

COFFEA ('kôfē): **Columnar Object Framework For Effective Analysis**

Matteo Cremonesi [FNAL] On behalf of the COFFEA team

June 1st, 2021

Scientific Method in HEP

- From an hypothesis derive predictions, test the predictions in the real world
- In HEP: generate simulations based on theory, compare simulations with data

Discovery of the Higgs boson at the Large Hadron Collider

st the predictions in the real world neory, compare simulations with data

Analysis Software

Detector Data Simulation

Centralized

Analysis Software

Individual

Organizational Aspects

- Large collaborations:
 - 40 countries
- Central production:
 - Large volume of simulation/data
 - Billions of events
 - Grid computing model
 - 300k+ CPU cores over 70+ sites spread all over the world
- Individual analysis
 - 100+ teams, all using different analysis software -
 - Almost 1:1 correspondency between published papers and PhD students
 - Analysis are usually lead by the most inexperienced

- Thousands of particle physicists from hundreds institutes and universities from more than

Data Volume

- Extract physics results require to handle/analyze a large datasets
 - Hundreds of PBs
 - Will increase to EBs in the next decade
- Inefficiencies result in:
 - Waste of storage space
 - Large time-to-insight
 - ~ days to weeks
- Already unsustainable

Inefficiencies of a Typical Analysis Code

- Waste of storage space
 - Each step of the analysis workflow writes intermediate output
- Large time to insight
 - Each step of the analysis workflow takes significant time to be completed
- Why?
 - Same data representation and computing paradigm of central production are used, but for individual applications

Centrally produced ROOT files (~100 TB) ~4 x year Ntupling on grid, ~1 week Group ROOT ntuples (~100 TB) Skimming Slimming ~1 x week on batch, ~2 days Analysis ROOT ntuples (~10 TB) nalysis Several a day on laptop, ~few minutes ◄ plots and tables

Event Loop Analysis of ROOT Files

- File-based data representation in ROOT format
 - Each file is a collection of events
- Event loop analysis of a ROOT file
 - Load relevant values for a specific event into local variables
 - Evaluate several expression
 - Store derived values in new ROOT files
 - Duplicating the variables that were not manipulated, but that will be needed later on
 - Repeat

What is COFFEA?

A package in the scientific python ecosystem that provides a user interface for columnar analysis in HEP

Columnar Analysis: A Paradigm Shift

- Columnar data representation
 - Load relevant values for many events into contiguous columns
 - Events are rows
- Columnar analysis
 - Evaluate array programming expressions
 - Simple vector operations to act on an entire columns at once
 - No explicit loops
 - Store derived values in new contiguous columns
 - No new files written on disk

Main Benefits of COFFEA

- Ease of use and readability
 - Column analysis is a higher-level description of manipulations than an event loops
 - Code is human-readable
- Efficient code
 - Columnar analysis aligns with strengths of modern CPUs
 - Make it easy to write computationally efficient code
- Community support
 - Take advantage of off-the-shelf tools from data science

What COFFEA Provides

- Physicist friendly tools for column based analysis
 - Implements typical recipes needed to operate on NanoAOD-like ntuples
 - histogramming, plotting, and look-up table functionalities for weights and MC corrections
 - Supplies facilities for horizontally scaling
- Currently in https://github.com/CoffeaTeam/coffea
 - pip install coffea
- Realized using:
 - Scientific python ecosystem:
 - numpy, numba, scipy, matplotlib
 - Awkward-array:
 - array programming primitives to handle "Jagged Arrays"

HEP Data in Columnar Form: Jagged Arrays

HEP data is not "rectangular":

- Cannot be represented as a flat table
 - different numbers of muons/electrons/jets etc in each event
- Can be represented as arrays of variable-length (jagged arrays)
 - <u>https://github.com/scikit-hep/awkward-array</u>

Muon pt: table

Event 1	40.2	25.6	10.2
Event 2	71.1	35.7	
Event 3	<i>52.3</i>		
Event 4	34.5	15.7	

Muon pt: jagged array

[[40.2	25.6	<i>10.2</i>][71.1	35.7]	[52.3][34.5	15.7	
	Event 1		Event 2		Event 3	Eve	Event 4	

Apply Selections: Masking Jagged Arrays

To apply selections, one uses a *mask*:

mu_pt	=	[[40.2	25.6	10.2] [71.1	35.7] [52.3]	[34.5	<i>15.7</i>]]
$mask = (mu_pt > 30)$	=	[[T	F	F] [T	τ][τ]	[7	F]]
mu_pt[mask]	=	[[40.2]	[71.1	35.7] [52.3]	[34.5]]		

Note that there was no explicit for loop over the events, and the mask was applied to each muon in each event

Coffea processor

- Abstraction to encapsulate analysis code
- Keep it separate from input column delivery and output reduction (i.e. histogramming)
- Defines the analysis selections, weights, and output histograms
 - Input: dataframe of awkward arrays
 - Output: histograms, counters, small arrays

from coffea import hist, processor

```
class MyProcessor(processor.ProcessorABC):
def ___init___(self, flag=False):
  self._flag = flag
  self._accumulator = processor.dict_accumulator({
     # Define histograms
```

@property **def** accumulator(self): **return** self._accumulators

def process(self, df): output = self.accumulator.identity()

PHYSICS GOES HERE

return output

def postprocess(self, accumulator): return accumulator

p = MyProcessor()

Coffea executor

- Handles the interaction with the column delivery mechanism
 - communicating with back-end scale-out systems
 - Dask, Spark, Parsl, HTCondor
- single line change

Once defined, your processor can be passed to different executors with a

NanoEvents

- Coffea utility to wrap the CMS NanoAOD format into a single awkward array, with:
 - appropriate object methods, such as Lorentz vector methods
 - cross references
 - nested objects
- Instantiate an event object reading a NanoAOD file:

import awkward as ak from coffea.nanoevents import NanoEventsFactory, NanoAODSchema

fname = "https://raw.githubusercontent.com/CoffeaTeam/coffea/master/tests/samples/nano_dy.root" events = NanoEventsFactory.from_root(fname, schemaclass=NanoAODSchema).events()

• Access the energy of the GenJets:

events.GenJet.energy

<Array [[217, 670, 258], ... 16], [76.9]] type='40 * var * float32'>

Processor Code Examples

- Python allows very flexible interface, under-the-hood data structure is columnar
- One line of code to define analysis objects with NanoEvents:

electrons = events.Electron

• One line of code to define the mask to select tight electrons:

electronSelectTight = ((electrons.pt>35) & (abs(electrons.eta)<2.1) & (electrons.cutBased>=4)

• One line of code to select tight electrons from all events - **no** explicit for loop over electrons!

One line of code to define events passing tight electron requirements - no explicit for loop over events!

```
(abs(electrons.eta) < 1.4442) \mid (abs(electrons.eta) > 1.566) \&
```

```
tightElectron = electrons[electronSelectTight]
```

```
eventSelection = (ak.num(tightElectron) ==1)
```

Using COFFEA for CMS Analysis

- Tens of analysis in CMS have already adopted COFFEA
 - User community is growing, $\sim 40/50$ people contributing at some extent
 - Some analyses go from centrally produced NanoAOD directly to plots, with no usage of standard tools
- Results
 - No intermediate output written on disk
 - Directly from inputs to plots
 - Analysis turn-around time reduced by more than two order of magnitudes
 - From days to hours

Conclusions

- An innovative tool has been developed for data analysis in particle physics
 - It pioneers the utilization of columnar analysis
- It addresses the main issues that affect the current way of doing analysis
 - Shortage of disk space
 - Long time-to-insight, limited interactivity
- It is a real-world solution
 - It takes into account the constraints, does not require organizational changes or additional resources
 - Already used for publishable (or already published) results

Documentation

- Coffea documentation
 - https://coffeateam.github.io/coffea/
- Simple examples (with comments) for IRIS-HEP benchmarks*
 - https://github.com/mat-adamec/coffea-benchmarks/tree/master/benchmarks
 - *Set of tasks designed to demonstrate and compare usability against other analysis systems
- Coffea users egroup: <u>cms-coffea-users.cern.ch</u>
 - Biweekly coffea users meeting on Mondays

Baby Ecosystem

 Coffea serves as incubator for rapid prototyping of missing pieces in our ecosystem. Good abstractions are factored out.

