
HEP-CCE

The High Energy Physics Center for 

Computational Excellence (HEP-CCE) I/O and 

Storage Project: Plans and Progress

Software & Computing Round Table

Feb 9, 2021

P. Van Gemmeren 
for the HEP-CCE (IOS) project



HEP-CCEWhy HEP-CCE? 

HEP computing resource challenges

Notably 10x more data, 10x more complexity @ HL-LHC

→ need PetaFlops sustained per experiment

Project CPU and Storage resource shortage

US long-term investment in HPCs

Platform of choice for simulations, and, more recently, data 

processing (light sources, LIGO, cosmology…)

Expect O(10) ExaFlops peak performance by 2026

→ Challenging to run at 10% of peak

DOE would very much like HEP to partake

→ Most of the cycles provided by accelerators

HEP



HEP-CCEWhat is HEP-CCE?

Three-year (2020-2023) pilot project
four US labs, six experiments, ~12 FTE, ~30 collaborators

1. Portable parallelization strategies
• exploit massive concurrency

• portability requirements

2. Fine-grained I/O and related storage issues
• new data models (zero-copying, SOA,...)

• event batching (XPU offloading)

3. Optimizing event generators

4. Running complex workflows on HPCs
• main use case: cosmology surveys

Open collaboration
https://indico.fnal.gov/category/1053/

https://www.anl.gov/hep-cce
Next 

slide
Backup

https://indico.fnal.gov/category/1053/
https://www.anl.gov/hep-cce


HEP-CCECCE/PPS: Goals and Year 1 priorities

Investigate a range of software portability solutions:

• Kokkos / Raja

• SYCL / dpc++

• Alpaka

• OpenMP / OpenACC

Port a small number of HEP testbeds to each language

• Patatrack Pixel Tracking (CMS)

• WireCell Toolkit (DUNE)

• FastCaloSim (ATLAS)

Define a set of metrics to evaluate the ports, and apply them

• Ease of porting, performance, code impact, relevance, etc

Make recommendations to the experiments

• Must address needs of both LHC style workflows with many modules and many developers, 

and smaller/simpler workflows

● products are rapidly evolving

● we have some hope of seeing

the emergence of industry standards

at the C++ language level

https://indico.fnal.gov/event/46114/contributions/201011/attachments/137050/170710/20201105-CCE_PatatrackStatus.pdf
https://indico.fnal.gov/event/46114/contributions/201009/attachments/137052/170715/2020-11-05_all-hands_meeting_v2.0.pptx
https://indico.fnal.gov/event/46114/contributions/201010/attachments/137029/170704/2020.11.05_CCEPPS.pdf


HEP-CCECCE/IOS: Goals

Parallel serialization/de-serialization of HEP data models

• Both single node and multi-node access patterns

Persistable data representations tuned for HPC storage systems

• Connection to PPS exploration of portable parallelization libraries 

• Can benefit from Write-Once/Read-Many HEP access models

Accessing partial, partitioned or sub-event data blocks

• Matched to specific algorithm consumption requirement

Runtime memory mapping of data

• Exploit batched, vectorized, and data parallel operations and transforms on columnar 

data.

• Taking into account CPU-XPU communication

Open collaboration, meets bi-weekly Wednesday 2-3pm CST 
https://indico.fnal.gov/category/1080/

https://indico.fnal.gov/category/1080/


HEP-CCECCE/IOS: Year 1 Activities

Darshan for ROOT I/O in HEP workflows on HPC.

• ROOT I/O is central to all HEP experiments. Measurements of its performance on 

HPC using tools like Darshan, could give valuable insights for possible 

improvements. 

Investigate HDF5 as intermediate event storage for HPC processing

• In some workflows, such as the ATLAS EventService, temporary data is written to 

ROOT files. Moving this data to a parallel file format such as HDF5 could be 

beneficial.

Testing framework for understanding scalability and performance of HEP output 

methods

• An ability to simulate HEP output of specific data products (e.g., RECO, AOD, 

miniAOD) in different scenarios prepares us for deeper analysis of intermediate data 

storage options.



HEP-CCECCE/IOS: Year 1 Achievements

Darshan for ROOT I/O in HEP workflows on HPC.

• Darshan is a lightweight I/O characterization tool that can capture either 

condensed views or entire traces (DXT) of application I/O behavior 

• Darshan is deployed at a number of DOE computing facilities (including 

ALCF, ANL LCRC, and NERSC) and has become a popular tool for HPC 

users to better understand their I/O workloads
• While originally designed specifically for MPI applications, in the past year we have 

modified Darshan to also work in non-MPI contexts 

• Extends I/O instrumentation into exciting new HPC contexts, like HEP workflows that 

have traditionally not been based on MPI



HEP-CCECCE/IOS: Year 1 Achievements

Darshan for ROOT I/O activity status.

• Integration of Darshan into HEP workflows like ATLAS, CMS, and DUNE can 

provide deeper understanding of their use of HPC storage resources. This 

understanding can be used to optimize workflow usage of ROOT as well as to 

make general improvements to the ROOT I/O library. 

• Phase 1: Preparation
• Introduction to Darshan, ROOT, and HEP workflow (ATLAS, CMS, DUNE) technologies 

and discussion of potential deployment strategies 

• Phase 2: Prototyping 
• Deployment of Darshan for use in different HEP workflows (e.g., in containers) 

• Development of fork-safe Darshan instrumentation strategies (needed for ATLAS) 

• Development of Darshan analysis tools for understanding workflow I/O behavior



HEP-CCECCE/IOS: Year 1 Achievements

Darshan analysis of ATLAS, CMS and DUNE I/O.

ATLAS: Multi-Process 

Simulation, creating many output 

files that are merged

CMS: Overlay pile-up hits and 

digitization of hits



HEP-CCECCE/IOS: Year 1 Achievements

Darshan for ROOT I/O next steps.

• Investigate and develop workarounds for numerous obstacles to 

instrumenting ROOT I/O workloads 
• Unreliable I/O instrumentation for forked processes 

• Difficulty deploying Darshan in complex production environments (i.e., workflows 

employing containers) 

• Missing Darshan log data (e.g., due to instrumenting too many workflow files) 

• With broader instrumentation coverage of ATLAS, CMS, DUNE workflows, we 

can turn focus to Darshan analysis tools to better understand flow of data, I/O 

access patterns, and achieved performance of different HEP data processing 

stages 
• Drive tuning decisions for ROOT usage and for ROOT implementation 

• New Python bindings for Darshan log utility library should ease development of new 

analysis tools



HEP-CCECCE/IOS: Year 1 Achievements

Investigate HDF5 as intermediate event storage for HPC processing.

• HDF5 (Hierarchical Data Format) is a portable, self-describing file format 

designed to store large amounts of data
• It is maintained by the HDF Group [https://www.hdfgroup.org]

• It is widely available at HPC centers, and easily installable on laptops

• It supports parallel IO using MPI, and has special drivers tuned for parallel file systems at 

HPC centers

• A few key abstractions are:
• datasets, which are multidimensional arrays of homogeneous types,

• groups, which are containers of datasets and other groups, and

• attributes, which are small metadata objects to describe groups and datasets

• Allows efficient columnar data access for the “required” data products



HEP-CCECCE/IOS: Year 1 Achievements

Investigate HDF5 as intermediate event storage for HPC processing activity 

status.

• The focus of this activity is to explore the use of HDF5 files for writing HEP 

data products that have already been serialized using ROOT serialization.

• We are interested in developing an experiment-independent approach.

• We are currently using a multi-threaded testing framework developed as part 

of the CCE project to work on the use of HDF5.

• This work is the first attempt to write intermediate output in HDF5 style.

• We have demonstrated the efficient and high performing data access and 

hence subsequent analysis by using HDF5 representation of the analysis-

ready data in SciDAC (HEP on HPC) project.



HEP-CCECCE/IOS: Year 1 Achievements

Investigate HDF5 as intermediate event storage for HPC processing: ATLAS 

showcase

ACAT 2017

HDF5 Writer

HDF5 

File

Prototype HDF5 

extension 2020



HEP-CCECCE/IOS: Year 1 Achievements

Investigate HDF5 as intermediate event storage for HPC processing next steps

• HDF5 tuning
• Chunking: Looked at some prelim numbers, using 128 chunk size, which seems to work 

fine

• Asynchronous I/O: Use a background thread to perform I/O

• Compression
• In both serial and parallel mode, and combined with chunking

• Using node-local storage for storing intermediate HDF5 files

• Parallel I/O (using multi-process MPI-based writes)

• Multi-threaded HDF5
• There is a feature branch available with simple read/write patterns, which we have in our 

use case, that we should look into

• Explore direct storage access from GPUs



HEP-CCECCE/IOS: Year 1 Achievements

Testing framework for understanding scalability and performance of HEP output 

methods

• Mimic the characteristics of a HEP data processing framework
• Similar multi-threaded behavior

• Similar I/O behavior

• Should reasonably behave like CMS, ATLAS and DUNE frameworks

• Easily try different I/O implementations
• Choose what to use via command line arguments

• Experiment agnostic
• With ability to read actual experiment ROOT files

• ROOT will dynamically load serialization/deserialization plugins as needed

• Make it easier to perform performance measurements
• I/O performance

• threaded scaling performance 



HEP-CCECCE/IOS: Year 1 Achievements

Testing framework for understanding scalability and performance of HEP output 

methods

• Have a flexible I/O testing framework
• Can test input and output formats and approximate HEP job timings

• Has lead to thread scaling performance of ROOT serialization
• On second round of improvements



HEP-CCEAdditional: Year 2 Priorities

PPS

New activity: Event Batching 

• in collaboration with IOS

IOS
New activity: Data Model and storage for CPU/XPU communication

• Cross-educate on ASCR and HEP activities

• awkwardarray, dataframes, ATLAS/CMS columnar AODs

EG

• Madgraph port to CUDA/Kokkos in collaboration with Madgraph team.



HEP-CCEOutlook

PPS and IOS have made significant progress in Year 1

Project presented in multiple venues and conferences with positive feedback

● very good interactions with experiments and tool developers

Ramping up effort (big challenge these days!)

● recruiting more developers from the experiments and DOE/ASCR experts

● several hires of postdocs and summer students

Very hopeful that there will be a significant impact on the experiments

● HEP-CCE will produce strategies tested on prototypes

○ Production-level implementations require direct experiment involvement.



HEP-CCE

Thanks!
https://www.anl.gov/hep-cce

gemmeren@anl.gov

https://www.anl.gov/hep-cce


HEP-CCECast of Characters

PPS
∙ Taylor Childers (ANL)

∙ Mark Dewing (ANL)

∙ Zhihua Dong (BNL)

∙ Oli Gutsche (FNAL)

∙ Michael Kirby (FNAL)

∙ Matti Kortelainen (FNAL)

∙ Kyle Knopfel (FNAL)

∙ Charles Leggett (LBNL)

∙ Meifeng Lin (BNL)

∙ Vincent Pascuzzi (LBNL)

∙ Peter Nugent (LBNL)

∙ Liz Sexton-Kennedy (FNAL)

∙ Yunsong Wang (LBNL)

∙ Sam Williams (LBNL)

∙ Haiwang Yu (BNL)

IOS
∙ Peter van Gemmeren (ANL)

∙ Rob Ross (ANL)

∙ Doug Benjamin (ANL)

∙ Suren Byna (LBNL)

∙ Philippe Canal (FNAL)

∙ Matthieu Dorier (FNAL)

∙ Chris Jones (FNAL)

∙ Kenneth Herner (FNAL), 

∙ Patrick Gartung (FNAL).

∙ Rob Latham (ANL)

∙ Liz Sexton-Kennedy (FNAL)

∙ Saba Sherish (FNAL)

∙ Shane Snyder (ANL)

∙ Torre Wenaus (BNL)

∙ Jakob Blomer (CERN)

not official list: taken

from those who call

into weekly meetings



HEP-CCECCE/EG: Event Generators

Why improve event generators?

• Event generation might consume more resources at HL-LHC that we currently extrapolate

• Generators code generally not well written ➜ scaling issues even on HTC resources, never mind 

HPC

Building on previous improvements

• Parallelized Pythia particle-level event generation

• Improved performance of Sherpa, particularly I/O (HDF5)

• Novel integrator using Neural Networks and Normalizing Flows

CCE plans

• Complete rewrite of matrix-element generator for CPUs & GPUs

• Paradigm shift from “best of scaling” to “best for computation”

• Exploration of different frameworks (low-level, Kokkos, ... )

• Alternatively try to revive existing implementations (HELAS/MG)

• Coordinate with HSF and worldwide effort



HEP-CCECCE/CW: Complex Workflows

Why complex workflows?

• Workflows enable representation and execution of analyses composed of heterogeneous 

components

• Single node codes, multi-node MPI applications, scripts, binaries, glue code, etc.

• HPC systems and environments are not designed for such workloads

• Millions of tasks, diverse and varying requirements (cores, duration, CPU/GPU), co-scheduling 

and dynamic sizing

CCE plans

• Support development and use of workflows within target domains

• Apply a modular, interoperable, and inclusive approach

• Leverage/combine components from existing workflow systems

• Democratize access to advanced workflow capabilities and reduce overheads on small 

collaborations

• Enable use of accelerators, heterogeneous hardware, without knowledge of low-level 

programming


