Update On PRex/CRex GEM detector analysis

Siyu Jian

(on behalf of PREX/CREX collab)

University of Virginia

Talk Overview

- The Layout of GEM Detectors in PRex/CRex
- **GEM Pedestal Distribution**
- GEM Tracking and Efficiency Analsys

Layout of GEM detectors in PRex/CRex

- VDC efficiency drops when rate goes Higher
- Good Opportunity to test the SBS GEMs in real experiment

GEM6

All the GEM and the APV cards noise level look good

- The RMS distribution is around 20~30 ADC value 1.
- 2. All cards are working fine
- UVa GEM have a little bit higher noise level
 - Area for UVa-GEM is much larger than that of 0 ISU GEMs
 - UVa-GEM strip length is much longer 0
 - Higher capacitance -> Higher noise
- Y-axis noise level is a little bit larger than that of X-axis
 - The readout strips on Y-axis is wider than the 0 strips on X-axis ->Higher noise
- First few channels on each APV cards have higher noise . level because of crosstalk.
- larger noise level on L-HRS
 - Grounding issue 0

RMS distribution for All APV Cards

X : APV Card.

On each bin, It have 128 points which is the pedestal RMS of the 128 channels on each APV Card.

Y: RMS of Pedestal

RHRS-GEMs

GEM Fake Hit Rate

- Pedestal Run for each GEM Chamber
 - No real signal Hit, all the channels are pedestals
- Scan on the Pedestal Noise Sigma Cut
 - Threshold to peak signals from the pedestals

RHRS GEM Fake Hit Rate

4.5

5.0

5.5

4.0

sigma

0.0000

3.0

3.5

GEM Fake Hit Rate

X: # of sigma cut

Y : Percentage of Fake Hit percentage of GEM strips that passed the sigma cut in the Pedestal run

GEM Fake Hit Rate

- Pedestal Run for each GEM Chamber
 - No real signal Hit, all the channels are pedestals
- Scan on the Pedestal Noise Sigma Cut
 - Threshold to peak signals from the pedestals

RHRS Fake Hit Rate

- Less noisy on RHRS
- 3-sigma : 0.2% fake rate
- 5-sigma :0.05% fake rate

GEM Fake Hit Rate

RHRS Fake Hit Rate

- Less noisy on RHRS
- 3-sigma : 0.2% fake rate
- 5-sigma :0.05% fake rate

LHRS Fake Hit Rate

- 3-sigma: 0.8% fake rate
- 5-sigma: 0.1% fake rate

In experiment Threshold: 5 sigma RHRS: 99.9% LHRS: 99%

Track Based Alignment

- Track Event Viewer
 - 0 Hit on each GEM
 - Hit reconstructed from TreeSearch
 - track reconstructed from VDC 0
- Pre-align with VDC
- Track based alignment with **SBSGEM** standalone(Andrew Puckett)
- Residual
 - The distance between GEM hit and the hit of VDC project 0 to each GEM plane
 - ISU GEMs: 400 um (preliminary) Ο
 - UVa GEM: 200 um (preliminary) Ο

XZ Evt4

XZ Evt4

XZ Evt4

YZ Evt4

XZ Evt4

- The residuals are dominated by the multiple-scattering of electrons in the protection cover and travelling through ~3m of Air
- Will use a G4 simulation to extract GFM resolution

Andrew Puckett https://github.com/ajpuckett/SBSGEM standalone

Track Based Alignment

- Track Event Viewer
 - 0 Hit on each GEM
 - Hit reconstructed from TreeSearch
 - track reconstructed from VDC 0
- Pre-align with VDC
- Track based alignment with **SBSGEM** standalone(Andrew Puckett)
- Residual
 - The distance between GEM hit and the hit of VDC project 0 to each GEM plane
 - ISU GEMs: 400 um (preliminary) Ο
 - UVa GEM: 200 um (preliminary) Ο

SBS-GEM 6

 436.2 ± 2.3

The residuals are dominated by the multiple-scattering of electrons in the protection cover and travelling through ~3m of Air

XZ Evt4

XZ Evt4

YZ Evi4

Will use a G4 simulation to extract GFM resolution

Andrew Puckett https://github.com/ajpuckett/SBSGEM standalone

GEM Detected Hit : Project VDC to GEM plane and search for GEM Hit within 4cm² area **VDC Projected Hit** : Project VDC to GEM plane

- Event cut on each Bin(1cm x 1 cm) >= 30
 - background caused by cosmic etc
 - fake hit caused by VDC ghost hit combinations at high rates
- Efficiency quoted for each Bin (1cm x 1 cm)
- GEM High voltage: 4050

'V' shape is due to the the PRex optics tune.

gemDetected ch1

GEM1 Eff=0.96%

վարկումությունունակավում

- Distribution of efficiency of each Bin
 - \circ Cut bins > 30

gemDetected ch2

GEM2 Eff=0.96%

վուփավարիավավարիավարի

• Most if the bin efficiency > 90%

gemDetected ch3

GEM3 Eff=0.96%

Efficiency=0.86

նուհումումումումումումում

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

- Distribution of efficiency of each Bin
 - Cut bins > 300

0.08

0.06

-0.08

վուսիստիստիստիստիստ

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

0.95

Efficiency=0.84

Most if the bin efficiency > 90%0

0.1

0.06

0.04

0.08 Efficiency=0.87

ահավասիոսիոսի

Overall efficiency of RHRS Detectors

GEM1	GEM2	GEM3	GEM4	GEM5	GEM6
96%	96%	96%	92%	92%	92%

Overall efficiency of LHRS Detectors

GEM1	GEM2	GEM3	GEM4	GEM5	GEM6
86%	84%	87%	88%	66%	92%

- SBS GEM
 - Reach Plateau ~4100V
 - In experiment 4050V
- GEM 5
 - Larger GEM foil holes
 - Higher Working voltage

GEM Efficiency vs. Rate (Relative Efficiency)

- For safety concern, the VDC are switched off when event rage larger than 500K
- GEM efficiency is an relative efficiency
 - Currently the efficiency of tree search algorithm which used for find the track is still low
- VDC efficiency drop down when the event rate larger than 200k
- GEM efficiency shows good stability in the scange (20k-1.4M).

VDC efficiency and GEM efficiency

Summary:

- All GEMs, both UVa and ISU operated highly stably with no issues throughout the experiment
- Ran up to rates four times higher than the VDC max rates.
- GEMs can go another factor of 5-10 higher in luminosity
- Preliminary analysis gives excellent agreement with VDC tracks.
- High GEM efficiency > 90%

Work To Do:

- Higher Accurate Alignment
- GEM simulation to extract the Resolution
- Reconstruct the Target Variable with GEMs only

The End! Thank you

GEM detector Noise Level

- GEM Signal/background distribution (log scale)
 - Blue line: strip ADC did not pass the 5-sigma cut
 - Red line: strip ADC passed the 5-sigma cut(hit candidate)
 - Y dimension strip is wider -> higher noise level

GEM Signal/background distribution

