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Project Objectives

Consistent CDC Response

Maintain consistent 
detector response in 
reaction to changing 
environmental and 
experimental variables

Stabilize gain to within 5% 
over a 2 week period with 
minimal degradation of the 
timing resolution

Data Acquisition→ Analysis

Reduce time it takes from 
data acquisition to analysis

Reduce the number of 
iterations required to 
calibrate the CDC or the 
number of runs that must be 
calibrated

Apply to other detectors

Apply same approach to 
CLAS12 drift chambers in 
Hall B

Develop open source 
software that can be easily 
applied to different detector 
systems
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Consistent CDC Response

● Why is the gain important?
○ Chamber gain determines the size of the 

avalanche → height of the pulse recorded
■ dE/dx →  particle ID
■ drift time → particle momentum 

● Factors that affect gain constant:
○ Environmental variables: Pressure, 

temperature
○ Experiment variables: beam current, anode 

voltage, pre-amp currents, event rate

● Use AI to determine relationships between 
gain constant and other more complicated 
variables
○ Currents drawn by high voltage boards Pr
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Speeding up Data Acquisition→Analysis

● Gain Calibration
○ Gain calibration constant(s)  for individual 

wires and overall chamber obtained via 
Landau fit to amplitude-pedestal

● Time-to-Distance calibration constants 
obtained via functional fit to data
○ Fall 18 data set used 18 parameters

● Overall detector calibration undergoes 
multiple rounds:
○ 1st: detectors calibrated individually
○ Subsequent: detectors share information to 

update timing offsets, vertex track 
positions, etc
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Application to Hall B Drift Chamber System

● Write open-source software that is easily 
modified for different detector systems

● Hall B Drift Chambers have similar 
procedure for calibration
○ Different time-to-distance function 

compared to Hall D

● Process to extract gain constants and other 
relevant inputs has been started
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Development of AI model

● Can we reproduce known gain and TToD 
constants?
○ Use aggregate data set with environmental 

input, beam conditions, experimental inputs
○ Aggregate data: min, mean, max, quartile 

values, standard deviation, range, and CV
● Simple sequential neural network used to 

predict gain constants
● First results: Gain Constant

○ Able to predict gain constants to within 1% 
using 39 features engineered from seven 
aggregate variables: netamp, amplitude, theta, 
drift time, count of run events, beam current, 
and pressure.

○ MAE on Holdout data: 0.0008, a 0.5% error 
from average gain constant in holdout data.
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Ongoing work 

● TToD Constant
● Evaluating feature importance
● Evaluating feature range

○ Initial data is for Fall 2018. Wider variety of 
conditions needed.

● Developing prediction confidence based 
on beam conditions, environment 
conditions and event counts used.

● Testing model predictions with “raw” data: 
i.e. tracked and untracked hits.

● Investigating models using non-aggregate 
variables.

Feature Contribution to Model: Shapley Values
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Back up slides
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Wire/Chamber Gain  
Calibrations

● Performed close to start of each run period
● Individual wire and overall chamber gain is calculated
● 3522 individual wires
● MPV from Landau fit is scaled by idealMPV and ASCALE

○ Ideal MPV is for hits in 0-100 ns with theta 28-32 
deg, z 52-78 cm, low pressure run 11621, adjusted to 
put dE/dx (1.5GeV) at 2.02 keV/cm to match geant

○ ASCALE for tracked ztheta hits from 11621
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Time-to-Distance 
Calibrations

● Obtain calibration constants 
from Time-to-Distance function

● Calibration constants are 
produced for each run
○ 18 parameters for Fall 

2018 run period
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