RNTuple: Status and Plans of
ROOT's I/0O Evolution

Jakob Blomer for the ROOT Team
Jefferson Lab Software & Computing Round Table
2021-02-09

ROOT

Data Analysis Framework

https://root.cern

HENP Event Data I/0

Why invest in a Example EDM

cvent {
e (apable of storing the HENP event data model: std: :vector<Particle> fPtcls;

nested, inter-dependent collections of data points std::vector<Track> fTracks;

e Performance-tuned for HENP analysis workflow particie 1
(columnar binary layout, custom compression etc.) {3
Track &fTrack;
e Automatic schema generation and evolution for '
C++ (via cling) and Python (via cling + PyROQOT) e
td::vector<Hit> fHits;
e Integration with federated data management tools
(XRootD etc.)

Hit {
26 FY, T2

e long-term maintenance and support

Motivation for RNTuple

1. HL-LHC challenge: major milestone on the way towards future accelerators and
detectors
o From 300fb™in run 1-3 to 3000fb™" in run 4-6
o 10B events/year to 100B events/year

o Real analysis challenge depends on several factors: number of events, analysis
complexity, number of reruns, etc.

o
Wi s

m As a starting point, preparing for ten times the current demand :a e
)‘ 980
2. Full exploitation of modern storage hardware
o Ultra fast networks and SSDs: 10GB/s per device reachable (HDD: 250MB/s)
o Flash storage is inherently parallel = asynchronous, parallel I/0O key
o Heterogeneous computing hardware = GPU should be able to load data @ OPTANE DCO»

directly from SSD, e.g. to feed ML pipeline PER SIS T

o Distributed storage systems move from POSIX to object stores

-
At 10GB/s, we have “3us to process a 32kB block e
= CPU Optimizations deep into I/O Stack Lo i nw-w-'«m"'w‘ L L G

RNTuple Goals

Based on 25+ years of TTree experience, we redesign the /0 subsystem for

e Lessdisk and CPU usage for same data content
o 25% smaller files, x2-5 better single-core performance
o 10GB/s per box and 1GB/s per core sustained end-to-end throughput
(compressed data to histograms)

e Native support for object stores (targeting HPC)

Lossy compression

Systematic use of exceptions to prevent silent I/0 errors

RNTuple Development Plan

~2018-19 ~2019-20 ~2021-22 ~2022-23 ~2023-24
jprooney)> Prototype >> F'!’St) >} e !) Production)
: concept exploitation production :
e (lass design e Interplay e Interplay e PBscaletest e Readytouse
with other with cases for new runs
e File format ROOT classes experiment .
R&D frameworks e Production
e Performance tests with
validation e Schema last-stage
evolution ntuples

We see RNTuple as a Run 4 technology

Available now in ROOT: :Experimental
Note: TTree technology will remain available for the 1EB+ existing data sets

RNTuple Class Design

Seamless transition from TTree to RNTuple

Event iteration Modular storage layer that supports
Reading and writing in event loops and throughliRDataFrame files as data containers but also
RNTupleDataSource, RNTupleView, RNTupleRea@®Tr7/Writer

file-less systems (object stores)

rApproximate translation between TTree and
S g RNTuple classes:
Primitives layer / simple types P
“Columns” containing elements of fundamental types (float, int,...) TTree ~ RNTupleReader
grouped into (compressed) pages and clusters RNTupleWriter
RColumn, RColumnElement, RPage TTreeReader ~ RNTupleView
TBranch ~ RField
Storage layer / byte ranges ??aSké;Ch ~ I}:g‘l‘get -
RPageStorage, RCluster, RNTupleDescriptor L e & i J

RNTuple Format Breakdown

Dataset / File

| || I I—|
Header Page C++ collections become offset columns Footer
; ! struct Event {
Cluster int £Id:
vector<Particle> fPtcls;
Approximate translation between TTree and RNTuple concepts: }:
Basket =~ Page struct Particle {
Leaf ~ Column float fE;
Cluster =~ Cluster vector<int> fIds;
}i
Cluster: Page:
¢ Block of consecutive complete events ¢ Unit of memory mapping or (de)compression
¢ Independent from each other, e.g. can be ¢ Parallel (de)compression . .. coovicrmpricsoe g
distributed across machines ¢ 0O(100kB)
¢« 0O(100MB)

L 4

Key binary layout changes wrt.
TTree

More efficient nested collections
More efficient boolean values
(bitfield), interesting for trigger bits
experimenting with “split floats”
Little-endian values (allows for
mmap())

Implementation uses templates to slash
memory copies and virtual function calls in

common I/O paths

RNTuple Format Evolution

¢ Supported type system

Boolean

Integers, floating point
std::string

std::vector, std::array
std::variant
User-defined classes
More classes planned
(e.g. std::.chrono)

Fully composable (including aggregation,
inheritance) within the supported type system

Performance Evaluation Samples

LHCDb run 1 OpenData H1 DST CMS 2019 nanoAOD ATLAS 2020 open data
B mass spectrum ROOT standard Dimuon spectrum H — gg
benchmark

Fully flat EDM

EDM with collections

EDM with collections

Set of std::vector

Dense reading
(>75%, 18/26 features)

Medium dense reading
(~10%, 16/152 features)

Sparse reading
(<1%, 6/1479 features)

Medium dense reading
(~25%, 12/81 features)

8.5 million events
24k selected events

2.8 million events
75k selected events

1.6 million events
141k selected events

7.8 million events
76k selected events

1.5GB

3.4GB

8GB

3GB

We'd be happy to add a toy analysis on a simple EDM typical for Nuclear Physics

Selected RNTuple Benchmarks (2019)

o 1 05 SSD READ throughput CMS nanoAOD TTJet 13TeV June 2019
Storage Efficiency CMS nanoAOD TTJet 13TeV June 2019

Average event size [B

[
&
=
—
~
2
Qo
= |
=
Z
[an

RNTuple / TTree

uncompressed

uncompressed 1z4 zstd zlib Ilzma

e Substantially smaller files and better performance, already on single-core
e Continuous effort to improve performance
e Updated comparison with HDF5 planned for 2021 (—)

https://indico.cern.ch/event/567550/contributions/2628878/
https://github.com/jblomer/iotools

Speed-up wrt. single stream

RNTuple SSD READ throughput using concurrent streams

l!LHCbII |IH 1 " IICMS"
..... _._uncompressed -'-Uncompressed -'_Uncompressed e ceteticmttetittttimtttsesttnmesnanne
=x= 7std =x= 7zstd =x= zstd
..... O i e e e e
Parallel reads now implemented using async 1/0

with liburing; > 4GB/s from consumer hardware i

680 MB/s

| | 1 | | 1 I

1 2 4 8 16 32 64
Streams

— https://github.com/jblomer/iotools

warm cache

11

https://github.com/jblomer/iotools

Events/s

- = N N W W A~ b
oo o o1 o o o O O O,

0

x10°

RNTuple OPTANE NVDIMM READ throughput uncompressed data with read() and mmap()

.............. Mem. cached Optane SSD (16 strms) |- «-cevvrcrenrinanennnns

P | ______
[} mmap0

LHCb run 1 open data B2HHH H1 micro DST

— https://github.com/jblomer/iotools

RNTuple 1/0 scheduler key for good
performance from block devices ...

CMS nanoAOD TTJ 13TeV June 2019

12

https://github.com/jblomer/iotools

R&D: RNTuple and object stores

Object store technology
e Veryscalable, distributed storage

o Popular because it overcomes POSIX I/O limitations of shared cluster file systems
o Standard file system access only provided through slow compatibility layer

e Relevant for exascale HPC systems:
Argonne’s Aurora going to provide
220 PB of Intel DAOS object storage

In RNTuple Argonn : 4

e Native support for object store * ENEIGY

e (Goal: avoid transient copies to other
file formats in HPCs

13

DAOS Pool

RNTuple
Cluster
Page group
Page

DAOS
Container

DAOS Object

DAQOS object: a key—value store
with locality. The key is split into
dkey (distribution key) and
akey (attribute key).

Record

- Contalner i JjdsmocEabto R, :‘ .
— Object EEEEEREE, {1|| EEESERTEITHTE - CLTT
— dkey S e s
Anchor Header Page
- akey Cluster '

Footer

14

DAQOS Preliminary Read Results

(b) Lheb (read RNTuple) Preliminary results

e 1 client, 3 servers
4,000 (provided by CERN
openlab)

Significantly faster read
ok with RNTuple than with
HH0E dfuse compatibility layer

Run time (ms)
]
[]

H e ~1GB/s throughput
S0 = (should be even higher,
press! [still under investigation)

no o™

18 Local fileBm dfuse BB libdaos

e Validates that RNTuple can handle
complete nanoAOD EDM

e Provides first experience with
framework integration

e Allows for tuning multi-threaded write

e Allows for large-scale comparison
between TTree and RNTuple

Goal
A CMSSW output module to write NanoAODs in RNTuple format.

16

https://iris-hep.org/fellows/MaxOrok.html

Try out RNTuple

- RNTuple is available in ROOT::Experimental

. Build with -Droot7=on -DCMAKE CXX STANDARD=14
. Check out the RNTuple Tutorials...
« ...as well as toy analyses and benchmarks

. Questions? Contact us at the ROOT forum

https://github.com/root-project/root/tree/master/tutorials/v7/ntuple
https://github.com/jblomer/iotools/blob/master/README.md
https://root-forum.cern.ch

Summary

RNTuple: ROOT’s I/O R&D aiming at a leap in data throughput

o Updated (backwards incompatible) data format for next-generation event I/O
o Expect V25% smaller files,
x2-5 better single-core throughput on SSD
o Aims at using modern I/O devices to the full capacity
o Modern, robust API (e.g., thread-friendly, systematic use of exceptions)
o Entering first exploitation phase (» 2021 PoW)

https://docs.google.com/spreadsheets/d/1aGEy90zeYXBDwE1ad7FG4q0y5nHy7eeRYUQVnLcFiqQ/edit?usp=sharing

