
Some thoughts on analysis tools

Jan Bernauer

Software & Computing round table, June 1, 2021

Where I come from

I Socialized in small to mid-sized collaborations
I Started in A1 collab in Mainz: Custom analysis

package not based on ROOT!

I Wrote analysis framework for OLYMPUS
I ROOT based
I Now also in use in DarkLight, TPEX, MUSE, TREK
I Compiles on all linux distros I tried, Mac OS X

I Students at small experiments will be postdocs at the
big experiments.

I PI of eRD23: Streaming readout for EIC

2

Where I come from

I Socialized in small to mid-sized collaborations
I Started in A1 collab in Mainz: Custom analysis

package not based on ROOT!
I Wrote analysis framework for OLYMPUS

I ROOT based
I Now also in use in DarkLight, TPEX, MUSE, TREK
I Compiles on all linux distros I tried, Mac OS X

I Students at small experiments will be postdocs at the
big experiments.

I PI of eRD23: Streaming readout for EIC

3

What is an event?

Physics event: Causaly linked chain of “things happening”
I This is what a theorists thinks about
I Or a Monte Carlo generator/simulation (typically)
I And what we need in the final physics analysis (we

count these)

DAQ events / events on tape: coincidentally linked
“things happening”
I Typically: Trigger
I In SRO: “same time bucket” , “same bunch” or similar

4

What is an event?

Physics event: Causaly linked chain of “things happening”
I This is what a theorists thinks about
I Or a Monte Carlo generator/simulation (typically)
I And what we need in the final physics analysis (we

count these)
DAQ events / events on tape: coincidentally linked
“things happening”
I Typically: Trigger
I In SRO: “same time bucket” , “same bunch” or similar

5

They say she’s the same, but she isn’t the same

These things are not the same!
I A DAQ event can have multiple physics events + noise
I In SRO, a physics event can span multiple DAQ events

Analysis software typically works on DAQ events. Why?
Because data are stored this way!

6

My humble opinion

I What belongs to a physical event is an analysis
decision.
I Might actually be really high level (especially in

SRO)
I i.e. delayed decay of DM

I Analysis tools need to support this difference!
I Analysis framework should not force “eventification”

7

The data must flow

I Decompose data into a series of streams
I Elements in a stream are of same/similar type
I Time ordered

I Analysis is then a DAG (almost)
I An operation can add/replace streams

I “A stream of tracks”
I “A stream of physics events”

8

The data must flow

I Decompose data into a series of streams
I Elements in a stream are of same/similar type
I Time ordered

I Analysis is then a DAG (almost)
I An operation can add/replace streams
I “A stream of tracks”
I “A stream of physics events”

9

How much of your code looks like this?

fo r a l l events :
fo r a l l h i t s :

do_something (h i t)

10

An example: TPC reconstruction

I First step: Input: TPC hits. Output: track stubs
(projected axis unresolved)

I Parallel first step: Input: timing detector waveforms,
Output: timing detector timestamps

I Second step: Input: track stubs, hits in timing detector.
Output: full tracks

11

Effects on storage

I No massive event, but semi-independent streams.
Possibly in multiple files.

I Columnar storage instead of row storage.
(But: data is not a table)

I Comes naturally for SRO
I Only load what you need
I Only write what is new
I no DSTs.

I No, actually: custom DSTs at any level!

12

Effects on storage

I No massive event, but semi-independent streams.
Possibly in multiple files.

I Columnar storage instead of row storage.
(But: data is not a table)

I Comes naturally for SRO
I Only load what you need
I Only write what is new
I no DSTs.

I No, actually: custom DSTs at any level!

13

Effects on compute

I Only load what you need
I Only write what is new
I Simpler data structure: better for HPC
I More homogenous data. Better compression?
I Can aggressively cache intermediate results. Faster

dev cycles.

14

Effects on coding

I Naturally decomposes analysis in individual, (semi-)
independent tasks

I Data structures define interface.
I Can exchange parts.
I Maps trivially to responsibilities of groups.
I Contains effects of code breakage.

15

Data coordination

I We need tools to organize this data flow
I Have to support disk caching
I data locality awareness
I support disconnected mode

16

Optimize for Users or Developers?

I In a small collaboration, all users are developers.
I Everyone needs more developers!
I Make sure it is easy to become a developer!
I Do not adopt REPL.
I A web browser is a bad replacement for an IDE.

17

Avoid hard transitions

I python/jupyter:
I Great for users.
I But cannot write high perfomance algos in pure

python.
I How well does scipy fit to your data?

I singularity/docker:
I Great to get started.
I And then? What is my editor?
I How do I compile a new module?
I How do I get data in and out?

At every transition, you use possible developers. Have the
pain once.

18

How to avoid transitions

I Set them up with a complete setup, including
sources. Compile stuff.

I Avoid macros. Give them templates to start with.
I Stay in one language

I otherwise people have to learn two
I AND how they interface

I If C/C++, it should be compiled
I Generations of people were ruined by the lenient

CINT.

19

What language to use?

Modern C++
I too late for Rust (for EIC, and in general)
I Most people speak C, C++
I translates to SystemC, OpenCL etc.
I Python is great. But too slow.

20

Black box problem

I All documentation lies.
I And rots, fast.
I Best case: Documents what author thought, not what

code does.
I People need to be able to look at lower-level code.

Train them in that. It makes them developers!

21

How to get people to use your stuff

I If people are using something else already, and get
results, you have already lost

I Uphill battle. You can only win if you:
I Have (essentially) feature parity
I Are easier/similar to use
I Have a good selling point. (Nicer design is not a

selling point, unfortunately)

22

How to get people to use your stuff

I If people are using something else already, and get
results, you have already lost

I Uphill battle. You can only win if you:
I Have (essentially) feature parity
I Are easier/similar to use
I Have a good selling point. (Nicer design is not a

selling point, unfortunately)

23

Assorted comments (mostly root rant)

I Do one thing, and do it well.
I Why does ROOT wrap every library under the

sun? Is this systemd?
I Please get rid of global state.
I Think about names

I What does TH1::clear() do?
I Don’t be brain dead

I TTimeStamp::GetTime()
I Avoid magic

I Every magic button means less people will look
under the hood.

24

