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1 Change De�nition
A sequence of real value G1, G2, G3, . . . , GC , . . .. The value of GC is available only at time C .

Each GC is generated according to some distribution �C with mean `C and variance f2

C .

The following describe is from the book [1]

If there is no change in the system, and the model is correct, then the residuals are

so-called white noise, that is a sequence of independent stochastic variable with

zero mean and known variance. After the change either the mean or variance or

both changes, that is, the residuals becomes ’larges’ in some sense. The main prob-

lem in statistical change detection is to decide what ’large’ is.

Figure 1 and 2 shows the change detect based on mean and variance, which are obtain

[1].

De�nition 1. We call change happens at GC if the mean `C is di�erent from `C−1 or the

variance f2

C is di�erent from f2

C−1
.

Here are some remark :

1. If no change happens, the mean and variance will be a constant. It does not mean

the sequence G1, G2, . . . is a constant.

2. In this stage, we only focus on the mean `C .

3. If change happens suddenly, then the mean will change suddenly. If change happens

gradually, then the mean will change gradually.

4. Instead of using the sequence directly, we should use the mean of the sequence.

Since the mean is unknow, we can use the local sample mean, which is de�ned as

ḠC =
1

2< + 1

<∑
:=−<

GC+: (1)

where the parameter< is giving by the Hoe�ding inequality.

Lemma 2. (Hoe�ding’s Inequality). Let /1, . . . , /< be a sequence of i.i. 3. random vari-

ables and let /̄ = 1

<

∑<
8=1
/8 . Assume that E[/̄ ] = ` and P [0 ≤ /8 ≤ 1] = 1 for every i.

Then, for any n > 0

P

[����� 1

<

<∑
8=1

/8 − `
����� > n

]
≤ 2 exp

(
−2<n2/(1 − 0)2

)
1



Figure 1: the change detection based on mean

Figure 2: change detection based on variance
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If no changes happens, the sequence G1, G2, . . . can be seen as the i.i. 3. sequence.

Giving con�dence parameter X ∈ [0, 1], if we use local mean (1), then the Hoe�ding’s

inequality

P

[����� 1

2< + 1

<∑
8=−<

/8 − `
����� > n

]
≤ 2 exp

(
−2(2< + 1)n2/(1 − 0)2

)
6 X

If we assume the sequence is the real number in [0, 1], we can give an lower estimate of

<,

< > − 1

6n2
In(X/2)

For the continuous function 6(G), we use the test function 5 (G) to test the change.

Usually, we assume 5 (G) has the vanishing moment property. Vanishing moment prop-

erty is key property we used in change detection. For continuous function 6(G), we check

the inner product,

〈6, 5 〉 (2)

For discrete data, we use summation instead of integration. For discrete data,

[30, 31, 32, . . . , 3=−1, 3=]
we choose

[G0, G1, G2, . . . , G=−1, G=]
where G: =

:
=

. We check the summation,

=∑
:=0

3: 5 (G:) ∗
1

=
(3)

Let 3: = 6(G:), the summation (3) becomes

=∑
:=0

6(G:) 5 (G:) ∗
1

=
(4)

Actually, we use summation (4) to approximation integration (2).

Lemma 3. If 5 and 6 de�ned on [0, 1] satisfy the Lipschitz continuous with Lipschitz

constant � , then the summation (4) convergence to the integration (2) and has the con-

vergence rate $ (1/=).
Proof. ��� =∑

:=0

6(G:) 5 (G:) ∗
1

=
−

∫
1

0

5 (G)6(G)3G
���

=

��� =∑
:=1

∫ G:

G:−1

6(G:) 5 (G:) − 5 (G)6(G)3G
���

6
=∑
:=1

|
∫ G:

G:−1

5 (G:)
(
6(G:) − 6(G)

)
+ 6(G)

(
5 (G:) − 5 (G)

)
|3G

6
=∑
:=1

∫ G:

G:=1

|5 (G:) |�
1

=
+ |6(G) |� 1

=
3G

6
1

=
� (‖ 5 ‖∞ + ‖6‖∞)
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Figure 3: Sudden change data

�

Thus from Lemma 3, for giving an error n > 0,��� =∑
:=0

6(G:) 5 (G:) ∗
1

=
−

∫
1

0

5 (G)6(G)3G
��� 6 1

=
� (‖ 5 ‖∞ + ‖6‖∞) 6 n

then = satisfy

= >
� (‖ 5 ‖∞ + ‖6‖∞)

n

2 Adwin2 algorithm and Multiscale algorithm

2.1 Suddenly Change Detect
data : 100000 change start : 30000 change end : 80000. The data is shown in Figure (3).

For the Adwin2 algorithm, we choose the parameter:

threshold : 2.0

delta : 0.01

change value : 2000

min time : 5000

For Multiscale algorithm, we choose parameter :

change level : N = 8

shrink level : k = 2

loacal mean length : K = 0, we doesn’t need to smooth for the sudden change

integrate : I = 2000
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Figure 4: The result of Adwin2 for sudden change

extend : Ex = 10

threshold : epsilon = 0.7

The result of Adwin2 and Multiscale is shown in Table (1). Figure (4) shows the result of

Adwin2 for sudden change.

Table 1: Sudden change detection : ADWIN2 and Multiscale

30000 80000 time/s

ADWIN2 30154 30155 30156 80220 80221 52.01

Multiscale 29995 79995 10.76

2.2 Gradually Change Detect
data : 100000 change start : 30000 change end : 80000.

For the Adwin2 algorithm, we choose the parameter:

threshold : 2.0

delta : 0.01

change value : 2000

min time : 5000

For Multiscale algorithm, we choose parameter :

change level : N = 8

shrink level : k = 2

local mean length : K = 1001

integrate : I = 2000

extend : Ex = 10

threshold : epsilon = 0.8

The result is of Adwin2 and Multiscale is shown in Table (2). Figure (5) shows the

result of Adwin2 for sudden change.

The advantage for Adwin2 algorithm are

1. Easy to detect the online data,
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Figure 5: The result of Adwin2 for graduall change

Table 2: Gradual Change Detect : ADWIN2 and Multiscale

30000 80000 time/s

ADWIN2

34261 38109 42363 63036 58734 67024 48.3125

46628 50577 54821 71091 75248 79222

Multiscale 28906 30320 80468 12.4155

2. Robust to the noise,

3. E�cient.

The disadvantage for Adwin2 algorithm are

1. Limited to the gradual change.

The advantage for the Multiscale algorithm

1. Can detect the gradually change

2. E�cient

The disadvantage for the Multiscale algorithm

1. Di�cult to detect the online data,

2. Sensitive to the noise. We can use the mean of data instead of using data directly,

we result would be much better.

3 Mixed Change Detect
In this section, we study the change happens both suddenly and gradually, we use the test

function with order one vanishing moment to detect the sudden change and use the test
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Figure 6: test function with order one vanishing moment

Figure 7: test function with order two vanishing moment

function with order two vanishing moment to detect the gradual change.

5 (G) =
{

1, 0 6 G 6 1/2
−1, 1/2 < G 6 1

(5)

5 (G) =
{

1 − 4G, G ∈ [0, 1

2
]

4G − 3, G ∈ ( 1
2
, 1]

(6)

To detect when and where the changes happens, we check the amplitude of the the

summation (4). Actually, when the change level are the same, for sudden change and

gradual change the amplitude of the the summation (4) are di�erent. Based on this fact,

we can tell when change happens suddenly and when change happens gradually.

First, we check

2=∑
:=1

6(G:) 5 (G:) ∗
1

2=
(7)

and 5 is given by (5).

6(G) =
{
�1, 0 ≤ G ≤ 1/2
2(�2 −�1)G −�2 + 2�1, 1/2 < G ≤ 1

(8)

If 5 is given by (6), we have that There are some property about the summation (7).
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the type of g cons (C) cons to grad (8) grad with slope (�2 −�1) sudden from �1 to �2

summation (7) 0
�2−�1

4
+ �2−�1

4=

(�2−�1)
4

(�2−�1)
2

Table 3: Test function 5 given by (5). The amplitude of summation with di�erent cases

the type of g cons (C) cons to grad (8) grad with slope (�2 −�1) sudden from �1 to �2

summation (7) 0
�2−�1

12
− �2−�1

4=
+ �2−�1

6=2

�2−�1

4=
�2−�1

2=

Table 4: Test Function give by (6). The amplitude of summation with di�erent cases

Figure 8: change types : constant, change from constant to gradual, gradual change,

change from gradual to sudden

If change happens, we assume the initial state is �1 and the �nal state �2. For the test

function (5), from Table (3), we observe that,

• when no change happens, the summation is 0. When gradual change happens the

summation is approximately
�2−�1

4
, when sudden change happens the summation

is
�2−�1

2
. Based on this fact, we change distinct the sudden change from the sum-

mation.

• When we detect from a large scale to a small scale, for the sudden change , the

amplitude of the summation will change change, however, for the gradual change,

the amplitude of the summation will becomes small and small since �2 − �1 will

become small and small.

For the test function (6), from Table (4), we observe that,

• When no change happens, the summation is 0. When sudden change happens, if
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the change happens in the middle of the data, the summation is approximate to 0,

however if the sudden change does not happens in the middle of the, we summation

will change dramatically. Thus, for the sudden change, use the test function (5) is

better.

• If the data in gradual change, the summation is approximation to 0. If the data

changes from constant to gradual, the summation is approximate
�2−�1

12
.

• In our numerical example, we �rst use the function (5) to detect the sudden change.

And the for gradual change, we use the function (6) to detect the gradual change.

Since the summation for sudden change is di�cult to control, we set the summation

is 0.

3.1 Numerical Result
data : 100000. gradual change start : 30000 gradual change end : 50000. Sudden change :

70000. Figure (9) show the data we use in this example.

(a) (b)

Figure 9: streaming data. (a) mixed change data; (b) smooth mixed change data with

smooth parameter 2001.

(a) (b)

Figure 10: amplitude of the (4) for �rst level. (a) detect sudden change; (b) detect gradual

change.

The parameter we use in this numerical example :

N = 2

I = 2000

Ex = 10
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epsion = 0.7

k = 3

smooth parameter = 2001

The auto-detect result is :

********************************************************

the sudden change happens at : [71385.75]

********************************************************

the gradual change happens at : [31249.0, 49608.4375]
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