)

PLB 759 (2016) 601

EPJC 79 (2019) 760

EPJC 77 (2017) 367

IHER 02 (2017) 117

JHEP 02 (2017) 117

JHEP 02 (2017) 117

8×10⁻⁸

0.081

20.2

4.6

20.2

4.6

Where to find them

Nicholas Wardle

LHC "data" spectrum

Wide spectrum of how experiments do and can present results \rightarrow spectrum separated in terms of how easy it is to *re-use* the results provided

Clearly benefits across the spectrum (we should add to not subtract from these!)

Meaurements for re-interpretations

In Higgs physics, often find "signal-strength" measurements

$$\rightarrow \mu_i = \frac{\sigma_i}{(\sigma_i)_{\text{SM}}}$$
 and $\mu^f = \frac{\text{BR}^f}{(\text{BR}^f)_{\text{SM}}}$. Standard model defined by $\mu_i = \mu^f = 1$

 \rightarrow Assume only total rate of ii \rightarrow H \rightarrow ff is modified by new physics (ok in certain models)

Meaurements for re-interpretations

In Higgs physics, often find "signal-strength" measurements

$$\rightarrow \ \mu_i = \frac{\sigma_i}{(\sigma_i)_{\text{SM}}} \quad \text{and} \quad \mu^f = \frac{\text{BR}^f}{(\text{BR}^f)_{\text{SM}}}. \text{ Standard model defined by } \mu_i = \mu^f = 1$$

 \rightarrow Assume only total rate of ii \rightarrow H \rightarrow ff is modified by new physics (ok in certain models)

Meaurements for re-interpretations

In Higgs physics, often find "signal-strength" measurements

$$\rightarrow \ \mu_i = \frac{\sigma_i}{(\sigma_i)_{\text{SM}}} \quad \text{and} \quad \mu^f = \frac{\text{BR}^f}{(\text{BR}^f)_{\text{SM}}}. \text{ Standard model defined by } \mu_i = \mu^f = 1$$

 \rightarrow Assume only total rate of ii \rightarrow H \rightarrow ff is modified by new physics (ok in certain models)

Unfolding

Unfolded measurements popular for interpretations

Pros:

- Removes the need to model the detector to compare to theory
- Systematic uncertainties included in the measurements

Unfolded measurements can be used outside of experiments (c.f <u>Contur</u>)

See M. Kuusela's PhyStat Seminar for more unfolding issues

Unfolding

"LHC constraints on a B – L gauge model using CONTUR" [1]

Unfolding?

Unfolded measurements popular for interpretations

Pros:

- Removes the need to model the detector to compare to theory
- Systematic uncertainties included in the measurements

Cons:

- Often involves Gaussian approximations
- Regularization required where response matrix very non-diagonal (can lead to biases)

Unfolding?

Unfolded measurements popular for interpretations

Pros:

- Removes the need to model the detector to compare to theory
- Systematic uncertainties included in the measurements

Cons:

- Often involves Gaussian approximations
- Regularization required where response matrix very non-diagonal (can lead to biases)
- Often use ML based quantities to subtract backgrounds/classify signals → how would we unfold these to particle level?

Instead, we can re-interpret in the folded space → *published likelihoods*

Not really a new idea ...

Workshop on confidence limits (2000)

Massimo Corradi

It seems to me that there is a general consensus that what is really meaningful for an experiment is *likelihood*, and almost everybody would agree on the prescription that experiments should give their likelihood function for these kinds of results. Does everybody agree on this statement, to publish likelihoods?

Louis Lyons

Any disagreement ? Carried unanimously. That's actually quite an achievement for this Workshop.

LHC "data" spectrum

Caveat: I mostly work on high-pT experimental LHC physics so examples mostly inspired from ATLAS/CMS results \rightarrow most of what I say however applies to LHC analyses in general and even beyond in some cases.

Nicholas Wardle

General form* for our experimental likelihood (for measurements, searches ...) is

$$L(oldsymbol{lpha},oldsymbol{\delta})\pi(oldsymbol{\delta}) = \prod_{I=1}^P \Pr\Big(n_I^{
m obs} \,\Big|\, n_I(oldsymbol{lpha},oldsymbol{\delta})\Big)\pi(oldsymbol{\delta})$$

Where α are the "parameters of interest" (mass of a new hypothetical particle, cross-section for some new process ...) and δ are the "nuisance parameters".

* For Bayesian approaches $\ \pi(oldsymbol{\delta}) o \pi(oldsymbol{lpha},oldsymbol{\delta})$

General form* for our experimental likelihood (for measurements, searches ...) is

$$L(\boldsymbol{lpha}, \boldsymbol{\delta})\pi(\boldsymbol{\delta}) = \prod_{I=1}^{P} \Pr\left(n_{I}^{\mathrm{obs}} \mid n_{I}(\boldsymbol{lpha}, \boldsymbol{\delta})\right)\pi(\boldsymbol{\delta})$$

Where α are the "parameters of interest" (mass of a new hypothetical particle, cross-section for some new process ...) and δ are the "nuisance parameters".

lpha	=	μ	
------	---	-------	--

At the LHC, the profiled likelihood ratio test statistic is the most common choice [1] \rightarrow one parameter of interest μ – common multiplier for total signal yield

Nicholas Wardle

* For Bayesian approaches
$$\ \pi(oldsymbol{\delta}) o \pi(oldsymbol{lpha},oldsymbol{\delta})$$

General form* for our experimental likelihood (for measurements, searches ...) is

$$L(\boldsymbol{lpha}, \boldsymbol{\delta})\pi(\boldsymbol{\delta}) = \prod_{I=1}^{P} \Pr\left(n_{I}^{\mathrm{obs}} \mid n_{I}(\boldsymbol{lpha}, \boldsymbol{\delta})\right)\pi(\boldsymbol{\delta})$$

Where α are the "parameters of interest" (mass of a new hypothetical particle, cross-section for some new process ...) and δ are the "nuisance parameters".

$$n_{I}(\mu, \delta) \rightarrow \mu \cdot \sum_{\text{sigs}} n_{s_{k}, I} + \sum_{\text{bkgs}} n_{b_{k}, I}(\delta) \rightarrow \mu \cdot n_{s, I} + n_{b, I}(\delta)$$
 $Pr(n|\lambda) = \frac{\lambda^{n}}{n!}e^{-\lambda}$

 $\alpha = \mu$ At the LHC, the profiled likelihood ratio test statistic is the most common choice [1] \rightarrow one parameter of interest μ – common multiplier for total signal yield

Sum over the signals / background contributions

Often use *binned* likelihood \rightarrow Pr(.) are Poisson probabilities

[1] G. Cowan, K. Cranmer, E. Gross, O. Vitells Eur.Phys.J.C71:1554,2011

General form* for our experimental likelihood (for measurements, searches ...) is

$$L(\boldsymbol{lpha}, \boldsymbol{\delta})\pi(\boldsymbol{\delta}) = \prod_{I=1}^{P} \Pr\left(n_{I}^{\mathrm{obs}} \mid n_{I}(\boldsymbol{lpha}, \boldsymbol{\delta})\right)\pi(\boldsymbol{\delta})$$

Where α are the "parameters of interest" (mass of a new hypothetical particle, cross-section for some new process ...) and δ are the "nuisance parameters".

[1] G. Cowan, K. Cranmer, E. Gross, O. Vitells Eur.Phys.J.C71:1554,2011

Imagine a (rather simplified) model inspired by a typical search for some Supersymmetric particle or exotic signature.

- There is a single source of background (can also think of this as the sum of all backgrounds)
- The data (observations) are divided into regions we have;
 - 3 categories for the data \rightarrow each category has 30 bins
 - Increasing S/B with bin-number, within each category

There are **two** uncertainties (labelled "efficiency" and "scale-factor") on the background yields (N), and **each bin** has an uncertainty which is uncorrelated between bins (e.g this could be from limited Monte Carlo statistics used to estimate n_i)

There are **two** uncertainties (labelled "efficiency" and "scale-factor") on the background yields (N), and **each bin** has an uncertainty which is uncorrelated between bins (e.g this could be from limited Monte Carlo statistics used to estimate n_i)

Another **two** uncertainties correlated between bins ("energy scale" and "theory" uncertainty)

In total this means 94 nuisance parameters

Nicholas Wardle

Think of the expected number of background events in a given bin *I*, as the fraction of events in that bin (f_i) multiplied by the total number of events (N)

 δ are nuisance parameters representing independent sources of uncertainty (in our case 94 of them)

$$\bullet \quad n_I(\boldsymbol{\delta}) \equiv f_I(\boldsymbol{\delta}) N(\boldsymbol{\delta})$$

$$N(\boldsymbol{\delta}) = N^0 \cdot \prod_j (1 + K_j)^{\delta_j}$$

Uncertainties in the normalisation (N) typically follow log-normals

Similarly for un-correlated bin-by-bin uncertainties

 K_j and ε_{lj} represent the relative size and direction of the uncertainty

The effects of correlated systematic uncertainties on n_i are modelled using quadratic(linear) interpo(extrapo)lation function

$$f_I(\boldsymbol{\delta}) = f_I^0 \cdot rac{1}{F(\boldsymbol{\delta})} \prod_j p_{Ij}(\delta_j)$$

 $F(\boldsymbol{\delta}) = \sum_{I} f_{I}(\boldsymbol{\delta})$

$$\frac{\text{search for new physics}}{\text{feffects of correlated systematic uncertainties on }n_i \text{are fielded using quadratic(linear) interpo(extrapo)lation trion
$$f_I(\delta) = f_I^0 \cdot \frac{1}{F(\delta)} \prod_j p_{Ij}(\delta_j)$$

$$F(\delta) = \sum_I f_I(\delta)$$

$$P_{Ij}(\delta_j) = \begin{cases} \frac{1}{2} \delta_j(\delta_j - 1) \kappa_{Ij}^- (\delta_j - 1)(\delta_j + 1) + \frac{1}{2} \delta_j(\delta_j + 1) \kappa_{Ij}^+ \\ \left[\frac{1}{2} (3\kappa_{Ij}^+ + \kappa_{Ij}^-) - 2\right] \delta_j - \frac{1}{2} (\kappa_{Ij}^+ + \kappa_{Ij}^-) + 2 \end{cases} \quad \text{for } \delta_j < 1$$

$$for \ \delta_j > 1$$

$$for \ \delta_j < -1$$$$

Experimental likelihood

Now we can write the likelihood for this search as follows;

$$L(\mu, \boldsymbol{\delta})\pi(\boldsymbol{\delta}) = \prod_{I=1}^{90} P(n_I^{\text{obs}} | \mu \cdot n_{s,I} + n_{b,I}(\boldsymbol{\delta})) \cdot \prod_{j=1}^{94} e^{-\delta_j^2}$$
$$n_{b,I}(\boldsymbol{\delta}) = N_c^0 \cdot \prod_{k=1}^2 (1 + K_k)^{\delta_k} \cdot f_I^0 \cdot \frac{1}{F(\boldsymbol{\delta})} \prod_{j=3}^4 p_{I,j}(\delta_j) \cdot (1 + \epsilon_I)^{\delta_I}$$

Experimental likelihood

Now we can write the likelihood for this search as follows;

$$L(\mu, \boldsymbol{\delta})\pi(\boldsymbol{\delta}) = \prod_{I=1}^{90} P(n_I^{\text{obs}} | \mu \cdot n_{s,I}) + n_{b,I}(\boldsymbol{\delta})) \cdot \prod_{j=1}^{94} e^{-\delta_j^2}$$

$$n_{b,I}(\boldsymbol{\delta}) = N_c^0 \cdot \prod_{k=1}^2 (1 + K_k)^{\delta_k} (f_I^0) \frac{1}{F(\boldsymbol{\delta})} \prod_{j=3}^4 p_{I,j}(\delta_j) \cdot (1 + \epsilon_I)^{\delta_I}$$

Specifying these terms with this generic form means the full likelihood can be communicated as plain text!

A lot of physicists' time working on an LHC search is spent on **these**!

Published likelihoods in the wild!

JSON based (ROOT/XML free) encoded workspaces containing **full** likelihood model \rightarrow Build statistical model + perform inference using <u>pyHF</u> (developed by L. Heinrich, M. Feickert, G. Stark and K. Cranmer.)

Access to full binned likelihood

 \rightarrow Swap out components of likelihood directly inside JSON for re-interpretations

ightarrow Re-interpret with different signal models via JSON patches

DOI 10.5281/zenodo.4484948

E. Schanet, Re-interp 2021

Published likelihoods in the wild!

Example: "Search for direct production of electroweakinos in final states with one lepton, missing transverse momentum and a Higgs boson decaying into two b-jets in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector" on <u>HepData</u>

- Total of 14 bins (split across 8 channels)
- O(100) nuisance parameters
- Signal patches for different chargino/neutralino masses

Published likelihoods in the wild!

Example: "Search for direct production of electroweakinos in final states with one lepton, missing transverse momentum and a Higgs boson decaying into two b-jets in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector" on <u>HepData</u>

- Total of 14 bins (split across 8 channels)
- O(100) nuisance parameters
- Signal patches for different chargino/neutralino masses

More likelihoods becoming available using this approach <u>here</u> ...

Applied filters:

Keywords:

Likelihood available

Short Title	Group	Journal Reference	Date	√s (TeV)	L	Links
Search for chargino and neutralino pair RPV decays; 3L	SUSY	Submitted to PRD	20-NOV-20	13	139 fb ⁻¹	Documents 2011.10543 Inspire HepData Briefing Internal
Search for displaced leptons	SUSY	Submitted to PRL	13-NOV-20	13	139 fb ⁻¹	Documents 2011.07812 Inspire HepData Briefing Internal
Chargino-neutralino pair; 3 leptons, weak-scale mass splittings	SUSY	Phys. Rev. D 101 (2020) 072001	18-DEC-19	13	139 fb ⁻¹	Documents 1912.08479 Inspire HepData Internal
Staus; taus	SUSY	Phys. Rev. D 101 (2020) 032009	15-NOV-19	13	139 fb ⁻¹	Documents 1911.06660 Inspire HepData Briefing Internal
Chargino-neutralino pair; Higgs boson in final state, 2 b-jets and 1 lepton	SUSY	Eur. Phys. J. C 80 (2020) 691	19-SEP-19	13	139 fb ⁻¹	Documents 1909.09226 Inspire HepData Internal
Stop pair, sbottom pair, gluino pair; two same-sign leptons or three leptons	SUSY	JHEP 06 (2020) 46	18-SEP-19	13	139 fb ⁻¹	Documents 1909.08457 Inspire HepData Internal
Sbottom; b-jets	SUSY	JHEP 12 (2019) 060	08-AUG-19	13	139 fb ⁻¹	Documents 1908.03122 Inspire HepData Briefing Internal

Counting inputs

Back to our toy search, how many terms are needed to specify the full LH?

$$L(\mu, \boldsymbol{\delta})\pi(\boldsymbol{\delta}) = \prod_{I=1}^{90} P(n_I^{\text{obs}} \mu \cdot n_{s,I} + n_{b,I}(\boldsymbol{\delta})) \cdot \prod_{j=1}^{94} e^{-\delta_j^2}$$

$$\sum_{\substack{I=1\\ I=1}}^{90} P(n_I^{\text{obs}} \mu \cdot n_{s,I} + n_{b,I}(\boldsymbol{\delta})) \cdot \prod_{j=1}^{94} e^{-\delta_j^2}$$

$$\sum_{\substack{I=1\\ I=1}}^{90} P(n_I^{\text{obs}} \mu \cdot n_{s,I} + n_{b,I}(\boldsymbol{\delta})) \cdot \prod_{j=1}^{94} e^{-\delta_j^2}$$

$$\sum_{\substack{I=1\\ I=1}}^{90} P(n_I^{\text{obs}} \mu \cdot n_{s,I} + n_{b,I}(\boldsymbol{\delta})) \cdot \prod_{j=1}^{94} e^{-\delta_j^2}$$

$$\sum_{\substack{I=1\\ I=1}}^{90} P(n_I^{\text{obs}} \mu \cdot n_{s,I} + n_{b,I}(\boldsymbol{\delta})) \cdot \prod_{j=1}^{94} e^{-\delta_j^2}$$

$$\sum_{\substack{I=1\\ I=1}}^{90} P(n_I^{\text{obs}} \mu \cdot n_{s,I} + n_{b,I}(\boldsymbol{\delta})) \cdot \prod_{j=1}^{94} e^{-\delta_j^2}$$

$$\sum_{\substack{I=1\\ I=1}}^{90} P(n_I^{\text{obs}} \mu \cdot n_{s,I} + n_{b,I}(\boldsymbol{\delta})) \cdot \prod_{j=1}^{94} e^{-\delta_j^2}$$

$$\sum_{\substack{I=1\\ I=1}}^{10} P(n_I^{\text{obs}} \mu \cdot n_{s,I} + n_{b,I}(\boldsymbol{\delta})) \cdot \prod_{j=1}^{94} e^{-\delta_j^2}$$

$$\sum_{\substack{I=1\\ I=1}}^{10} P(n_I^{\text{obs}} \mu \cdot n_{s,I} + n_{b,I}(\boldsymbol{\delta})) \cdot \prod_{j=1}^{94} e^{-\delta_j^2}$$

$$\sum_{\substack{I=1\\ I=1}}^{10} P(n_I^{\text{obs}} \mu \cdot n_{s,I} + n_{b,I}(\boldsymbol{\delta})) \cdot \prod_{j=1}^{94} e^{-\delta_j^2}$$

$$\sum_{\substack{I=1\\ I=1}}^{10} P(n_I^{\text{obs}} \mu \cdot n_{s,I} + n_{b,I}(\boldsymbol{\delta})) \cdot \prod_{j=1}^{10} e^{-\delta_j^2}$$

$$\sum_{\substack{I=1\\ I=1}}^{10} P(n_I^{\text{obs}} \mu \cdot n_{s,I} + n_{b,I}(\boldsymbol{\delta})) \cdot \prod_{j=1}^{10} e^{-\delta_j^2}$$

$$\sum_{\substack{I=1\\ I=1}}^{10} P(n_I^{\text{obs}} \mu \cdot n_{s,I} + n_{b,I}(\boldsymbol{\delta})) \cdot \prod_{j=1}^{10} e^{-\delta_j^2}$$

$$\sum_{\substack{I=1\\ I=1}}^{10} P(n_I^{\text{obs}} \mu \cdot n_{s,I} + n_{b,I}(\boldsymbol{\delta})) \cdot \prod_{j=1}^{10} P(n_I^{\text{obs}} \mu \cdot n_{s,I} + n_{b,I}(\boldsymbol{\delta}))$$

$$\sum_{\substack{I=1\\ I=1}}^{10} P(n_I^{\text{obs}} \mu \cdot n_{s,I} + n_{b,I}(\boldsymbol{\delta})) \cdot \prod_{j=1}^{10} P(n_I^{\text{obs}} \mu \cdot n_{s,I} + n_{b,I}(\boldsymbol{\delta})$$

$$\sum_{\substack{I=1\\ I=1}}^{10} P(n_I^{\text{obs}} \mu \cdot n_{s,I} + n_{b,I}(\boldsymbol{\delta})) \cdot \prod_{j=1}^{10} P(n_I^{\text{obs}} \mu \cdot n_{s,I} + n_{b,I}(\boldsymbol{\delta})$$

$$\sum_{\substack{I=1\\ I=1}}^{10} P(n_I^{\text{obs}} \mu \cdot n_{s,I} + n_{b,I}(\boldsymbol{\delta})) \cdot \prod_{\substack{I=1\\ I=1}}^{10} P(n_I^{\text{obs}} \mu \cdot n_{s,I} + n_{b,I}(\boldsymbol{\delta}))$$

$$\sum_{\substack{I=1\\ I=1}}^{10} P(n_I^{\text{obs}} \mu \cdot n_{s,I} + n_{b,I}(\boldsymbol{\delta})) \cdot \prod_{\substack{I=1\\ I=1}}^{10} P(n_I^{\text{obs}} \mu \cdot n_{s,I} + n_{b,I}(\boldsymbol{\delta}))$$

$$\sum_{\substack{I=1\\ I=1}}^{10} P(n_I^{\text{obs}} \mu \cdot n_{s,I} + n_{b,I}(\boldsymbol{\delta}))$$

$$\sum_{\substack{I=1\\ I=1}}^{10} P(n_I^{\text{obs}} \mu \cdot n_{s,I} + n_{b,I}(\boldsymbol{\delta})) \cdot \prod_{\substack{I=1\\ I=1}}^{10} P(n_I^{\text{obs}} \mu \cdot n_{s,$$

Re-parameterize the backgrounds

We can generate pseudo-experiments for $n_{b,l}$ since we know $p(\boldsymbol{\delta}) := \pi(\boldsymbol{\delta}) \sim e^{-\frac{1}{2}\boldsymbol{\delta}\cdot\boldsymbol{\delta}}$ Use randomly sampled $\boldsymbol{\delta}'$ and $\hat{n}_I = n_{b,I}(\boldsymbol{\delta}')$ to determine the distribution of the backgrounds...

 \rightarrow can be described by 2 moments (mean and variance)

Re-parameterize the backgrounds

We can generate pseudo-experiments for $n_{b,l}$ since we know $p(\boldsymbol{\delta}) := \pi(\boldsymbol{\delta}) \sim e^{-\frac{1}{2}\boldsymbol{\delta}\cdot\boldsymbol{\delta}}$ Use randomly sampled $\boldsymbol{\delta}'$ and $\hat{n}_I = n_{b,I}(\boldsymbol{\delta}')$ to determine the distribution of the backgrounds...

Simplifying the likelihood?

For statistical (re-) interpretation purposes we eliminate nuisance parameters (δ)

m au We are mainly interested in profiled / marginalized likelihoods $L(\mu, m \delta) o L(\mu)$

Since the "backgrounds" are only dependent on the nuisance parameters, we can approximate in such a way that the profiled (or marginal) likelihood is preserved as follows [1];

1. Express $n_{b,l}$ as a simple expansion (quadratic) in terms of **combined nuisance parameters** ϑ_l

$$n_{b,I} \simeq a_I + b_I \theta_I + c_I \theta_I^2$$
 I=1...90

[1] A. Buckley, M. Citron, S. Fichet, S. Kraml, W. Waltenberger, **NW** <u>J. High Energ. Phys. **2019**, 64 (2019)</u>

* We can restore $\mu \cdot n_{s,I} o n_{s,I}(oldsymbol lpha)$ if needed, but for this toy we keep μ

Simplifying the likelihood?

For statistical (re-) interpretation purposes we eliminate nuisance parameters (δ)

ightarrow We are mainly interested in profiled / marginalized likelihoods $L(\mu, {m \delta})
ightarrow L(\mu)$

Since the "backgrounds" are only dependent on the nuisance parameters, we can approximate in such a way that the profiled (or marginal) likelihood is preserved as follows [1];

$$m_{b,I} \simeq a_I + b_I \theta_I + c_I \theta_I^2$$
 I=1...90

2. Re-parameterize likelihood in terms of μ^* and $\vartheta_1 \rightarrow$ Need to derive $\pi(\vartheta)$!

$$L(\mu, \boldsymbol{\delta})\pi(\boldsymbol{\delta}) \to L(\mu, \boldsymbol{\theta})\pi(\boldsymbol{\theta}) = \prod_{I=1}^{P=90} P(n_I^{\text{obs}}|\mu \cdot n_{s,I} + a_I + b_I\theta_I + c_I\theta_I^2) \cdot \frac{1}{\sqrt{(2\pi)^P}} e^{-\frac{1}{2}\boldsymbol{\theta}^T\boldsymbol{\rho}^{-1}\boldsymbol{\theta}}$$

$$P(x|y) = \text{Poisson probability as before}$$
These are the same as the full likelihood $\rho_{I,J} = \rho_{J,I}$

[1] A. Buckley, M. Citron, S. Fichet, S. Kraml, W.
 Waltenberger, NW <u>J. High Energ. Phys. 2019</u>, 64 (2019)

* We can restore $\mu \cdot n_{s,I} o n_{s,I}(oldsymbol{lpha})$ if needed, but for this toy we keep μ

<u>Nearly done with the formulae...</u>

Coefficients obtained by matching moments and appealing to CLT at NLO.

Coefficients *a*, *b* and *c* are determined from the first 3 central moments of the joint distributions of $n_{b,l}$ - Mean, covariance **and** skew

$$\begin{aligned} c_I &= -\text{sign}(m_{3,I}) \sqrt{2m_{2,II}} \cos\left(\frac{4\pi}{3} + \frac{1}{3}\arctan\left(\sqrt{8\frac{m_{2,II}^3}{m_{3,I}^2}} - 1\right) \\ b_I &= \sqrt{m_{2,II} - 2c_I^2} , \\ a_I &= m_{1,I} - c_I , \\ p_{IJ} &= \frac{1}{4c_I c_J} \left(\sqrt{(b_I b_J)^2 + 8c_I c_J m_{2,IJ}} - b_I b_J\right) . \end{aligned}$$

1

Solutions valid for $\frac{8(m_{2,II})^3}{(m_{3,I})^2} \ge 1$

Nearly done with the formulae...

Coefficients obtained by matching moments and appealing to CLT at NLO.

Coefficients *a*, *b* and *c* are determined from the first 3 central moments of the joint distributions of $n_{b,l}$ - Mean, covariance **and skew**

$$\begin{split} c_{I} &= -\mathrm{sign}(m_{3,I}) \sqrt{2m_{2,II}} \cos\left(\frac{4\pi}{3} + \frac{1}{3}\arctan\left(\sqrt{8\frac{m_{2,II}^{3}}{m_{3,I}^{2}}} - 1\right)\right) \\ b_{I} &= \sqrt{m_{2,II} - 2c_{I}^{2}} \,, \\ a_{I} &= m_{1,I} - c_{I} \,, \\ \rho_{IJ} &= \frac{1}{4c_{I}c_{J}} \left(\sqrt{(b_{I}b_{J})^{2} + 8c_{I}c_{J}m_{2,IJ}} - b_{I}b_{J}\right) \,. \end{split}$$

Solutions valid for $\frac{8(m_{2,II})^3}{(m_{2,I})^2} \ge 1$

Moments can be calculated analytically or (my preference) using pseudo experiments

$$\begin{split} m_{1,I} &= \mathbf{E}[\hat{n}_I] \\ m_{2,IJ} &= \mathbf{E}[(\hat{n}_I - \mathbf{E}[\hat{n}_I])(\hat{n}_J - \mathbf{E}[\hat{n}_J])] \\ m_{3,I} &= \mathbf{E}[(\hat{n}_I - \mathbf{E}[\hat{n}_I])^3] \end{split}$$

These quantities are the inputs needed to determine the simplified likelihood
<u>Convergence of moment calculation</u> <u>with pseudo-data</u>

 3^{rd} Moment typically requires most toys to get accurate value, however this is mostly true when m_3 is small and therefore not so relevant!

How well does this approximate the distribution of n_l?

We can compare the distribution of \hat{n}_I obtained in the pseudo-data from

A.
$$\hat{n}_I = n_{b,I}(\boldsymbol{\delta}')$$
 generating from $p(\boldsymbol{\delta}) := \pi(\boldsymbol{\delta}) \sim e^{-\frac{1}{2}\boldsymbol{\delta}\cdot\boldsymbol{\delta}}$
B. $\hat{n}_I = n_{b,I}(\boldsymbol{\theta}'_I)$ generating from $p(\boldsymbol{\theta}) \sim e^{-\frac{1}{2}\boldsymbol{\theta}^T \rho^{-1}\boldsymbol{\theta}}$

How well does this approximate the distribution of n_l?

How well does this approximate the distribution of n_l?

Get to the punchline already Nick ...

Eliminating nuisance parameters (δ or θ) indicates how *accurately* we can reproduce statistical interpretations.

e.g. the profiled likelihood ratio test-statistic* is used to set limits on new physics processes at the LHC

$$t_{\mu} = -2\ln\frac{L_{\rm S}^{\rm max}(\mu)}{L_{\rm S}^{\rm max}}$$

$$L_{\mathrm{S}}^{\mathrm{max}}(\mu) = \max_{\theta_{\mathrm{I}}} \left\{ \mathrm{L}_{\mathrm{S}}(\mu, \boldsymbol{\theta}) \right\}$$

HEPData Inputs for toy search uploaded to HepData

Public scipy-based code to calculate SL coefficients and run statistical tests on <u>GitLab</u>

*No reason why we couldn't have marginalised the likelihood to compare Bayesian posterior distributions instead of profiling.

GitLab

How simple is that ?

Counting all the inputs needed

In our toy search, we need 90+90+90+(90*90)/2 = 4320 terms to specify the background yields

- → Total of 4500 to specify the simplified likelihood (with signal and data)
- ightarrow Only needed 729 inputs to specify the *full* likelihood
- If P = number of bins, Q = number of nuisance parameters
- Number of inputs needed for full likelihood ~ 2Q (at large Q)
 → constant for simplified likelihood
- Number of inputs needed for simplified likelihood
 ~ (P²)/2 + P (at large P)

How simple is that ?

Counting all the inputs needed

In our toy search, we need 90+90+90+(90*90)/2 = 4320 terms to specify the background yields

- → Total of 4500 to specify the simplified likelihood (with signal and data)
- ightarrow Only needed 729 inputs to specify the *full* likelihood
- If P = number of bins, Q = number of nuisance parameters
- Number of inputs needed for full likelihood ~ 2Q (at large Q)
 → constant for simplified likelihood
- Number of inputs needed for simplified likelihood
 ~ (P²)/2 + P (at large P)

Simplified likelihood greatly reduces complexity for P << Q !

What about fitting time?

ATLAS Search

Creating PDF/LH and calculating upper limit:

<u>Toy Search</u>

94 nuisance parameters

Evaluate 16 points in a profiled likelihood scan:

RooFit/MINUIT based full likelihood: ~ 31 s on CPU <u>SLtools</u> based simplified likelihood: ~ 1.6 s on CPU

Easily find speed-up of **10-100**X in terms of fitting / statistical inference time when using simplified likelihoods!

Can we do even better?

Essentially what we are doing is to approximate the distribution of the mean for the Poisson probabilities, i.e we want;

So that we can plug **n** into the Poisson terms and constrain them. But why stop there? At the end, we care about *

 $p(\mathbf{n}(\delta)|\boldsymbol{\delta})$

$$L(\boldsymbol{\alpha}, \boldsymbol{\delta}) \propto p(\mathbf{x} | \boldsymbol{\alpha}, \boldsymbol{\delta}) \pi(\boldsymbol{\alpha}, \boldsymbol{\delta})$$

Which, once we specify **x** is just a function;

$$(\boldsymbol{\alpha}, \boldsymbol{\delta}) \rightarrow L(\boldsymbol{\alpha}, \boldsymbol{\delta})$$

We know of statistical models that can be trained to "learn" this function \rightarrow Use *machine learning* to approximate and communicate the likelihood!

Nicholas Wardle

^{*} I know, I know, here I use *L* for a product of the likelihood and the priors!

DNN based likelihoods

Random samples from the toy search experimental likelihood serve as training data for a Deep Neural Network [1]

- 2 hidden layer NN, with SELU activation functions between layers tested different #nodes in hidden layers.
- Adam optimizer with MSE as loss function to train the NN parameters.
- Sampling based on p(x) in this case known from the expt. LH

[1] A. Coccaro, M. Pierini, L. Silvestrini, R. Torre: *Eur. Phys. J.* C **80**, 664 (2020).

DNN based likelihoods

Profiled log-likelihood ratio demonstrates accuracy of DNN likelihood in terms of statistical inference

 Accuracy depends on number of sample points (N)used to train (more than required to determine covariances+skew but not prohibitively large)

ML-based likehood(ratios)

In some cases, it may be more challenging than necessary to learn the likelihood directly \rightarrow if $p(\mathbf{x}|\alpha)$ must be obtained from some complex simulation, but can still generate from p

If you can find a function s(x) that is monotonic with $r(x; \alpha_0, \alpha_1)$ [1], then;

$$r(\mathbf{x}|\alpha_0, \alpha_1) = \frac{p(\mathbf{x}|\alpha_0)}{p(\mathbf{x}|\alpha_1)} = \frac{p(s(\mathbf{x})|\alpha_0)}{p(s(\mathbf{x})|\alpha_1)}$$

e.g s(x) can be a classifier trained to separate α_0 vs α_1

[1] <u>arXiv:1506.02169</u>

ML-based likehood(ratios)

In some cases, it may be more challenging than necessary to learn the likelihood directly

 \rightarrow if $p(\mathbf{x}|\alpha)$ must be obtained from some complex simulation, but can still generate from p

If you can find a function $s(\mathbf{x})$ that is monotonic with $r(\mathbf{x}; \alpha_0, \alpha_1)$ [1], then;

$$r(\mathbf{x}|\alpha_0, \alpha_1) = \frac{p(\mathbf{x}|\alpha_0)}{p(\mathbf{x}|\alpha_1)} = \frac{p(s(\mathbf{x})|\alpha_0)}{p(s(\mathbf{x})|\alpha_1)}$$

e.g $s(\mathbf{x})$ can be a classifier trained to separate $\alpha_0 vs \alpha_1$

Here **x** can be anything \rightarrow not restricted to binned likelihoods!

[1] <u>arXiv:1506.02169</u>

ML-based likehood(ratios)

In some cases, it may be more challenging than necessary to learn the likelihood directly

 \rightarrow if $p(\mathbf{x}|\alpha)$ must be obtained from some complex simulation, but can still generate from p

 $2\Delta \log L(\gamma)$

If you can find a function s(x) that is monotonic with $r(x; \alpha_0, \alpha_1)$ [1], then;

$$r(\mathbf{x}|\alpha_0, \alpha_1) = \frac{p(\mathbf{x}|\alpha_0)}{p(\mathbf{x}|\alpha_1)} = \frac{p(s(\mathbf{x})|\alpha_0)}{p(s(\mathbf{x})|\alpha_1)}$$

e.g $s(\mathbf{x})$ can be a classifier trained to separate $\alpha_0 vs \alpha_1$

Here **x** can be anything \rightarrow not restricted to binned likelihoods!

likelihood-free based inference or Approximate Bayesian Computation (ABC) more common outside HEP - See [2] for a very nice review of applications in HEP!

[1] <u>arXiv:1506.02169</u> [2] <u>arXiv:2010.06439</u>

See the PhyStat seminar from Kyle Cranmer for more ML based approaches

 $p(\mathbf{x}|\gamma) = (1-\gamma) \frac{p_{c_0}(\mathbf{x}) + p_{c_1}(\mathbf{x})}{2} + \gamma p_{c_2}(\mathbf{x})$

I was supposed to be talking about Re-*interpretation*.

All I've done is show you how we can re-**produce** an experimental searches (or measurement)

Re-interpret != Re-produce

Experimental likelihood

$$L(\mu, \boldsymbol{\delta})\pi(\boldsymbol{\delta}) = \prod_{I=1}^{90} P(n_I^{\text{obs}} \mu \cdot n_{s,I} + n_{b,I}(\boldsymbol{\delta})) \cdot \prod_{j=1}^{94} e^{-\delta_j^2}$$

This part is the same for both LHs \rightarrow Changing $n_{s,l}$ allows for re-use of the likelihood for **other signal hypotheses**

$$\frac{\text{Simplified likelihood}}{L(\mu, \boldsymbol{\theta}) \pi(\boldsymbol{\theta})} = \prod_{I=1}^{P=90} P(n_I^{\text{obs}} \mu \cdot n_{s,I} + a_I + b_I \theta_I + c_I \theta_I^2) \cdot \frac{1}{\sqrt{(2\pi)^P}} e^{-\frac{1}{2}\boldsymbol{\theta}^T \boldsymbol{\rho}^{-1} \boldsymbol{\theta}}$$

The same can be true for machine-learned based models for $n_{b,l}$ or $p(x|n_{s,l}, 9)$

Real experimental likelihoods converted into simplified likelihoods...

"Search for direct production of electroweakinos in final states with one lepton, missing transverse momentum and a Higgs boson decaying into two b-jets in pp collisions at sqrt{s}=13 TeV with the ATLAS detector" <u>E. Phys. J. C 80, 691 (2020)</u>

Real experimental likelihoods converted into simplified likelihoods...

"Search for direct production of electroweakinos in final states with one lepton, missing transverse momentum and a Higgs $pp \rightarrow \widetilde{\chi}^0_{_2} \, \widetilde{\chi}^{_\pm}_{_1} \, (\text{Wino}) \text{ production} ; \, \widetilde{\chi}^0_{_2} \rightarrow h \, \widetilde{\chi}^0_{_1} ; \widetilde{\chi}^{_\pm}_{_1} \rightarrow W \, \widetilde{\chi}^0_{_1} \, ; \, 1Lbb$ 500 boson decaying into two b-jets in pp collisions at sqrt{s}=13 TeV m(کڑ) [GeV] ATLAS-SUSY-2019-08 Vs = 13 TeV, 139.0 fb⁻¹ with the ATLAS detector" E. Phys. J. C 80, 691 (2020) 450 All limits at 95% CL Full LH Exp. ($\pm 1 \sigma_{exp}$) 400F Full LH Obs. Simplified LH Exp. (±1 open) Categorize data based on sensitivity to mass 350E Simplified LH Obs difference of $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_1^0$, bin in $m_{\text{CT}} = \sqrt{2p_{\text{T}}^{b_1}p_{\text{T}}^{b_2}(1 + \cos \Delta \phi_{bb})}$, 300 250E GeV 0 18 ATLAS Ge/ 200 Data ATLAS ATLAS Total SM 00 20 Events / 20 Di-/Multiboso Di-/Multik Di-/Multibosor 20 50 √s = 13 TeV, 139 fb 16 s = 13 TeV, 139 fb Single top - Others Single top 📒 Others Single top Others Events 10 SR-LM SR-HM 150E SR-MM --- $m(\tilde{\gamma}^{\pm}/\tilde{\gamma}^{0},\tilde{\gamma}^{0})=(300.75) \text{ GeV}$ ••• $m(\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0},\tilde{\chi}_{1}^{0})=(500,0) \text{ GeV}$ $m(\tilde{\chi}_{..}^{\pm}/\tilde{\chi}_{..}^{0},\tilde{\chi}_{..}^{0})=(750,100) \text{ GeV}$ --- $m(\tilde{\chi}^{\pm}/\tilde{\chi}^{0},\tilde{\chi}^{0})=(300,150) \text{ GeV}$ --- m($\overline{\chi}_{*}^{\pm}/\overline{\chi}_{*}^{0},\overline{\chi}_{*}^{0}$)=(500,250) GeV --- $m(\tilde{\chi}^{\pm}/\tilde{\chi}^{0},\tilde{\chi}^{0})=(700,350) \text{ GeV}$ 100E 15F 50E 200 300 500 600 800 900 100 400 700 1000 180 230 280 330 180 230 280 330 180 230 280 330 E. Schanet, Re-interp 2021 $m(\tilde{\chi}_{1}^{\pm})/m(\tilde{\chi}_{2}^{0})$ [GeV] m_{cT} [GeV] m_{cT} [GeV] m_{cT} [GeV] * In this case, assume $m_{2,I\neq J}=0, m_{3,I}=0$

Comparison of full and simplified

likelihood* based exclusion contours

"Search for dark matter produced with an energetic jet or a hadronically decaying W or Z boson at \sqrt{s} = 13 TeV" <u>JHEP 07 (2017) 014</u>

- Data separated into 1 or 2 jet topologies
- Binned missing transverse momentum distribution used to separate signal from background → 29 bins

Real experimental likelihoods converted into simplified likelihoods*...

"Search for dark matter produced with an energetic jet or a hadronically decaying W or Z boson at \sqrt{s} = 13 TeV"<u>JHEP 07 (2017) 014</u>

- Data separated into 1 or 2 jet topologies
- Binned missing transverse momentum distribution used to separate signal from background
 → 29 bins

I was supposed to be answering whether **we** can re-interpret data from the LHC.

Just because I have the info necessary, doesn't mean you do (or someone 10 years from now does)!

Workflows

Standard workflow for predictions

Calibration from experimental meta data

Analysis descriptions needed to tune workflows

- METADATA
 - MC Event Gen info (SLHA/UFO)
 - Code snippets / RIVET routines for analysis logic
 - BDT/ML algorithms where critical for the selection
- Efficiencies / Resolutions (in particular for LL searches) needed to calibrate detector simulation

<u>https://twiki.cern.ch/twiki/bin/view/</u> <u>AtlasPublic</u>

CMS

http://lhcbproject.web.cern.ch/lhcbp roject/Publications/LHCbProjectPubl ic/Summary_all.html

<u>https://twiki.cern.ch/twiki/bin/view/</u> <u>ALICEpublic/ALICEPublicResults</u>

ALICE

Calibration from experimental meta data

Analysis descriptions needed to tune workflows

- METADATA
 - MC Event Gen info (SLHA/UFO)
 - Code snippets / RIVET routines for analysis logic
 - BDT/ML algorithms where critical for the selection
- Efficiencies / Resolutions (in particular for LL searches) needed to calibrate detector simulation

<u>CMS-SUS-19-006</u> example (Jets+missing energy search)

8.99

8.22

8.2

-1.71

-1.85

-1.28

6.2

4.0

4.3

 64.5 ± 0.6

 $59.6 {\pm} 0.6$

 $54.9 {\pm} 0.6$

- Description of statistical methods
 - E.g validity of asymptotic approximations if used

CMS,

 $\Delta \Phi_{\rm H_T^{miss},j2} > 0.5$

 $\Delta \Phi_{\mathrm{H}^{\mathrm{miss}},\mathrm{i3}} > 0.3$

 $\Delta \Phi_{\mathrm{H}^{\mathrm{miss}},\mathrm{i}4} > 0.3$

https://twiki.cern.ch/twiki/bin/view/ **AtlasPublic**

http://cms-results.web.cern.ch/cms-

results/public-results/publications/

 $58.7\pm^{0.5}_{0.5}$

 $54.7\pm_{0.5}^{0.5}$

 $50.4\pm^{0.5}_{0.5}$

http://lhcbproject.web.cern.ch/lhcbp roject/Publications/LHCbProjectPubl ic/Summary all.html

https://twiki.cern.ch/twiki/bin/view/ ALICEpublic/ALICEPublicResults

Validation in MA5 by M. Mrowietz, S. Bein, J. Sonneveld

 $65.6\pm^{1.0}_{1.0}$

 $60.7\pm^{1.0}_{1.1}$

 $55.6\pm^{1.1}_{1.1}$

6.7

4.9

4.7

6.6

4.9

5.1

Example from CMS (EXO-20-004)

"Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton

collisions at 13 TeV" – Full Run-2 data update

HepData entry

- Signal templates & cutflows
- Simplified likelihood inputs
- MC Generator configs for various signals + <u>MadAnalysis implementation</u>

Example from ATLAS (SUSY-2018-22)

"Search for squarks and gluinos in final states with jets and missing transverse momentum using 139/fb of ps =13 TeV p p collision data with the ATLAS detector"

Nicholas Wardle

Preservation

Preservation of data is vital for longevity of LHC results

Science 2061

- Many members of the generation who may wish to reanalyze the LHC Run 3 data in 2061 have yet to be born.
- That generation may wish to re-analyze these data simultaneously with old LSST and LIGO data using BSM models that they invent from which (with the help of their AI assistants) they are able to compute testable predictions for LHC, LSST, and LIGO data.
- Now ask yourself: What are we doing wrong, or what are we forgetting, that risks thwarting such heroic efforts forty year hence?

H. Prosper <u>Reinterp2021</u>

Publishing likelihoods is a step in that direction

Preservation

Preservation of data is vital for longevity of LHC results

Science 2061

- Many members of the generation who may wish to reanalyze the LHC Run 3 data in 2061 have yet to be born.
- That generation may wish to re-analyze these data simultaneously with old LSST and LIGO data using BSM models that they invent from which (with the help of their AI assistants) they are able to compute testable predictions for LHC, LSST, and LIGO data.
- Now ask yourself: What are we doing wrong, or what are we forgetting, that risks thwarting such heroic efforts forty year hence?

H. Prosper <u>Reinterp2021</u>

Publishing likelihoods is a step in that direction

CERN announces new open data policy in support of open science

A new open data policy for scientific experiments at the Large Hadron Collider (LHC) will make scientific research more reproducible, accessible, and collaborative

11 DECEMBER, 2020

Data storage solutions at the CERN data centre (Image: CERN) https://home.cern/news/press-release/knowledge-sharing/cernannounces-new-open-data-policy-support-open-science

Preservation

Preservation of data is vital for longevity of LHC results

Science 2061

- Many members of the generation who may wish to reanalyze the LHC Run 3 data in 2061 have yet to be born.
- That generation may wish to re-analyze these data simultaneously with old LSST and LIGO data using BSM models that they invent from which (with the help of their AI assistants) they are able to compute testable predictions for LHC, LSST, and LIGO data.
- Now ask yourself: What are we doing wrong, or what are we forgetting, that risks thwarting such heroic efforts forty year hence?

H. Prosper <u>Reinterp2021</u>

Larger efforts to preserve data and analysis workflows are underway at the LHC experiments ...

opendates cent of open data from particle physics! Start typig... Explore datasets schwas anvionments documentation

Software / environments preserved via containers (docker) Large scale analysis possible via

- <u>CMS analysis in the cloud</u>
- <u>Reana</u>

Can we really "Re"-interpret data from the LHC? Long answer, **yes but** ...

- Beware of approximations in unfolded measurements
 - Signal acceptance/response compared to SM.
 - Gaussian approximations and regularization

Can we really "Re"-interpret data from the LHC? Long answer, **yes but** ...

- Beware of approximations in unfolded measurements
 - Signal acceptance/response compared to SM.
 - Gaussian approximations and regularization
- Beware of approximations in simplified likelihoods
 - Simplifications in likelihood combine np → loss of correlation info between analyses
 - Covariance? Skew? ...?

Can we really "Re"-interpret data from the LHC? Long answer, **yes but** ...

- Beware of approximations in unfolded measurements
 - Signal acceptance/response compared to SM.
 - Gaussian approximations and regularization
- Beware of approximations in simplified likelihoods
 - Simplifications in likelihood combine np → loss of correlation info between analyses
 - Covariance? Skew? ...?
- You may still have to wait for large scale full likelihoods
 - Excellent progress here but can it scale ? e.g H-combination O(1000) np
 - ML based solutions are likely the key

Can we really "Re"-interpret data from the LHC? Long answer, **yes but** ...

- Beware of approximations in unfolded measurements
 - Signal acceptance/response compared to SM.
 - Gaussian approximations and regularization
- Beware of approximations in simplified likelihoods
 - Simplifications in likelihood combine np → loss of correlation info between analyses
 - Covariance? Skew? ...?
- You may still have to wait for large scale full likelihoods
 - Excellent progress here but can it scale ? e.g H-combination O(1000) np
 - ML based solutions are likely the key
- Validate your workflow/simulations
 - Additional information useful to calibrate fast detector simulations

Can we really "Re"-interpret data from the LHC? Long answer, **yes but** ...

- Beware of approximations in unfolded measurements
 - Signal acceptance/response compared to SM.
 - Gaussian approximations and regularization
- Beware of approximations in simplified likelihoods
 - Simplifications in likelihood combine np → loss of correlation info between analyses
 - Covariance? Skew? ...?
- You may still have to wait for large scale full likelihoods
 - Excellent progress here but can it scale ? e.g H-combination O(1000) np
 - ML based solutions are likely the key
- Validate your workflow/simulations
 - Additional information useful to calibrate fast detector simulations
- Become a HEP experimental physicists to understand open data?
 - This is getting much better with software containers, tutorials ...

Can we really "Re"-interpret data from the LHC? Long answer, **yes but** ...

- Beware of approximations in unfolded measurements
 - Signal acceptance/response compared to SM.
 - Gaussian approximations and regularization
- Beware of approximations in simplified likelihoods
 - Simplifications in likelihood combine np → loss of correlation info between analyses
 - Covariance? Skew? ...?
- You may still have to wait for large scale full likelihoods
 - Excellent progress here but can it scale ? e.g H-combination O(1000) np
 - ML based solutions are likely the key
- Validate your workflow/simulations
 - Additional information useful to calibrate fast detector simulations
- Become a HEP experimental physicists to understand open data?
 - This is getting much better with software containers, tutorials ...

<u>https://twiki.cern.ch/twiki/bin/view/LHCP</u> <u>hysics/InterpretingLHCresults</u>

latest workshop: https://indico.cern.ch/event/982553/

New series for ECRs to showcase re-interpretable analyses

→ <u>https://indico.cern.ch/category/14155/</u>

info-LHC-interpretation@cern.ch
Thanks!

HepData for published likelihoods

Search for bottom-squark pair production with the ATLAS detector in final states containing Higgs bosons, *b*-jets and missing transverse momentum

HEPData Q Search HEPData	Search							0 A	oout 🛈 Submissio	nHelp 🔹) Sign in
Browse all						1	Last updated o	on 2021-01-15 13:27 🔟	Accessed 336 time	5 99 Cite	JSON
$\mbox{ Hide Publication Information}$ Search for displaced leptons in $\sqrt{s}=13$ TeV pp collisions with the ATLAS detector	ل Download All → Version 1 →	Cutflow SR-ee Table aux12	10.17182/hepda	ta.98796.v1/t1			Re	sources https://w	ww.hepdata.ı 🕑	<u>*</u> *	<u>JSON</u>
The ATLAS collaboration had, Georges , Abbott, Brad , Abbott, Dale Charles , Abed Abud, dam , Abeling, Kira , Abhayasinghe, Deshan Kavishka , Abidi, yed Haider , Abouzeid, Ossama , Abraham, Nicola , Abramowicz, alaina IERN-EP-2020-205, 2020. Ittps://doi.org/10.17182/hepdata.98796		Cutflow for SR- <i>ee</i> f of Monte Carlo eve (500 GeV, 0.1 ns). F for (200 GeV, 0.1 ns cmenergies • 13000	or 5 represent nts generated or the $\tilde{\tau}$ mass :), and 104,000	ative signal are: 24,000 and lifetime for (300 GeV	opints. For th for (100 GeV, (points, the no (, 0.1 ns). observ SUS Pro	e following \tilde{e} 0.01 ns), 16,0 umber of Moi vables sy Super ton-Proton Scatt	mass and lifet 00 for (300 GeV nte Carlo even rsymmetry tering S Elec	time points, the number /, 1 ns), and 12,000 for ts generated are: 30,000 reactio PP- ctrowesk	<pre>view compared with the second se</pre>		MIC: Bury of a
INSPIRE Resources barrent Bernstein State Stat	Observed 95% CL exclusion sensitivity. The limit is displayed in the lifetime xx.m(rife) plane. Staux, $\tilde{r}_{1,2}$ are the mixed Expected stau limits Figure auos 10.17182/mpdata.8756.v1/144 Expected 95% CL exclusion sensitivity. The limit is displayed in the lifetime xx.m(rife) plane. Stauk, $\tilde{r}_{1,2}$ are the mixed		ē (mass, üfetime) = [164:me] č (mass, üfetime) = [164:me] ī (mass, üfetime) = [164:me] ī (mass, üfetime) = [300 GeV, 0.1 ns) ữ (mass, üfetime) = [300 GeV, 0.1 ns) ữ (mass, üfetime) = [300 GeV, 1.1 ns) ữ (mass, üfetime) = [300 GeV, 1.1 ns) ũ (mass, üfetime) = [300 GeV, 1.1 ns) ũ (mass, üfetime) = [300 GeV, 1.1 ns) ū (mass, ũfetime) = [300 GeV, 1.1 ns) □ (mass, □ (mass, mass, □ (mass, mass, mas								
evel, drastically improving on the previous best limits from LEP.	Observed LH stau limits Figure aug 10.17182/hepdata.98796.v1/45 Observed 95% CL exclusion sensitivity. The limit is displayed in the lifetime ex., m(\tilde{r}_{L}) plane, where \tilde{r}_{L} is the pure-state Expected LH stau limits	initial number of events ($\mathcal{L} \times \sigma$) pass trigger and at least 2 baseline leptons 2 leading	50830.0 736.0 393.0	870.0 238.0 143.0	93.6 66.3 40.5	4210.0 37.1 18.1	870.0 15.7 7.84	35,000 - 30,000 - 25,000 - 20,000 - 15,000 - 10,000 - 5,000 -			

https://www.hepdata.net/record/ins1748602

Binned likelihood parameterization in pyHF

$$f(\boldsymbol{n}, \boldsymbol{a} \mid \boldsymbol{\eta}, \boldsymbol{\chi}) = \prod_{\substack{c \in \text{channels } b \in \text{bins}_c \\ \text{Simultaneous measurement of multiple channels}}} \operatorname{Pois}\left(n_{cb} \mid v_{cb} \left(\boldsymbol{\eta}, \boldsymbol{\chi}\right)\right) \qquad \prod_{\substack{\chi \in \boldsymbol{\chi} \\ \text{constraint terms for "auxiliary measurements"}}} c_{constraint terms}$$

- Analysis-specific model terms describing channels with observed events n_{cb} given expected events $v_{cb}(\eta, \chi)$.
- Analysis-independent constraint terms for constrained parameters **x**.

$$v_{cb}(\boldsymbol{\phi}) = \sum_{s \in \text{ samples}} v_{scb}(\boldsymbol{\eta}, \boldsymbol{\chi}) = \sum_{s \in \text{ samples}} \underbrace{\left(\prod_{\kappa \in \kappa} \kappa_{scb}(\boldsymbol{\eta}, \boldsymbol{\chi})\right)}_{\text{multiplicative modifiers}} \left(v_{scb}^{0}(\boldsymbol{\eta}, \boldsymbol{\chi}) + \underbrace{\sum_{\Delta \in \Delta} \Delta_{scb}(\boldsymbol{\eta}, \boldsymbol{\chi})}_{\text{additive modifiers}}\right)$$

- Sample rates v_{scb} with nominal rate v_{scb}^{0}
- Additive and multiplicative rate modifiers $\Delta(\phi)$ and $\kappa(\phi)$

E. Schanet, Re-interp 2021

Simplified likelihood log-likelihood

$$\ln(L_{\rm S}(\mu,\boldsymbol{\theta})\pi(\boldsymbol{\theta})) = \sum_{I}^{P} \left[n_{I}^{\rm obs} \ln\left(\mu n_{s,I} + n_{b,I}(\boldsymbol{\theta})\right) - \left(\mu n_{s,I} + n_{b,I}(\boldsymbol{\theta})\right) - n_{I}^{\rm obs}! \right]$$

$$- \frac{1}{2} \boldsymbol{\theta}^{\rm T} \boldsymbol{\rho}^{-1} \boldsymbol{\theta} - \frac{P}{2} \ln 2\pi$$

$$\partial \ln L_{\rm G} = \frac{P}{2} \left(- n_{I}^{\rm obs} \right)$$
(B.1)

$$\frac{\partial \ln L_{\rm S}}{\partial \mu} = \sum_{I}^{I} \left(\frac{n_{I}^{\rm obs}}{\mu n_{s,I} + n_{b,I}(\theta)} - 1 \right) \cdot n_{s,I}$$
(B.2)
$$\frac{\partial \ln L_{\rm S}}{\partial \theta_{A}} = \left(\frac{n_{A}^{\rm obs}}{\mu n_{s,A} + n_{b,A}(\theta)} - 1 \right) \cdot \left(b_{A} + 2c_{A}\theta_{A} \right) - \sum_{I}^{P} \rho_{AI}^{-1} \theta_{I} ,$$
(B.3)

Analytic simplified likelihood coefficients

$$\begin{split} a_{I} &= n_{I}^{0} \left(1 + \operatorname{tr} \Delta_{2,I} - \frac{1}{6} \sum_{i=1}^{N} \gamma_{i} (\Delta_{1,I,i})^{3} + O(\Delta^{4}) \right) \,, \\ b_{I} &= a_{I} \left(\Delta_{1,I}^{\mathrm{T}} \cdot \Delta_{1,I} + 2 \sum_{i=1}^{N} \gamma_{i} \Delta_{1,I,i} \Delta_{2,I,i} + O(\Delta^{4}) \right)^{1/2} \,, \\ \rho_{IJ} &= \frac{a_{I} a_{J}}{b_{I} b_{J}} \left(\Delta_{1,I}^{\mathrm{T}} \cdot \Delta_{1,J} + \sum_{i=1}^{N} \gamma_{i} (\Delta_{1,I,i} \Delta_{2,J,i} + \Delta_{1,J,i} \Delta_{2,I,i}) \right) + O(\Delta^{4}) \,, \\ c_{I} &= \frac{a_{I}}{6} \sum_{i=1}^{N} \gamma_{i} (\Delta_{1,i})^{3} + O(\Delta^{4}) \,, \end{split}$$

Corrections to correlations

NSL definition of correlation modified due to skew term

Ratio of pIJ to linear correlation shows up to 15% correction in toy model

Unfolded measurements for BSM searches

Correlations between bins and different observables (can be estimated using bootstrapping).

Unfolded measurements used outside of experiments (eg <u>Contur</u>)

SL approximation for a log-normal

Figure 1. The log normal PDFs and corresponding normal approximations for $\sigma = 0.1, 0.3$ and 0.45 are shown in blue, cyan and purple respectively. Solid curves show the true distributions, dashed curves show the approximate distributions.

Signal or background

In measurements we are used to thinking of Signal / Background

Automating the workflow!

The future @ LHC could be to perform optimal analyses and inference that can be packaged up and preserved in totality!

Sourced from https://github.com/diana-hep/madminer.

Excellent tutorial by K. Cramner: https://indico.cern.ch/event/982553/contributions/4220018/attachments/2185603/3706682/MadMiner-tutorial-reinterp-2021.pdf

HepData

Digitized versions of results/additional information in <u>HepData</u>

DOIs minted for whole record and each table via DataCite.

Supports:

- Tabulated data (yields, exclusion/likelihood contours)
- Efficiency maps
- Covariance matrices (SL)
- Error (sources) breakdowns
- Code snippets •
 - C++ codes with analysis routines
 - \rightarrow eg for use with <u>CheckMate</u>,

Variables

Trees

Rivet, MadAnalysis ...

XML for use with ML routines (in TMVA)

Future development: support for **Neural Networks**

- LWTNN: https://github.com/lwtnn/lwtnn
- ONNX: https://onnx.ai/

Re-interpretation frameworks

Writeup contains a (non-exhaustive) list of existing re-interpretation frameworks for searches at the LHC

- Further details about each workflow, describing type of experimental input and key outputs given in report
- Typically our searches can be used for at least one of them, but the more information we provide, the more of them can use it!

Package	Refs.	Experimental inputs	Event input	Detector simulation	Inference/Output
GAMBIT (ColliderBit)	12, 99– 101	Cut-flows, analysis logic, object-level efficiency functions, observed event numbers in signal regions, background covariance matrices	particle	BuckFast (smearing & efficiencies)	Detector-level distributions, signal region efficiencies, simplified likelihood for calculating exclusion limits/contours
CheckMATE	95, 96	Cut-flows, analysis logic, object-level efficiency functions, observed event numbers in signal regions	particle, parton	Delphes	Detector-level distributions, signal region efficiencies, ratio of predicted to excluded cross-section
MadAnalysis 5	17– 19, 97, 98	Cut-flows, analysis logic, object-level efficiency functions, observed event numbers in signal regions, background covariance matrices, JSON likelihoods	particle	Delphes; customisable smearing	Detector-level distributions, signal region efficiencies, $1 - CL_s$ values
Rivet	48, 49	Cut-flows, analysis logic, detector smearing & efficiency functions	particle	Customisable smearing	Truth/detector-level distributions
Contur	61	Unfolded (particle-level) differential cross-sections via Rivet	particle	N/A	Exclusion contours in BSM model space
ADL interpre- ters: adl2tnm, CutLang	20, 53, 54	analysis logic, external functions of complex variables, object or event level efficiencies	particle	External (Delphes, CMS and ATLAS simulations)	cutflows, event-by-event weights per region, histograms
Recast	8	Experiment-specific formats	parton	Experiment- owned (fast) simulation	<i>p</i> -values, upper limits, likelihood values

Implementing analyses validation

Great effort to validate analyses implemented in MA5

CMS analyses, 13 TeV 🛽

Analysis	Short Description	Implemented by	Code	Validation note	Version
➡ CMS-SUS-16-033	Supersymmetry in the multijet plus missing energy channel (35.9 fb-1)	F. Ambrogi and J. Sonneveld	➡ Inspire	G⇒ PDF	v1.7/Delphes3
➡ CMS-SUS-16-039	Electroweakinos in the SS2L, 3L and 4L channels (35.9 fb-1)	B. Fuks and S. Mondal	➡ Inspire	G⇒ PDF	v1.7/Delphes3
G→CMS-SUS-16-048	Compressed electroweakinos with soft leptons (35.9 fb-1)	B. Fuks J.Y. Araz	▷ MA5 dataverse ▷ MA5 dataverse	G→ Sec. 19 in 2002.12220 G→ Sec. 5.3 in 2006.09387	v1.8/Delphes3 v1.8/SFS
G CMS-SUS-16-052	SUSY in the 1I + jets channel (36 fb-1)	D. Sengupta	⇒ Inspire	G⇒ PDF	v1.6/Delphes3
➡ CMS-SUS-17-001	Stops in the OS dilepton mode (35.9 fb-1)	SM. Choi, S. Jeong, DW. Kang et al.	➡ Inspire	G⇒ PDF	v1.6/Delphes3
G CMS-SUS-19-006	SUSY in the HT/missing HT channel (137 fb-1)	M. Mrowietz, S. Bein, J. Sonneveld	➡ MA5 dataverse	G⇒ PDF	v1.8/Delphes3
G CMS-EXO-16-010	Mono-Z-boson (2.3 fb-1)	B. Fuks	➡ Inspire	G⇒ PDF	v1.6/Delphes3
➡ CMS-EXO-16-012	Mono-Higgs (2.3 fb-1)	S. Ahn, J. Park, W. Zhang	🖼 Inspire	G⇒ PDF	v1.6/Delphes3
➡ CMS-EXO-16-022	Long-lived leptons (2.6 fb-1)	J. Chang	➡ Inspire	G⇒ PDF	v1.7/Delphes3
➡ CMS-EXO-17-015	Leptoquarks + dark matter in the 1mu+1jet+met channel (77.4 fb-1)	A. Jueid and B. Fuks	➡ MA5 dataverse	G⇒ PDF	v1.8/Delphes3
➡ CMS-EXO-17-030	Pairs of trijet resonances (35.9 fb-1)	Y. Kang, J. Kim, J. Choi, S. Yun	➡ MA5 dataverse	G⇒ PDF	v1.8/Delphes3
G→CMS-HIG-18-011	Exotic Higgs decay in the 2 muons + 2 b-jet channel via 2 pseudoscalars (35.9 fb-1)	J.B. Lee and J. Lee	➡ MA5 dataverse	G+ PDF	v1.8/Delphes3
➡ CMS-TOP-17-009	SM four-top analysis (35.9 fb-1)	L. Darmé and B. Fuks	➡ Inspire	G⇒ PDF	v1.7/Delphes3
➡ CMS-TOP-18-003	SM four-top analysis (137 fb-1)	L. Darmé and B. Fuks	➡ MA5 dataverse	G⇒ PDF	v1.8/Delphes3

CMS Delphes 3 parametrisation cards for ⇒ EXO-16-010 and SUS-17-001, ⇒ EXO-16-012, ⇒ EXO-16-022, ⇒ EXO-17-015, ⇒ EXO-17-030, ⇒ SUS-16-039, ⇒ SUS-16-041, ⇒ SUS-16-052, ⇒ SUS-19-006, ⇒ HIG-18-011, ⇒ TOP-17-009 and ⇒ TOP-18-003.

The SFS detector parametrisations can be obtained from the MA5 dataverse links, together with the corresponding analysis codes.

Power of unfolding

A good example - |V_{cb}|

• Early 2017, Belle measures |V_{cb}|. Belle-CONF-1612

Precise determination of the CKM matrix element $|V_{cb}|$ with $\bar{B}^0 \to D^{*+} \ell^- \bar{\nu}_\ell$ decays with hadronic tagging at Belle

The Belle Collaboration: A. Abdesselam, I. Adachi, K. Adamczyk, H. Aihara, S. Al Said, K. Arinsteiny, Y. Arita, D. M. Asner, T. Aso, H. Atmacan, V. Aulchenko, T. Aushev, R. Ayad, T. Aziz, V. Babu, I. Badhrees, S. Bahinipati, A. M. Bakich, A. Bala, Y. Ban, V. Bansal, E. Barberio, M. Barrett, W. Bartel, A. Bay, P. Behera, M. Belhorn, K. Belous, M. Berger, F. U. Berniochner, D. Besson, V. Bhardwaj, B. Bhuyan, J. Biswai, T. Bloomfield, S. Blyth, A. Bobrov, A. Bondar, G. Bonvicini, C. Bookwatter, C. Boulahouache, A. Bozek, M. Bracko, N. Braun, F. Breibeck, J. Brodzicka, T. E. Browder, E. Waheed, D. Červenkov, M.-C. Chang, P. Chang, Y. Chao, V. Chekelian, A. Chen, K.-F. Chen, P. Chen, B. G. Cheon, K. Chilikin, R. Chistov, K. Cho, V. Chobanova, S.-K. Choi, Y. Choi, D. Cinabor, J. Crewnekov, M.-C. Chang, P. Chang, Y. Chao, V. Chekelian, A. Chen, K.-F. Chen, P. Chen, B. G. Cheon, K. Chilikin, R. Chistov, K. Dol, Y. Chobanova, S.-K. Kohi, Y. Choi, D. Cinabor, J. Cruchovic, J. Dalforen, O. Nanitovic, J. Dalforen, O. Danitov, S. Diductova, S. Falke, H. Farhat, J. E. Fast, M. Feindt, T. Ferber, A. Frey, O. Frost, B. G. Fulsom, V. Gaur, N. Gabyshev, S. Ganguly, A. Garmash, M. Gelb, J. Gemmier, D. Getzkow, R. Gillard, F. Giordano, R. Glattauer, Y. M. Goh, P. Goldenzweig, B. Golob et al. (363 additional authors not shown)

The precise determination of the CKM matrix element $|V_{cb}|$ is important for carrying out tests of the flavour sector of the Standard Model. In this article we present a preliminary analysis of the $\vec{B}^0 \rightarrow D^{*+} \ell^- \bar{\nu}_{\ell}$ decay mode and its charge conjugate, selected in events that contain a fully reconstructed *B*-meson, using 772 million $e^+ e^- \rightarrow \Upsilon(4S) \rightarrow B\tilde{B}$ events recorded by the Belle detector at KEKB. Unfolded differential decay rates of four kinematic variables fully describing the $B^0 \rightarrow D^{*+} \ell^- \bar{\nu}_{\ell}$ decay in the *B*-meson rest frame are presented. We measure the total branching fraction $B(\tilde{B}^0 \rightarrow D^{*+} \ell^- \bar{\nu}_{\ell}) = (4.95 \pm 0.11 \pm 0.22) \times 10^{-2}$, where the errors are statistical and systematic respectively. The value of $|V_{cb}|$ is determined to be $(37.4 \pm 1.3) \times 10^{-3}$. Both results are in good agreement with current world averages.

Measurement and unfolded data published.

 ~6 weeks later, two papers posted, fitting that data with different parameterisation of the form factors.

e FF parameterisation much more important than expected, a conclusion not possible without the release of data.

86

Measurements for re-interpretation

Combining unfolded measurements with Convino

Package	Refs.	Experimental inputs	Model input	Inference/Output
SModelS	33, 35, 36	Simplified-model cross-section upper limits and efficiency maps from SUSY searches, background covariance matrices	SLHA or LHE (any BSM model with Z_2 -like symmetry)	Ratio of predicted to excluded cross-section, exclusion CL (if efficiency maps are available)
HiggsBounds	90, 91	Model independent (exp. and obs.) 95% CL upper limits and exclusion likelihoods from BSM Higgs searches	masses, widths, cross-sections and BRs (or effective couplings) of all Higgs bosons	Ratio of predicted to excluded cross-section, allowed/excluded at 95% CL, χ^2 for specific searches
ZPEED	92	Observed event numbers in signal regions, background predictions, detector resolution and efficiencies	Model parameters	Likelihood values
DarkCast	93	Simplified-model production mechanism, cross-section upper limits or ratio map of observed to expected cross-sections for dark photon searches	couplings of new gauge bosons to the SM fermions	95% CL exclusion limits on couplings
DarkEFT	104	95% CL exclusion limits on dark sector searches and rare meson decay BRs	effective couplings for 4-fermion oper- ators	95% CL exclusion limits on the effective coupling

Table II. Summary of public frameworks for the reinterpretation of searches and measurements (continued). The columns summarise the major inputs from the experiments used for the reinterpretation, the model inputs, and the principle outputs in terms of performing statistical inference.

Workhorses in experiments

Introduction		Introducti	on						
Setting up the installation	environment and	These pages documen	t the RooStats / RooFit - based	software tools used f	or statistical	analysis within th	e		
For end users th	at don't need to	Higgs PAG - combine.							
CC7 release C recommender	y development MSSW_10_2_X - I version	Combine provides a command line interface to many different statistical techniques available inside RooFit/RooStats used widely inside CMS.							
SLC6/CC7 rele	ase CMSSW_8_1_X	The package exists in 0	The package exists in GIT under https://github.com/cms-analysis/HiggsAnalysis-CombinedLimit						
What has chang	ed between tags?	For more information	about GIT and its usage in CMS	, see http://cms-sw.gi	thub.io/cmss	w/faq.html			
For developers Recommende feature (in a b	d way to develop a ranch)	The code can be check RooFit/RooStats	The code can be checked out from GIT and compiled on top of a CMSSW release that includes a recent RooFi/RooStats						
Combine Tool		Setting up	the environn	nent and i	nstall	ation			
		The instructions below	are for installation within a CM	ISSW environment					
		You can find the latest CombinedLimit/release	releases on github under http es	s://github.com/cms-ar	nalysis/Higgs	Analysis-			
		CC7 release CM	ISSW 10 2 X - recor	nmondod vorsi	on				
		Setting up the environ	ment (once):		011				
		export SCRAM_ARCH=s cmsrel CMSSW_10_2_1 cd CMSSW_10_2_13/sr cmsenv git clone https://g t cd HiggsAnalysis/Cou	lc7_amd64_gcc700 3 c ithub.com/cms-analysis/HiggsA mbinedLimit	nalysis-CombinedLimi†	t.git HiggsAr	nalysis/CombinedL	imi		
		Update to a reccomen	ded tag - currently the reccom	ended tag is v8.0.1 :					
		cd \$CMSSW_BASE/src/ git fetch origin git checkout v8.0.1	HiggsAnalysis/CombinedLimit						

Building & organizing complicated analyses/combinations via higher level tools in CMS and ATLAS

Many additional tools for validation of results in these packages...

Other tools also used:

- https://diana-hep.org/pyhf/ python based, GPU accel.+auto-diff (tensorflow)
- <u>https://github.com/jkiesele/Convino</u> combining differential measurements
- <u>https://jrbourbeau.github.io/pyunfold/</u> iterative unfolding