Tritium x>1 Analysis Status

Shujie Li On behalf of the E12-11-112 Collaboration

JLAB Hall A Winter Meeting Jan 21, 2021

Jefferson Lab E12-11-112 (Hall A) :

Precision Measurement of the Isospin Dependence in the 2N and 3N Short-range Correlation Region

Spokespersons:

Patricia Solvignon (UNH), John Arrington (ANL), Donal Day (UVa), Douglas Higinbotham (Jefferson Lab), Zhihong Ye (ANL)

Students:

Shujie Li (UNH), Nathaly Santiesteban (UNH), Leiqaa Kurbany (UNH)

Measurements:

1H, 2H, 3H, 3He, (C12, Ti48) inclusive cross sections at 0.6<xbj<3

Primary Physics Topics:

Check the 2N SRC isospin dependence at 1<x<2, and also 3N momentum sharing configuration.

no isospin preference:

$$\frac{\sigma_{^{3}H}}{\sigma_{^{3}He}} = \frac{\sigma_{np} + \sigma_{n}}{\sigma_{np} + \sigma_{p}} \simeq \frac{\sigma_{np}}{\sigma_{np}} = 1$$

 $\frac{\sigma_{^{3}H}}{\sigma_{^{3}He}} = \frac{2\sigma_{nn} + \sigma_{pp}}{\sigma_{nn} + 2\sigma_{pp}} \xrightarrow{\sigma_{p} \sim 3\sigma_{n}} 0.7$

x>1 Kinematics:

Probing 2N SRC at x>1

High momentum tails should yield constant ratio if SRC-dominated

N. Fomin, et al., PRL 108 (2012) 092052

Inclusive electron scattering:

- high statistics
- background suppressed at high Q2

In inclusive (e,e') quasi-elastic scattering, high momentum nucleons dominate the $x = Q^2/2mv > 1$ kinematics

Probing 2N SRC at x>1

High momentum tails should yield constant ratio if SRC-dominated

N. Fomin, et al., PRL 108 (2012) 092052

Inclusive electron scattering:

- high statistics
- background suppressed at high Q2

The x>1 plateau of A/D cross section ratios give the percentage of deuteron-like high momentum pairs in each nucleus

Probing 2N SRC at x>1

JLab E08-014

- high statistics
- background suppressed at high Q2

D Nguyen et al., Phys. Rev. C 102, 064004 (2020)

The x>1 plateau of A/D cross section ratios give the percentage of deuteron-like high momentum pairs in each nucleus

No x>2 plateau observed

np-dominance in Triple-coincidence Experiment

Subedi, R. et al. https://doi.org/10.1126/science.1156675

Strong isospin preference from initial state (NOT final state interaction)

Cross Section Model

- Inelastic (including MEC):
 - F1F209
- **QE**:
 - form factors :JRA PRL C 69, 022201(R)
 (2004) for GMP and GEP and
 JRA/Qattan from PRL C 86, 065210
 (2012)
 - F(y) scaling with parameters from N.
 Fomin's thesis (E02-119)
- Radiative Cross Section:
 - **Mo Tsai** (Tsai 1971, SLAC-PUB-848)
 - Elastic cross section for the elastic tail (MCEEP)

$$W_1^{MEC} = \frac{P_0}{f} e^{-[(\sqrt{W^2} - P_1)^2]/P_2]}$$

Absolute Cross Sections and Momentum Distribution

Approximated momentum distribution can be extracted from F(y) to compare with theories

F(y) ~ longitudinal momentum distribution

Absolute Cross Sections and Momentum Distribution

Uncertainties

Absolute XSection

Yield Ratios

		•		•	•
Sources	Uncertainties	norm	ptp	norm	ptp
Beam Energy	0.050%	0	0.1-2%		
Scattering Angle	0.3 mrad	1.65-2.65%	0.4-8%		
Momentum	0.02%	1.1-1.8%	0.2-10%		
Tracking Efficiency	0.20%	0.20%	0.10%		
Acceptance		2%	1.50%		0.2-1%
PID		0	0		
Trigger		0	0		
Radiative Correction		1%	1%	0.30%	0.20%
Endcap Contamination		0	0.1-1%		0.1-1.5%
Charge		1.00%	0.30%	0.10%	
Boiling		0.40%	0.30%	0.50%	0.30%
Target Thickness		0.6 - 1.1%	0	1.2-1.4%	
Hydrogen Contamination		2%	0	2.00%	
Total		3.0-4.5%	0.6-13%	1.4-2.5%	0.4-1.8%

x>1 cross section ratio:

Calibration result: 3He/2H ratio from E02-119

This work: A=3 to D ratios at 1.4 GeV2

x>1 cross section ratio:

Q2 dependence on 3H/2H ratio

x>1 cross section ratio:

Combined results of data from 2 experiments:

- 1.4 GeV2 data from inclusive SRC: 0.829+-0.03 norm. uncert.

- 1.9GeV2 data from the exclusive SRC 0.840+-0.014

Isospin Dependence in 2N-SRC

SRC ratios break down:

- Probability of np or pp pair up in nuclei from pair counting:
 - 2np and 1 pp(nn) in 3He(3H)
- Probability of np(pp) pair to have high momentum : p1 (p0). Assumed to be the same for 3H and 3He
- The off-shell elastic cross section ratio of proton to neutron at Q2=1.4-1.9 GeV2 is p/n ~ 2.55

$$inclusive \ rac{\sigma(3H)}{\sigma(3He)} = rac{2(\sigma_n+\sigma_p)\cdot p_1+2\sigma_n\cdot p_0}{2(\sigma_n+\sigma_p)\cdot p_1+2\sigma_p\cdot p_0} \ exclusive \ rac{\#(3H)}{\#(3He)} = rac{2\cdot p_1}{2\cdot p_1+2\cdot p_0}$$

Ratio of np/pp SRC pairs in A=3 nuclei = 2*p1/p0 = 3.94 $\sigma(3H/3He)$ 0.95 p/n=2.5 0.90 p/n=2.6 (e e) (e e) 0.80 0.75 0.9 (e,e'p) - WITH FSI 0.8 0.7 0.6 0.5 2 3 5 6 7 p1/p0

Towards 3N-SRC

Thanks M. Sargsian for useful discussions

Dominant channel:

$$\frac{\sigma_{^{3}H}}{\sigma_{^{3}He}} = \frac{2\sigma_{nn} + \sigma_{pp}}{\sigma_{nn} + 2\sigma_{pp}} \xrightarrow{\sigma_{p} \sim 3\sigma_{n}} 0.7$$

3N-SRC contribution is predicted to dominate at somewhere alpha_3N > 1.6. Ratio will drop from 2N-SRC plateau

Summary

- Isospin Dependence in 2N-SRC
 - Analysis finished, preparing paper draft
- Absolute cross section of 2H, 3H, and 3He:
 - Updated radiative cross section and energy loss
 - Cross section are compared to theory and used to extract momentum distribution

Acknowledgement

- Tritium experiments students and postdocs lacksquare
- Dave Meekins and the target group
- Hall A engineers lacksquare
- GMp and DVCS collaboration E12-14-011 (e'p SRC) collaboration lacksquare

Nucleons in Nuclei: Beyond Shell Model

• The closed orbits are NOT fully occupied.

"The main effects of NN correlations is to generate high momentum and high removal energy components"

High momentum nucleons in different nuclei

The Gas Target System: special handling

- Maximum current = 22.5 uA on gas cells to minimize the risk of gas leak.
- Endcap(75mg/cm2 Aluminum) being mis-reconstructed into thin gas body (77mg/cm2 Tritium)
- "Boiling": gas density change along beam path

Charge Normalized Yield

The Tritium density reduced by ~ 10 percent at 22.5 uA

S. Santiesteban et al. , https://doi.org/10.1016/J.NIMA.2019.06.025

RADIATIVE TAIL FROM ELASTIC SCATTERING

Effective Cross Section: (most probable ionization energy loss applied)

$$\sigma_{\text{eff}}(\mathbf{E}_{s}, \mathbf{E}_{p}) = F(q^{2}, T) \sigma(\mathbf{E}_{s} - \Delta_{s}, \mathbf{E}_{1} + \Delta_{p})$$

Nucleon-Nucleon Short Range Correlation (SRC)

Free nucleon-nucleon potential = Repulsive core + attractive tensor force T = 1, S = 0 :np, pp, nn pairs. The tensor operator $S_{1,2}$ = 0, no attractive tensor force T = 0, S = 1: Deuteron-like np pair.

