
Organizing Small Software
Projects
Ben Morgan

What is a “Small Software Project”?

● In the context of this meeting, software projects that may be
○ Specific: e.g. to simulate/process/analyse data from an experiment
○ General: e.g. event generators used by many experiments

● The metric here for “Small” is total developer FTE
○ Not always related to size of the experiment/community using the software
○ FTE because developers may only be funded a fraction of their time to

work on the software/experiment
○ This is slightly biased towards specific projects, as general ones often have

an active, though transient, population of contributors
● To take the SuperNEMO 0𝜈𝛽𝛽 search experiment as an example:

○ ~100 researchers, 1-2FTE on software from 2-8 developers

2

● Limited FTE, often with high turnover from limited funding/short contracts
○ “Get it working” pressure can lead to neglect of long term support items
○ Easily leads to a critical Bus Factor of 1-2

● Not Invented Here syndrome (reinventing the wheel)
○ Usually driven and exacerbated by the above
○ Fewer developers can mean less breadth of knowledge/experience

● Often a high level of overthinking/engineering
○ Not unique to small projects, but creates further long term support issues
○ Developers ⩰ Users

● Importance of software work to an experiment or the community may not
be recognized by funding bodies (or even experiment members!)
○ Can be particularly challenging for community wide projects

3

Typical challenges faced in smaller projects

https://en.wikipedia.org/wiki/Not_invented_here

● In all cases, the challenges are best addressed by projects implementing,
maintaining and focussing on the foundations
○ Documentation (README/CONTRIBUTING, Sphinx, Doxygen)
○ Build and testing (CMake/CTest/etc)
○ Code style/quality tools (clang-format/tidy, Black/flake8)
○ Package management/deployment (Conda/Pip/Spack/CVMFS etc)
○ Version Control and Continuous Integration workflows

● Might be obvious (even boring), but neglecting these will build up high
interest technical debt that sooner or later will have to be repaid in FTE
○ Been there, done/doing that

● There is a growing recognition of the criticality of sustainable and
reproducible software for research, but never be afraid to repeat the case!

4

Addressing Challenges

https://www.sphinx-doc.org/en/master/
https://www.doxygen.nl/index.html
https://cmake.org
https://clang.llvm.org/docs/ClangFormat.html
https://clang.llvm.org/extra/clang-tidy/
https://black.readthedocs.io/en/stable/#
https://flake8.pycqa.org/en/latest/#
https://docs.conda.io/en/latest/
https://pip.pypa.io/en/stable/
https://spack.io
https://cernvm.cern.ch/fs/

• Managing Code and Documents
• Development Workflows
• Release and Deployment
• Caveats:

• Strong C++ bias
• I’m just as guilty of not always doing what I

suggest...
• There will no doubt be a lot of “but…” and

“what about…” questions (please write them
in the Live Notes, they are always welcome!)

5

Tools and
Suggestions
for Small
Projects

● Always have needed “first contact”
docs like README, CONTRIBUTING

● Never a need for a “special” layout
of source or other code
○ Languages often have a

recommended/standard layout
○ Keep it simple, logical otherwise

● Might seem trivial, but you want
principle of least surprise!
○ Minimize mental start up and

context switching costs

Organizing the Project

6

● Always use a standard build tool
○ CMake, Autotools, Setuptools

● Keep scripts simple and standard
○ Avoid bikeshedding and

over-engineering!
● Build scripts are code so document

and maintain them as such
● A simple, well maintained build

system pays dividends in later
items!

Building the Project

7

● Always use a common/standard
testing framework
○ E.g. Catch2/googletest
○ stdout+Mk1 eyeball isn’t!

● Test-driven development can be
very useful, both to
○ Ensure tests are written(!)
○ Help clarify interfaces/contracts

● Write tests to triage+fix bugs
● Ensure tests are easily built/run as

part of the development workflow
○ E.g. make test

Testing the Project

8

https://github.com/catchorg/Catch2
https://github.com/google/googletest

● Includes README, CONTRIBUTING,
INSTALL files etc.

● Use standard tools like Doxygen,
Sphinx for API/User Guides

● Like tests, document-as-you-go
○ Will be clearer at time of writing
○ Helps you to clarify your design

● “Compile” docs as part of build
○ Check for mistakes!
○ Helps in release stage

● Encourage users to contribute - they
bring a different perspective

Documenting the Project

9

http://www.doxygen.nl/
https://www.sphinx-doc.org/en/master/

● Enforce a coding style to ensure
consistency and familiarity
○ E.g. clang-format for C/C++,

Flake8 for Python
● Use of a tool reduces the chances of

a holy war over spaces/braces
○ An area developers can be

pointlessly opinionated about
● Use Git hooks and IDE integrations

to format on save/commit

Formatting the Code

10

https://clang.llvm.org/docs/ClangFormat.html
https://flake8.pycqa.org/

● Use static analysers to suggest, or
apply, fixes for style, performance
○ E.g. clang-tidy (C/C++)

● Usually easy to integrate with the
build or test systems
○ CMake makes clang-tidy use

really easy, for example
● Particularly useful for modernizing

or simplifying older projects!

Analysing the Code

11

https://clang.llvm.org/extra/clang-tidy/
https://cliutils.gitlab.io/modern-cmake/chapters/features/utilities.html

● All projects use external packages - dependencies
○ Already seen these with build/test/documentation ones!

● When the project needs an “X”, find a suitable off-the-shelf “X” first
○ “Suitable” means “Meets the requirements”
○ “I don’t like the implementation/style” isn’t a requirement
○ One on the biggest time drains for a small project can be the

implementation, maintenance, and development of these new wheels
○ You can (and should!) contribute back to the projects you use!

● Make sure the project is not locked to a specific version of the external
○ All languages have constructs to compile/branch on the version

● A minimum, or range, of supported versions is fine though
○ Most build systems support this, .e.g CMake’s find_package

12

Using Other Software in the Project

https://cmake.org/cmake/help/latest/command/find_package.html

● Always install dependencies with a
widely used package manager
○ Don’t write one yourself, please...

● Choice will depend on languages
used and platforms targeted
○ Language specific, e.g. pip
○ Platform specific, e.g. apt
○ General(ish), e.g. conda, spack

● Use a “requirements” file/package
○ Lists packages and versions for a

given “environment”
○ Aids easy setup/reproducibility

13

Package Managers

● Containers can aid in distributing a
development/use environment
○ Modern IDEs can use them

seamlessly (e.g. VSCode)
● Package manager “environment”

files and VCS/Container tags provide
great system for reproducible
setups

● Don’t use containers as a sticking
plaster over a bad build/packaging
system - fix these first!

14

Docker/Singularity

https://code.visualstudio.com/docs/remote/containers

15

● Git+GitHub is the primary VCS and
hosting solution, though many
GitLab instances at Institutes/Labs
○ These may be better if the project

has specialist needs like access to
GPU hardware for CI

● Git repos are trivial to move, so you
can always change later!

● Never manage your own hosting -
you cannot do it as well as
GitHub/Lab or Institute/Labs

Hosting the Project

https://git-scm.com
https://github.com/

● Use Issues as primary channel of
communication to reduce “where
do I go to...” and help engagement
○ Email/Slack fine, but encourage

use of Issues!
○ Beta “Discussions” feature may

be good for “How do I” questions
● Use Projects to organise core tasks

○ Can add Issues to specific
Projects e.g. “Next Release”

○ Helps focus effort and reduce
context switching cost

Use Issues and Boards

16

https://guides.github.com/features/issues/
https://docs.github.com/en/discussions
https://docs.github.com/en/github/managing-your-work-on-github/about-project-boards

Never commit/push directly to the
main branch - you will break it at
some point!17

Developing the Code: Topic
Branches and Pull Requests

● Forking Workflow simplest and best
○ Topic Branches on Forks
○ Project repo only for merging

● Tempting to push Topic Branches to
project repo itself
○ Fine for 1-3 developers …
○ … but does not scale well
○ Forks don’t stop co-development

● Even lead developers should
submit work from Forks!
○ Help separate development work

from release/maintenance tasks

Organising Topic
Branches

18

Project

Your
Fork

My
Clone

My Fork

$ git checkout -b topic
… edit/build/test/commit…
$ git push my-fork topic

$ git fetch|rebase|push shared

https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow

● Always build and test each PR using
a CI system
○ E.g. GitHub Actions, Azure

● A critical time saver, even if only
targeting a single platform/OS
○ Will quickly reveal any coding

oversights or “works on my
machine” gremlins

● This is where earlier work on build
and test systems starts to return the
time investment!

Testing Pull Requests

19

Now a much simpler way!
cvmfs-contrib/github-action-cvm
fs/

https://docs.github.com/en/actions
https://azure.microsoft.com/en-gb/services/devops/pipelines/
https://github.com/cvmfs-contrib/github-action-cvmfs/
https://github.com/cvmfs-contrib/github-action-cvmfs/

Real value is the record of
build/test results, so PR author
can find/fix issues quickly20

GitHub Actions in Action

https://github.com/drbenmorgan/cmake-compile-features/pull/8/checks
https://github.com/drbenmorgan/cmake-compile-features/pull/8/checks
https://github.com/drbenmorgan/cmake-compile-features/pull/8/checks

CI Scripting

21

● Like previous recommendations,
don’t overthink/engineer these
○ Each system does have slight

differences in functionality
● Even complex builds don’t require

complex scripting
● They are part of the project code, so

develop and maintain them with
the same care
○ Including submitting changes

through PRs - the CI can test CI!

● Use PR reviews as “peer review for
code”
○ Discuss the implementation,

suggest revisions, improvements
○ Ask for addition of missing items

like tests, documentation!
● Can be light touch “fine for me”, to

major revisions, even rejection
● Collaborative approach is valuable

in increasing the Bus Factor and
reducing over-engineering

Reviewing Pull Requests

22

https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-request-reviews

Use Actions and Reviews to build
a “pre merge” checklist

23

Merging Pull Requests

● By testing/reviewing PRs before merging to the main branch, each PR merge
provides a potential new release for the project
○ When/how often to make a release, and whether detailed testing (e.g.

physics validation) is required before tagging is highly project dependent
● For each merge to main and new tag (release) of the project, a CI task

should be triggered to:
○ Create and publish the documentation for the project
○ Create package(s)/environment for the project, e.g. conda, Docker, CVMFS

● Last item invaluable if you need to run large validation jobs for releases!
● Might require extra resources (e.g. ReadTheDocs, DockerHub), but earlier

investment in standard tools simplifies integration!
○ And GitHub/Lab can often handle this for you (gh-pages, Packages)

24

Release & Deployment

An easy way to do this is through
GitHub Pages

25

Publishing
Documentation

https://docs.github.com/en/github/working-with-github-pages

Example Packaging:
Spack

Especially valuable for community wide
projects to have a presence in mainline
package managers26

● “Documentation” should really be “Documentation and Training”!
○ Projects should point to existing Software Carpentry (and HSF!) lessons

and others (e.g. GitHub Help) for the basics rather than write their own
○ Software Carpentry template good starting point for developing material for

your project
○ Hands-on tutorials at, e.g. experiment collaboration meetings, can be

valuable, though you may have to fight for a slot!
○ Link up remote/in-person material as later opportunities can be limited

● Developers should also actively seek training/knowledge opportunities
○ Engage with community meetings/courses like today
○ Institute/National Research Software Engineer groups/organizations
○ Conferences like CHEP, SC, though getting funding can be difficult

27

Finally: Don’t neglect Training until the last slide!

https://software-carpentry.org
https://hepsoftwarefoundation.org/workinggroups/training.html
https://docs.github.com/en
https://www.software.ac.uk/research-software-engineers
https://www.jlab.org/conference/CHEP2022
https://sc21.supercomputing.org

28

In Summary • Primary challenge for small software projects is
developer FTE, so this must be used effectively

• Invest time in simple and standard tools and
methods to reduce developer overhead and
points of failure, and increase automation

• Use GitHub/Lab’s tools to provide a simple yet
highly capable platform for development that
returns investment in standard tools

• In short: Invest time in your tools, use them as
designed, and let the computer take the strain!

