Detect Result for the data set hit_0_bbgem_304

Channal : moduleId 1 stripID 300 axisID 1

The length of the data set is : 30006912

The raw data set has many peaks, however, the background the data has no change.

We add sudden change in the raw data set start at index m_1 and end at index m_2 ,

 $data[m_1:m_2] = data[m_1:m_2] + \sigma * std(data)$ we choose $m_1 = \frac{1}{4} * the \ length \ of \ data, \ m_3 = \frac{3}{4} * the \ length \ of \ data, \ std(data)$ is the standard deviation of the data set, the parameter σ decide the amplitude of the sudden change we add in the raw data set.

The goal of our detect results :

- · Can we detect the sudden change in the data set?
- For a fix scale, is there exists a small amplitude of the sudden change?

To answer these question, I fix the 'level', and then change the parameter σ to find the smallest one. The σ I choose are 18, 12, 6, 3, 1, 0.5, 0.2. To make the result more intuitive, I use red color to plot the change interval data and use blue color to plot the unchange interval data.

- we can detect all larges peak in the data set.
- the smallest σ is 3

- we can detect most large peaks in the data set.
- the smallest σ is 3

- we can detect most large peaks in the data set.
- the smallest σ is 3

1e7

- we can detect most large peaks in the data set.
- the smallest σ is 3

- No peaks has been detected, we only detected the sudden changes.
- the smallest σ is 1

- No peaks has been detected, we only detected the sudden changes.
- the smallest σ is 1

- No peaks has been detected, we only detect the sudden change.
- the smallest σ is 0.5

- No peaks are detected, we only detect the sudden change.
- the smallest σ is 0.5

Summary

- In the small scale, we can detect most peaks in the data set. In the large scale, we can detect sudden change.
- For each fixed scale, we change the $\sigma = 18, 12, 6, 3, 1, 0.5, 0.2$ to find the smallest parameter. We obtain the following relation

scale	7	8	9	10	11	12	13	14	
smallest σ	3	3	3	3	1	1	0.5	0.5	

In []: