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Scientific Method in HEP
• From an hypothesis derive predictions, test the predictions in the real world 
• In HEP: generate simulations based on theory, compare simulations with data
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- Black dots: recorded data
- Blue shape: simulation 
- Red shape: simulation of 

new theory (in this case the 
Higgs)

Discovery of the Higgs boson at the Large Hadron Collider
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Organizational Aspects
• Large collaborations:
- Thousands of particle physicists from hundreds institutes and universities from more than 

40 countries
• Central production:
- Large volume of simulation/data
• Billions of events

- Grid computing model
• 300k+ CPU cores over 70+ sites spread all over the world

• Individual analysis
- 100+ teams, all using different analysis software
- Almost 1:1 correspondency between published papers and PhD students
• Analysis are usually lead by the most inexperienced
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Data Volume
• Extract physics results require to 

handle/analyze a large datasets
- Hundreds of PBs

- Will increase to EBs in the next decade

• Inefficiencies result in:
- Waste of storage space

- Large time-to-insight

• ~ days to weeks

• Already unsustainable 
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Inefficiencies of a Typical Analysis Code
• Waste of storage space
- Each step of the analysis workflow writes 

intermediate output
• Large time to insight
- Each step of the analysis workflow takes 

significant time to be completed
• Why?
- Same data representation and computing 

paradigm of central production are used, 
but for individual applications
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Event Loop Analysis of ROOT Files
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From K. Pedro

Event 
loop

• File-based data representation in ROOT format
- Each file is a collection of events
• Event loop analysis of a ROOT file
- Load relevant values for a specific event into local variables
- Evaluate several expression
- Store derived values in new ROOT files
• Duplicating the variables that were not manipulated, but that will 

be needed later on 
- Repeat



What is COFFEA?
A package in the scientific python ecosystem that provides a user interface for columnar 

analysis in HEP
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Columnar Analysis: A Paradigm Shift
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From K. Pedro
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Columnar

• Columnar data representation
- Load relevant values for many events into contiguous 

columns
- Events are rows
• Columnar analysis
- Evaluate array programming expressions
• Simple vector operations to act on an entire columns at 

once
• No explicit loops

- Store derived values in new contiguous columns
• No new files written on disk



Main Benefits of COFFEA
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• Ease of use and readability
- Column analysis is a higher-level description of 

manipulations than an event loops

- Code is human-readable

• Efficient code
- Columnar analysis aligns with strengths of modern CPUs

- Make it easy to write computationally efficient code

• Community support
- Take advantage of off-the-shelf tools from data science



What COFFEA Provides
• Physicist friendly tools for column based analysis
- Implements typical recipes needed to operate on NanoAOD-like ntuples
• histogramming, plotting, and look-up table functionalities for weights and MC 

corrections
- Supplies facilities for horizontally scaling 
• Currently in https://github.com/CoffeaTeam/coffea 
- pip install coffea

• Realized using:
- Scientific python ecosystem:
• numpy, numba, scipy, matplotlib

- Awkward-array:
• array programming primitives to handle “Jagged Arrays” 
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 HEP Data in Columnar Form: Jagged Arrays
HEP data is not “rectangular”:
• Cannot be represented as a flat table

• different numbers of muons/electrons/jets etc in each event

• Can be represented as arrays of variable-length (jagged arrays)
• https://github.com/scikit-hep/awkward-array
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Event 1 40.2 25.6 10.2

Event 2 71.1 35.7

Event 3 52.3

Event 4 34.5 15.7

Muon pt: table

Muon pt: jagged array

40.2 25.6 10.2 71.1 35.7 52.3 34.5 15.7[[ ]  [ ]  [ ]]]  [

Event 1 Event 2 Event 3 Event 4

https://github.com/scikit-hep/awkward-array


Apply Selections: Masking Jagged Arrays
To apply selections, one uses a mask:

mu_pt                        =

mask = (mu_pt > 30) = 

mu_pt[mask]              = 

Note that there was no explicit for loop over the events, and the mask was 
applied to each muon in each event
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40.2 25.6 10.2 71.1 35.7 52.3 34.5 15.7[[ ]  [ ]  [ ]]]  [

T F F T T T T F[[ ]  [ ]  [ ]]]  [

40.2 71.1 35.7 52.3 34.5[[ ]  [ ]  [ ]]]  [



Coffea processor
• Abstraction to encapsulate analysis 

code
• Keep it separate from input column 

delivery and output reduction (i.e. 
histogramming)
• Defines the analysis selections, 

weights, and output histograms
- Input: dataframe of awkward arrays
- Output: histograms, counters, small arrays 
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Coffea executor
• Handles the interaction with the column delivery mechanism
- communicating with back-end scale-out systems
• Dask, Spark, Parsl, HTCondor

• Once defined, your processor can be passed to different executors with a 
single line change
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NanoEvents
• Coffea utility to wrap the CMS NanoAOD format into a single awkward array, with:
- appropriate object methods, such as Lorentz vector methods
- cross references
- nested objects

• Instantiate an event object reading a NanoAOD file:

• Access the energy of the GenJets:
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import awkward as ak 
from coffea.nanoevents import NanoEventsFactory, NanoAODSchema 

fname = "https://raw.githubusercontent.com/CoffeaTeam/coffea/master/tests/samples/nano_dy.root" 
events = NanoEventsFactory.from_root(fname, schemaclass=NanoAODSchema).events()

events.GenJet.energy 

<Array [[217, 670, 258], ... 16], [76.9]] type='40 * var * float32'>



Processor Code Examples
• Python allows very flexible interface, under-the-hood data structure is columnar

• One line of code to define analysis objects with NanoEvents: 

• One line of code to define the mask to select tight electrons:

• One line of code to select tight electrons from all events - no explicit for loop over electrons!

• One line of code to define events passing tight electron requirements - no explicit for loop over events! 
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electronSelectTight	=	((electrons.pt>35)	&		

																															(abs(electrons.eta)<2.1)	&		

																															(abs(electrons.eta)	<	1.4442)	|	(abs(electrons.eta)	>	1.566)	&							

																															(electrons.cutBased>=4)	

																														)

eventSelection	=	(ak.num(tightElectron)	==1)

electrons	=	events.Electron

tightElectron	=	electrons[electronSelectTight]



Using COFFEA for CMS Analysis
• Tens of analysis in CMS have already adopted COFFEA
- User community is growing, ~40/50 people contributing at some extent

- Some analyses go from centrally produced NanoAOD directly to plots, with no usage of 

standard tools

• Results
- No intermediate output written on disk

• Directly from inputs to plots

- Analysis turn-around time reduced by more than two order of magnitudes

• From days to hours
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Conclusions
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• An innovative tool has been developed for data analysis in particle physics
- It pioneers the utilization of columnar analysis

• It addresses the main issues that affect the current way of doing analysis
- Shortage of disk space

- Long time-to-insight, limited interactivity

• It is a real-world solution
- It takes into account the constraints, does not require organizational changes or additional 

resources

- Already used for publishable (or already published) results



Documentation
• Coffea documentation

- https://coffeateam.github.io/coffea/

• Simple examples (with comments) for IRIS-HEP benchmarks* 

- https://github.com/mat-adamec/coffea-benchmarks/tree/master/benchmarks

- *Set of tasks designed to demonstrate and compare usability against other analysis 

systems

• Coffea users egroup: cms-coffea-users.cern.ch

- Biweekly coffea users meeting on Mondays
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https://coffeateam.github.io/coffea/
https://github.com/mat-adamec/coffea-benchmarks/tree/master/benchmarks
http://cms-coffea-users.cern.ch
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Baby Ecosystem
• Coffea serves as incubator for rapid prototyping of missing pieces in our 

ecosystem. Good abstractions are factored out.
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