¢

- G
L. 3
COFFEA ('kofe):

Columnar Object Framework For Effective Analysis

Matteo Cremonesi [FNAL]
On behalf of the COFFEA team

June 1st, 2021

Scientific Method in HEP

* From an hypothesis derive predictions, test the predictions in the real world

* In HEP: generate simulations based on theory, compare simulations with data

Discovery of the Higgs boson at the Large Hadron Collider

CMS Preliminary

W
o

3 ;
Data
O m, =126 GeV
25 Zy* 22
% B z+X
S 20F |1
> I
LU
15 | '
|
10 '.'

200

Dec 05, 2012

\Ns=7TeV:L=5.1fb"
\Vs=8TeV:L=196fb"

*

.

4

L Sl o l‘ T
300 400

.nm:‘u.m-..:m!!ﬁ'l | l

600 800
m,, [GeV]

Black dots: recorded data
Blue shape: simulation

Red shape: simulation of
new theory (in this case the

Higgs)

Detector
Data

MEWEIE
Software

Data Analysis

i

Offline Computing

Detector

Data

MEWEIE
H Software

O
7 2
n

Centralized Individual

Organizational Aspects

» Large collaborations:

- Thousands of particle physicists from hundreds institutes and universities from more than
40 countries

 Central production:
- Large volume of simulation/data
* Billions of events
- Grid computing model

* 300k+ CPU cores over 70+ sites spread all over the world

* Individual analysis
- 100+ teams, all using different analysis software
- Almost 1:1 correspondency between published papers and PhD students
* Analysis are usually lead by the most inexperienced

Data Volume

* Extract physics results require to
handle/analyze a large datasets

- Hundreds of PBs

- WIll increase to EBs In the next decade

* |nefficiencies result In:

- Waste of storage space
- Large time-to-insight
* ~ days to weeks

* Already unsustainable

- CMS Public

- Total Disk
2020 estimates

—

I —a— Run4: 200PU and 275fb~1/yr, 7.5 kHz, no on-going R&D included

| -@- Run4: 200PU and 500fb~1/yr, 10 kHz, no on-going R&D included
! == = 10 to 15% annual resource increase

| | |
2022 2024 2026

Year

|
2028

Inefficiencies of a Typical Analysis Code

e \Waste of storage space Centrally produced ROOT files (~100 TB)

- Each step of the analysis workflow writes
iIntermediate output

~4 x year

\/ on grid, ~1 week

Group ROOT ntuples (~100 TB)

Ntupling

* Large time to insight

- Each step of the analysis workflow takes

o) (@)
significant time to be completed - ~1 X week
EE
* Why? 5 O \/ on batch, ~2 days
- Same data representation and computing Analysis ROOT ntuples (~10 TB)

paradigm of central production are used,
but for individual applications

Several a day

\/on laptop, ~few minutes

plots and tables

Analysis

Event Loop Analysis of ROOT Files

* File-based data representation in ROOT format

- Each file is a collection of events

» Event loop analysis of a ROQOT file

- Load relevant values for a specific event into local variables

HO®» [0

Event loop

- Evaluate several expression
- Store derived values in new ROOT files

* Duplicating the variables that were not manipulated, but that will
be needed later on

- Repeat

What is COFFEA?

A package in the scientific python ecosystem that provides a user interface for columnar

analysis in HEP

Visualization

Algorithms

Array API

Data ingestion
Task scheduler

Resource provisioning

‘@ coea matplitlib =
S seier 6 Numba \\‘/ Coffea

ARROWD» I numpy

L aurelin ServiceX

Spqﬂ(L/ﬁ DASK Z&Striped ‘*’

i Slurm etfc.

kubernetes HICONAYr

Columnar Analysis: A Paradigm Shift

» Columnar data representation

(numpy vector operation - fast

- Load relevant values for many events into contiguous
columns

- Events are rows

* Columnar analysis

- Evaluate array programming expressions

» Simple vector operations to act on an entire columns at
once

* No explicit loops

Columnar

- Store derived values in new contiguous columns N e
* No new files written on disk

10

Main Benefits of COFFEA

* Ease of use and readability

- Column analysis is a higher-level description of
manipulations than an event loops
- Code is human-readable K

e Efficient code

- Columnar analysis aligns with strengths of modern CPUs

- Make it easy to write computationally efficient code

» Community support

- Take advantage of off-the-shelf tools from data science

11

What COFFEA Provides

* Physicist friendly tools for column based analysis

- Implements typical recipes needed to operate on NanoAOD-like ntuples

* histogramming, plotting, and look-up table functionalities for weights and MC
corrections

- Supplies facilities for horizontally scaling

 Currently in https://github.com/CoffeaTeam/coffea
- plp 1nstall coffea

* Realized using:

- Scientific python ecosystem:
* numpy, numba, scipy, matplotlib
- Awkward-array:

* array programming primitives to handle “Jagged Arrays”
12

HEP Data in Columnar Form: Jagged Arrays

HEP data is not “rectangular”:

+ Cannot be represented as a flat table

- different numbers of muons/electrons/jets etc in each event

+ Can be represented as arrays of variable-length (jagged arrays)

13

- https://github.com/scikit-hep/awkward-array

Event 1

Event 2

Event 3

Event 4

Muon pt: table

40.2

/1.1

52.3

34.5

25.6

35.7

15.7

10.2

[40.2

25.6

Event 1

Muon pt: jagged array

10.2] [

/1.1 35.7] I

Event 2

52.31 |

Event 3

34.5 15.71]

Event 4

https://github.com/scikit-hep/awkward-array

Apply Selections: Masking Jagged Arrays

To apply selections, one uses a mask:

mu_pt — [402 256 102 [71.1 357 [523] [34.5 15.7]
maSk=(mu_pt>30)= [7 F F1[T T J[7 1[T F ol
mU_pt[maSk] — [[402 | [71.1 357 | [523] [34.5]]

Note that there was no explicit for loop over the events, and the mask was

applied to each muon in each event

14

COffea pProcessor] f;m coea iport hist, brocessor

¢ class MyProcessor(processor.ProcessorABC):

* Abstraction to encapsulate analysis . def__init_(self, flag=False):
| self. flag =flag
C()de self. accumulator = processor.dict_accumulator({
‘ # Define histograms '
« Keep it separate from input column)
delivery and output reduction (i.e. b ot oo ulator(selh

return self. accumulators

histogramming)

def process(self, df):

* Defines the anaIySiS selections, : output = self.accumulator.identity()
weights, and output histograms #PHYSICS GOES HERE

- Input: dataframe of awkward arrays return output

def postprocess(self, accumulator):
return accumulator

- Output: histograms, counters, small arrays

; p = MyProcessor()

15

Coffea executor

* Handles the interaction with the column delivery mechanism

- communicating with back-end scale-out systems
» Dask, Spark, Parsl, HTCondor

* Once defined, your processor can be passed to different executors with a
single line change

reduce Histograms

- Event lists

i ROOT files map

: Parquet files ——

1! coffea processor

16

NanoEvents

* Coffea utility to wrap the CMS NanoAOD format into a single awkward array, with:
- appropriate object methods, such as Lorentz vector methods
- Cross references
- nested objects

* Instantiate an event object reading a NanoAOD file:

import awkward as ak
from coffea.nanoevents import NanoEventsFactory, NanoAODSchema

fname = "https://raw.githubusercontent.com/CoffeaTeam/coffea/master/tests/samples/nano_dy.root"
events = NanoEventsFactory.from_root(fname, schemaclass=NanoAODSchema).events()

* Access the energy of the GendJets:

events.GenJet.energy

<Array [[217, 670, 258], ... 16], [76.9]] type='40 x var x float32'>

17

Processor Code Examples

* Python allows very flexible interface, under-the-hood data structure is columnar
* One line of code to define analysis objects with NanoEvents:

electrons = events.Electron

* One line of code to define the mask to select tight electrons:

electronSelectTight = ((electrons.pt>35) &
(abs(electrons.cta)<2.1) &

(abs(electrons.eta) < 1.4442) | (abs(electrons.eta) > 1.566) &
(electrons.cutBased>=4)

* One line of code to select tight electrons from all events - no explicit for loop over electrons!

tightElectron = electrons[electronSelectTight]

* One line of code to define events passing tight electron requirements - no explicit for loop over events!

eventSelection = (ak.num(tightElectron) ==1)

18

Using COFFEA for CMS Analysis
* Tens of analysis in CMS have already adopted COFFEA

- User community is growing, ~40/50 people contributing at some extent
- Some analyses go from centrally produced NanoAOD directly to plots, with no usage of

standard tools

* Results

- No intermediate output written on disk
* Directly from inputs to plots
- Analysis turn-around time reduced by more than two order of magnitudes

* From days to hours

19

Conclusions

* An innovative tool has been developed for data analysis in particle physics
- It pioneers the utilization of columnar analysis

* It addresses the main issues that affect the current way of doing analysis
- Shortage of disk space
- Long time-to-insight, limited interactivity

* |t Is a real-world solution

- It takes into account the constraints, does not require organizational changes or additional

resources

- Already used for publishable (or already published) results

20

Documentation

 Coffea documentation

- https://cofteateam.qgithub.io/coftea/

» Simple examples (with comments) for IRIS-HEP benchmarks*

- https://github.com/mat-adamec/coffea-benchmarks/tree/master/benchmarks

- *Set of tasks designed to demonstrate and compare usability against other analysis

systems

» Coffea users egroup: cms-coffea-users.cern.ch

- Biweekly coffea users meeting on Mondays

21

https://coffeateam.github.io/coffea/
https://github.com/mat-adamec/coffea-benchmarks/tree/master/benchmarks
http://cms-coffea-users.cern.ch

Backup

22

Baby Ecosystem

» Coffea serves as incubator for rapid prototyping of missing pieces in our

ecosystem. Good abstractions are factored out.

N W)
astropy A
-- SymP
BT T T Rl

Network,X.

IPILyl:

8 NumPy jupyter
S’

_

IPython

DASK

7 @ python” ™ 2

23

ﬁproot % |

V=1)

Awlzwa rd
rray

