
CMake: Best Practices

Henry Schreiner

Software & Computing Roundtable 2021-2-2

Links:

The book:
My blog:
The workshop:
This talk:

launchlaunch binderbinder

cliutils.gitlab.io/modern-cmake
iscinumpy.gitlab.io

hsf-training.github.io/hsf-training-cmake-webpage
gitlab.com/CLIUtils/modern-cmake-interactive-talk

https://mybinder.org/v2/gl/CLIUtils%2Fmodern-cmake-interactive-talk/master?urlpath=lab/tree/CMakeHSF.ipynb
https://cliutils.gitlab.io/modern-cmake
https://iscinumpy.gitlab.io/
https://hsf-training.github.io/hsf-training-cmake-webpage/
https://gitlab.com/CLIUtils/modern-cmake-interactive-talk

Intro to CMake

In []: cmake --version

What is CMake?

Is it a build system?

Build system example (Rake):

01-rake/Rakefile

task default: [:hello_world] do # hello_world.c
 puts 'All built' # ↓
end # hello_world
 # ↓
file hello_world: ['hello_world.c'] do |t| # default task
 sh "gcc #{t.prerequisites.join(' ')} -o #{t.name}"
end

In []: (cd 01-rake && rake)

Features:

Understands when to build/rebuild
Doesn't understand how to build
Generic; can be used for anything

Examples

make : Classic, custom syntax
rake : Ruby make
ninja : Google's entry, not designed to be hand written

Build system generator

Understands the files you are building
System independent
You give relationships
Can find libraries, etc

CMake is two-stage; the configuration step runs CMake, the build step runs a build-system
(make , ninja , IDE, etc).

Aside: Modern CMake can run the install step directly without
invoking the build system agian.

Build system generator example (CMake):

01-rake/CMakeLists.txt
cmake_minimum_required(VERSION 3.11)

project(HelloWorld)

add_executable(hello_world hello_world.c)

In []: cmake -S 01-rake -B 01-build
cmake --build 01-build

C/C++ Examples

cmake : Cross-platform Make (also Fortran, CUDA, C#, Swift)
scons : Software Carpentry Construction (Python)
meson : Newer Python entry
basel : Google's build system
Other languages often have their own build system (Rust, Go, Python, ...)

We will follow common convention and call these "build-
systems" for short from now on

Why CMake?

It has become a standard

Approximately all IDEs support it
Many libraries have built-in support
Integrates with almost everything

Custom Buildsystems are going away

 for CMake (note: C++17 only too)
Boost is starting to support CMake at a reasonable level along with BJam
Standout: Google is dual supporting Bazel and CMake

Qt 6 dropped QMake

https://blog.qt.io/blog/2019/08/07/technical-vision-qt-6/

Custom Buildsystems are going away

 for CMake (note: C++17 only too)
Boost is starting to support CMake at a reasonable level along with BJam
Standout: Google is dual supporting Bazel and CMake

Qt 6 dropped QMake

Recent highlights

Thrust just received a major CMake overhaul
TBB / Intel PSTL nicely support CMake in recent years
Pybind11's CMake support was ramped up in 2.6

https://blog.qt.io/blog/2019/08/07/technical-vision-qt-6/

(More) Modern CMake

CMake is a new language to learn (and is a bit odd)
Classic CMake (CMake 2.8, from 2009) was ugly and had problems, but that's not
Modern CMake!

Modern CMake and !
CMake 3.0 in 2014: Modern CMake begins
CMake 3.1-3.4 had important additions/fixes
CMake 3.12 in mid 2018 completed the "More Modern CMake" phase
Current CMake is 3.19 (2.20 in rc2 phase)

Eras of CMake
Classic CMake: Directory based
Modern CMake: Target based
More Modern CMake: Unified target behavior
CURRENT: Powerful CLI

More Modern CMake

https://github.com/Bagira80/More-Modern-CMake/blob/master/MoreModernCMake.pdf

Best Practice: Minimum Version is important!

CMake has a (AFAIK) unique version system.

If a file start with this:

Then CMake will set all policies (which cover all behavior changes) to their 3.0 settings. This
in theory means it is extremely backward compatible; upgrading CMake will not break or
change anything at all. In practice, all the behavior changes had very good reasons to
change, so this will be much buggier and less useful than if you set it higher!

cmake_minimum_required(VERSION 3.0)

You can also do this:

Then

CMake < 3.4 will be an error
CMake 3.4 -- 3.11 will set 3.4 policies (feature was introduced in 3.12, but syntax is
valid)
CMake 3.12 -- 3.14 will set current policies
CMake 3.15+ will set 3.14 policies

cmake_minimum_required(VERSION 3.4...3.14)

Don't: set this low without a range - it will harm users. Setting < 3.9 will break IPO,
for example. Often in a way that can't be fixed by superprojects.
Do: set the highest minimum you can (build systems are hard/ugly enough as it is)
Do: test with the lowest version version you support in at least one job.
Don't: expect a CMake version significanly older than your compiler to work with it
(expecially macOS/Windows, or CUDA).

What minimum to choose - OS support:

3.4: The bare minimum. Never set less.
3.7: Debian old-stable.
3.10: Ubuntu 18.04.
3.11: CentOS 8 (use EPEL or AppSteams, though)
3.13: Debian stable.
3.16: Ubuntu 20.04.
3.18: pip
3.19: conda-forge/chocolaty/direct download, etc. First to support Apple Silicon.

What minimum to choose - Features:

3.8: C++ meta features, CUDA, lots more
3.11: IMPORTED INTERFACE setting, faster, FetchContent, COMPILE_LANGUAGE in
IDEs
3.12: C++20, cmake --build build -j N , SHELL: , FindPython
3.14/3.15: CLI, FindPython updates
3.16: Unity builds / precompiled headers, CUDA meta features
3.17/3.18: Lots more CUDA, metaprogramming

Best Practice: Running CMake

The classic method:

The modern method is cleaner and more cross-platform-friendly:

(CMake 3.14/3.15) supports -v (verbose), -j N (threads), -t target , and more

mkdir build
cd build
cmake ..
make

cmake -S . -B build
cmake --build build

Example options:

In []: cmake --build 01-build -v

PUBLIC PRIVATE

INTERFACE

PUBLIC

Public Library

Main Library

Private Library

Interface Library

Target: mylibrary

Target: myprogram

Best Practice: Use Targets

Excutables and libraries are targets

Properties include:

Header include directories
Compile flags and definitions
Link flags
C++ standard and/or compiler features required
Linked libraries

Note that other things include properties, like files (such as LANGUAGE), directories, and
global

Tips for packaging

Do: use targets.
Don't: use common names for targets if you want to be used in subdirectory mode.
Don't: write a FindPackage for your own package. Always provide a PackageConfig
instead.

Export your targets to create a PackageTargets.cmake file. You can write a
PackageConfig.cmake.in ; you can recreate / reimport package there (generally use a
shared X.cmake file instead of doing it twice).

Don't: hardcode any system/compiler/config details into exported targets. Only from
shared code in Config, or use Generator expressions.

Never allow your package to be distributed without the config files!

Using other projects

1. See if the project provides a <name>Config.cmake file. If it does, you are good to
go!

2. If not, see if CMake for it built-in. If it does, you are good to
go!

3. If not, see if the authors provide a Find<name>.cmake file. If they do, complain
loudly that they don't follow CMake best practices.

4. Write your own Find<name>.cmake and include in in a helper directory. You'll need
to build IMPORTED targets and all that.

5. You can also use FindPkgConfig to piggy back on classic pkg-config.

provides a Find package

https://cmake.org/cmake/help/latest/manual/cmake-modules.7.html

Best Practice: Handling remote dependencies

CMake can download your dependencies for you, and can integrate with files. It supports
composable (sub-)projects: One project can include another

Does not have namespaces, can cause target collisions!

Build time data and project downloads: ExternalProject (classic)
Configure time downloads FetchContent (new in 3.11+)
You can also use submodules (one of my favorite methods, but use with care)
You can also use Conan.io's CMake integration

FetchContent

FetchContent

02-fetch/hello_fmt.cpp

#include <fmt/format.h>

int main() {
 fmt::print("The answer is {}\n", 42);
 return 0;
}

02-fetch/CMakeLists.txt

cmake_minimum_required(VERSION 3.14)
project(HelloWorld LANGUAGES CXX)

include(FetchContent)
FetchContent_Declare(
 fmt
 GIT_REPOSITORY https://github.com/fmtlib/fmt.git
 GIT_TAG 5.3.0)
FetchContent_MakeAvailable(fmt) # Shortcut from CMake 3.14

add_executable(hello_world hello_fmt.cpp)
target_link_libraries(hello_world PRIVATE fmt::fmt)
target_compile_features(hello_world PRIVATE cxx_std_11)

In []: cmake -S 02-fetch -B 02-build
cmake --build 02-build

Conan.io's conan-cmake

Conan.io has a nice CMake integration tool. It should support binaries too, since Conan.io
supports them! You must have conan installed, though - I'm using conan from conda-forge.
It works with old versions of CMake, as well.

cmake_minimum_required(VERSION 3.14)

project(HelloWorld LANGUAGES CXX)

Conan bootstrap
if(NOT EXISTS "${CMAKE_BINARY_DIR}/conan.cmake")
 message(
 STATUS
 "Downloading conan.cmake from https://github.com/conan-io/cmake-conan")
 file(DOWNLOAD "https://github.com/conan-io/cmake-conan/raw/v0.16.1/conan.cmake"
 "${CMAKE_BINARY_DIR}/conan.cmake")
endif()

include("${CMAKE_BINARY_DIR}/conan.cmake")
conan_check(REQUIRED)

conan_cmake_run(
 REQUIRES fmt/6.1.2
 BASIC_SETUP CMAKE_TARGETS
 BUILD missing)

You can also make a conanfile.txt and manage all your dependencies there.

add_executable(hello_world hello_fmt.cpp)
target_link_libraries(hello_world PRIVATE CONAN_PKG::fmt)
target_compile_features(hello_world PRIVATE cxx_std_11)

In []: cmake -S 02b-conan -B 02b-build -DCMAKE_BUILD_TYPE=Release
cmake --build 02b-build

Best Practice: Use IMPORTED targets for things you don't

build

Now (3.11+) can be built with standard CMake commands!
Can now be global with IMPORTED_GLOBAL
You'll need to set them back up in your Config file (place in one common location for
both CMakeLists and Config).

add_library(ExternLib IMPORTED INTERFACE)

Classic # Modern
set_property(target_include_directories(
 TARGET ExternLib INTERFACE /my/inc
 ExternLib)
 APPEND
 PROPERTY
 INTERFACE_INCLUDE_DIRECTORIES
 /my/inc
)

Best Practice: Use CUDA as a language

Cuda is now a first-class language in CMake! (3.9+) Replaces FindCuda.

project(MY_PROJECT LANGUAGES CUDA CXX) # Super project might need matching? (3.14 at least)

Or for optional CUDA support
project(MY_PROJECT LANGUAGES CXX)
include(CheckLanguage)
check_language(CUDA)
if(CMAKE_CUDA_COMPILER)
 enable_language(CUDA)
endif()

Much like you can set C++ standards, you can set CUDA standards too:

if(NOT DEFINED CMAKE_CUDA_STANDARD)
 set(CMAKE_CUDA_STANDARD 11) # Probably should be cached!
 set(CMAKE_CUDA_STANDARD_REQUIRED ON)
endif()

Much like you can set C++ standards, you can set CUDA standards too:

if(NOT DEFINED CMAKE_CUDA_STANDARD)
 set(CMAKE_CUDA_STANDARD 11) # Probably should be cached!
 set(CMAKE_CUDA_STANDARD_REQUIRED ON)
endif()

You can add files with .cu extensions and they compile with nvcc. (You can always set the
LANGUAGE property on a file, too). Separable compilation is a property:

set_target_properties(mylib PROPERTIES
 CUDA_SEPERABLE_COMPILATION ON)

New for CUDA in CMake 3.18 and 3.17!

A new CUDA_ARCHITECTURES property
You can now use Clang as a CUDA compiler
CUDA_RUNTIME_LIBRARY can be set to shared
FindCUDAToolkit is finally available
I rewrote the CUDA versions support in 3.20 to be more maintainable and more
accurate.

Best Practice: Check for Integrated Tools First

CMake has a lot of great tools. When you need something, see if it is built-in first!

Useful properties (with CMAKE_* variables, great from the command line_:

INTERPROCEDURAL_OPTIMIZATION : Add IPO
POSITION_INDEPENDENT_CODE : Add -fPIC
<LANG>_COMPILER_LAUNCHER : Add ccache
<LANG>_CLANG_TIDY

<LANG>_CPPCHECK

<LANG>_CPPLINT

<LANG>_INCLUDE_WHAT_YOU_USE

Useful modules:

CheckIPOSupported : See if IPO is supported by your compiler
CMakeDependentOption : Make one option depend on another
CMakePrintHelpers : Handy debug printing
FeatureSummary : Record or printout enabled features and found packages

Using clang-tidy in GitHub Actions example .github/workflow/format.yml :

on:
 pull_request:
 push:

jobs:
 clang-tidy:
 runs-on: ubuntu-latest
 container: silkeh/clang:10
 steps:
 - uses: actions/checkout@v2

- name: Configure
 run: cmake -S . -B build -DCMAKE_CXX_CLANG_TIDY="$(which clang-tidy);--warnings-as-errors=*"
 - name: Run
 run: cmake --build build -j 2

Best Practice: Use CMake-Format

There is a CMake formatting tool now too, called cmake-format ! You should use it to
keep your CMake code from becoming messy and keeping it easy to merge conflicts.

Since you should always use pre-commit for formatting and style checking, here's the
.pre-commit-config.yaml :

CMake formatting
- repo: https://github.com/cheshirekow/cmake-format-precommit
 rev: v0.6.13
 hooks:
 - id: cmake-format
 additional_dependencies: [pyyaml]
 types: [file]
 files: (\.cmake|CMakeLists.txt)(.in)?$

And here's the GitHub Actions job:

jobs:
 pre-commit:
 name: Format
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v2
 - uses: actions/setup-python@v2
 - uses: pre-commit/action@v2.0.0

CompilerDetection and Flag checking

try_compile / try_run can tell you if a flag or file works. However, first check:

CheckCXXCompilerFlag

CheckIncludeFileCXX

CheckStructHasMember

TestBigEndian

CheckTypeSize

Best Bad Practice: WriteCompilerDetectionHeader will write out C/C++

macros for your compiler for you!

This has been removed in CMake 3.20. Feel free to set the minimum required to below
3.20, or find another tool, generate once, then keep the generated copy.

03-compiler/CMakeLists.txt

cmake_minimum_required(VERSION 3.15)
project(CompilerExample LANGUAGES CXX)

include(WriteCompilerDetectionHeader)

write_compiler_detection_header(
 FILE my_compiler_detection.h
 PREFIX MyPrefix
 COMPILERS
 GNU Clang MSVC Intel
 FEATURES
 cxx_variadic_templates
 cxx_nullptr
)

In []: cmake -S 03-compiler -B 03-build

Best Practice: Use FindPython and the newest possible

CMake (3.18.2+ best)

FindPython is an exciting new way to discover Python.

venv/conda ready.
Multiple runs (using unique caching system).
Not very usable till 3.15, not very usable for PyPy until 3.18.2+ and PyPy 7.3.2 (about
a week old)

But possibly vendorable to 3.7+

Scikit-build and CMake wheels

Scikit-build is an adaptor for setuptools (not a true PEP 517 builder). Combined with
pyproject.toml and Pip 10, it can be really useful, though!

Still not quite as reliable as setuptools (distutils) in non-standard setups
Doesn't work well without CMake wheels (but you can bypass PEP 518 if CMake is
already installed)
A little rough around some corners
Development a bit stuck.

Further investigation:

If we have some spare time, I can show you through the CMake systems I've helped design:

 (Dual CMake / setuptools)
 (CUDA and Scikit-Build)

I highly recommend my course and book
 on CMake. Everything is linked from my blog,

.

Also, is fantastic, if you already know what you are looking for, it is
some of the best out there. The "new in" directives seem to be finally added in the 3.20
documentation! No more scrolling though old versions!

github.com/pybind/pybind11
github.com/pybind11/scikit_build_example
github.com/cliutils/cli11
github.com/scikit-hep/boost-histogram
github.com/goofit/goofit

hsf-training.github.io/hsf-training-cmake-webpage
cliutils.gitlab.io/modern-cmake
iscinumpy.gitlab.io

CMake's documentation

In []:

https://github.com/pybind/pybind11
https://github.com/henryiii/scikit_build_example
https://github.com/cliutils/cli11
https://github.com/scikit-hep/boost-histogram
https://github.com/goofit/goofit
https://hsf-training.github.io/hsf-training-cmake-webpage/
https://cliutils.gitlab.io/modern-cmake/
https://iscinumpy.gitlab.io/
https://cmake.org/cmake/help/latest/index.html

