# Probing the <sup>3</sup>H and <sup>3</sup>He in the QuasiElastic regime

## **Nathaly Santiesteban**

On behalf of the E12-11-112 collaboration



Hall A Winter Collaboration Meeting January 22, 2021





## E12-11-112 motivation

**P. Solvignon**, J.Arrington, D.B.Day, D. Higinbotham, Z. Ye (Spokepeople) On behalf of the E12-11-112 Collaboration



CLAS Collaboration. Phys.Rev.Lett. 102 (2009)

Data from:

- X Mainz [ G. Kubon, et al., Phys. Lett. B 524, 26 (2002); H. Anklin et al., Phys. Lett. B 428, 248 (1998)]
- ☆ Jefferson Lab [B. Anderson et al. Phys. Lett. C 75, 034003 (2007); J. Lachniet, et al., Phys. Rev. Lett. 102, (2009).

## E12-11-112 motivation

**P. Solvignon**, J.Arrington, D.B.Day, D. Higinbotham, Z. Ye (Spokepeople) On behalf of the E12-11-112 Collaboration



CLAS Collaboration. Phys.Rev.Lett. 102 (2009)

Data from:

- X Mainz [ G. Kubon, et al., Phys. Lett. B 524, 26 (2002); H. Anklin et al., Phys. Lett. B 428, 248 (1998)]
- ☆ Jefferson Lab [B. Anderson et al. Phys. Lett. C 75, 034003 (2007); J. Lachniet, et al., Phys. Rev. Lett. 102, (2009).

## Neutron case: no free neutron target

If measuring neutrons (no charge):
Energy information from time of flight
Requires precise measurement of neutron detection efficiencies

Measurement Corrections: • Reaction mechanisms FSI and MEC • Nuclear structure



## **Probing nucleons with electron scattering**

Access nucleons in QE scattering of <sup>3</sup>H and <sup>3</sup>He

![](_page_4_Figure_2.jpeg)

5

## E12-11-112 motivation

**P. Solvignon**, J.Arrington, D.B.Day, D. Higinbotham, Z. Ye (Spokepeople) On behalf of the E12-11-112 Collaboration

![](_page_5_Figure_2.jpeg)

This experiment:  $Q^2 = 0.6, 0.7, 0.8, 0.9, 1, 1.5,$ 2.3, 2.6 and 2.9 GeV<sup>2</sup>.

![](_page_5_Picture_4.jpeg)

Measure the neutron magnetic form factor using the <sup>3</sup>H/<sup>3</sup>He cross-section ratios

## **Kinematics Coverage**

**P. Solvignon**, J.Arrington, D.B.Day, D. Higinbotham, Z. Ye (Spokepeople) On behalf of the E12-11-112 Collaboration

![](_page_6_Figure_2.jpeg)

The experiment was performed in 2018.

In the plot, L(R) is the spectrometer used in Hall A Left(Right), and the number is related with the scattered angle of the electron.

Nathaly Santiesteban

7

## Hall A Configuration

![](_page_7_Figure_1.jpeg)

## **Experimental setup**

![](_page_8_Figure_1.jpeg)

#### Target System

## **Target System**

![](_page_9_Figure_1.jpeg)

- Tritium cell was filled at Savanah River Site (SRS).
- The scattering chamber is vacuum with a pumping system directed to an exhaust stack, provided a layer of tritium confinement.
- Cells were machined from a single piece of aluminum. Due to machining tolerances, the wall thickness of each cell varies slightly over its length.
- Maximum current allowed on target was 22.5  $\mu$ A.

#### First Tritium experiment in Jefferson Lab

![](_page_9_Picture_7.jpeg)

## **Endcap contamination**

![](_page_10_Figure_1.jpeg)

Endcaps background is addressed by:

- Cutting the end windows in the target cell data.
- Subtract the remaining background events from the electron sample using the empty cell runs.
- The contamination varied between 0.5 2 % in the analysis window depending on the kinematics.

## Density study of the gas targets

The density of the gas targets decreases due to heating effects from the electron beam. **Goal of the study:** Find a functional form to measure the density reduction for any given current.

![](_page_11_Figure_2.jpeg)

**Charge Normalized Yield:** Number of events measured per unit of charge.

Santiesteban S. N. et al. Nucl. Instrum. Meth. A940 (2019) 351-358

Density Reduction at the production current 
$$22\mu A$$
:  
 ${}^{3}H\sim 10\%$   ${}^{3}He\sim 6\%$ 

## **Particle Identification (PID)**

![](_page_12_Figure_1.jpeg)

Nathaly Santiesteban

# **Tritium considerations:** <sup>3</sup>**H decay**

| Cell   | Filling Date | E12-11-112 Running time | Purity (%)  |
|--------|--------------|-------------------------|-------------|
| Cell 1 | 10/23/2017   | 12/15/2017              | 98.83       |
| Cell 1 | 10/23/2017   | 05/03/2018-05/06/2018   | 95.82-95.73 |
| Cell 2 | 08/24/2018   | 09/26/2018-10/29/2018   | 99.27-98.55 |

 $^{3}$ H in the cell at any time t:

 $^{3}$ He in the cell at any time t:

$$n_{^{3}H}(t) = n_0 e^{-t/\tau}$$
  $n_{^{3}He}(t) = n_0(1 - e^{-t/\tau})$ 

Measured cross section:

$$\sigma^{measured} = \sigma^{^{3}H}e^{-t/\tau} + \sigma^{^{3}He}(1 - e^{-t/\tau})$$

<sup>3</sup>He contamination has to be removed from the <sup>3</sup>H events:

- The correction is applied depending on the running time.
- <sup>3</sup>He data is used to account for the contamination

 $\tau = 4500 \pm 8$  days

Lifetime

### Tritium considerations:<sup>1</sup>H contamination in the second <sup>3</sup>H cell

![](_page_14_Figure_1.jpeg)

Maximum 4.12% Hydrogen Contamination in the Second Tritium Cell, affecting the  $Q^2 > 2 \text{ GeV}^2$  kinematics.

Proper estimation of the hydrogen contamination is expected after the mass spectrometer analysis is done at Savanah River Site (SRS)

#### From Data to cross sections

![](_page_15_Figure_1.jpeg)

Hall A Collaboration Meeting

Nathaly Santiesteban

## **Data/MC comparison for the target variables**

![](_page_16_Figure_1.jpeg)

Sample

## **Data/MC comparison for** $x_{bi}$

![](_page_17_Figure_1.jpeg)

## **Cross section results**

![](_page_18_Figure_1.jpeg)

## **Systematic Uncertainties**

|                                 | Cross Section     |                    | Cross Section Ratios |                    |
|---------------------------------|-------------------|--------------------|----------------------|--------------------|
| Source                          | Normalization [%] | Point-to-Point [%] | Normalization [%]    | Point-to-Point [%] |
| Beam Energy                     |                   | 0.5-2              |                      |                    |
| <b>E'</b>                       |                   | 2-3                |                      |                    |
| Scattering Angle                | 0.6               | 0.2                |                      |                    |
| <b>Background Contamination</b> | 0.07              | 0.1-0.4            | 0.1                  | 0.15-0.4           |
| Target Thickness                | 0.3-1             |                    | 1                    |                    |
| Target length cut               | 0.4               |                    |                      |                    |
| Boiling                         | 0.3-0.4           |                    | 0.5                  |                    |
| Charge                          | 0.5               |                    | 0.1                  |                    |
| Efficiencies and live-time      | 0.01-0.1          |                    |                      |                    |
| Tracking                        | 0.2               | 0.1                |                      |                    |
| <b>Coulomb correction</b>       |                   | 0.001              |                      | 0.01               |
| <b>Bin Centering</b>            |                   |                    |                      |                    |
| <b>3He contamination</b>        |                   | 0.03-1.75          |                      | 0.03-1.75          |
| Hydrogen contamination          | 2                 |                    | 2                    |                    |
| Model Dependence                | 0.2               |                    |                      |                    |
| Acceptance corrections          | 1.5               |                    |                      |                    |
| <b>Radiative corrections</b>    | 1                 | 1                  | 0.3                  | 0.4                |

#### **Estimating nuclear effects**

![](_page_20_Figure_1.jpeg)

The error bars in the data correspond to the statistical and point-to-point uncertainties.

The normalization uncertainty in the data is 3.1% for all cross sections except for the <sup>3</sup>H data at  $2.9 \text{ GeV}^2$ , which is 3.7% because of the hydrogen contamination.

- ☆ PWIA Calculations from Rocco and Lovatto (QE only)
- $\Leftrightarrow$  Comparisons above are a sanity check.
- FSI calculations being performed, expected to be negligible in ratio
- ☆ Calculations used to look at difference between naive "Stationary approximation: sum of nucleon" approach and full QE ratio.

#### Stationary approximation: From cross sections to $G_M^n$

Assuming no-nucleon interactions or medium effects:

| $\sigma_{3H} \sim 2\sigma_n + 2\sigma_{3He} \sim \sigma_n + 2\sigma_n +$ | $\sigma_p \ \sigma_p$                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| $R = \frac{\sigma_{3H}}{\sigma_{3He}} \sim \frac{2}{\sigma_{3He}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{\sigma_n + \sigma_p}{\sigma_n + 2\sigma_n}$ |

 ${}^{3}\text{H}/{}^{3}\text{He}$  Ratio: Integrals from Peak to 2 sigma from the peak .

Inelastic contribution to the integrals subtracted by using the Bosted and Christy Model.

![](_page_21_Figure_5.jpeg)

Neglecting the nuclear effects in the A=3 targets:  $G_M^n$  up to 8% away from the real value. However, these results still reflect the expected experimental uncertainty (for the preliminary values used at the moment).

#### **Cross section ratio** <sup>3</sup>**H**/<sup>3</sup>**He Comparison**

![](_page_22_Figure_1.jpeg)

 $^{3}$ H/ $^{3}$ He Ratio: Integrals from Peak to 2 sigma from the peak for PWIA .

 $G_M^p$ ,  $G_E^p$  and  $G_E^n$  form factors were taken from: Z. Ye, J. Arrington, R. J. Hill, and G. Lee, Phys. Lett. B **777**, 8 (2018).

Theory model input for the nucleon interactions and medium effects from Rocco and Lovatto.
Goal: Find a suitable input model that describes the nuclear effects, where the only correction to match the data is the magnetic form factor.

### **Cross section ratio** <sup>3</sup>**H**/<sup>3</sup>**He Comparison**

#### Stationary cross sections ratio vs PWIA

Adding E12-11-112 ratios

![](_page_23_Figure_3.jpeg)

<sup>3</sup>H/<sup>3</sup>He Ratio: Integrals from Peak to 2 sigma from the peak for PWIA . <sup>3</sup>H/<sup>3</sup>He Ratio: Integrals from Peak to 2 sigma from the peak same than PWIA. Inelastic contribution to the integrals subtracted by using the Bosted and Christy Model.

 $G_M^p$ ,  $G_E^p$  and  $G_E^n$  form factors were taken from: Z. Ye, J. Arrington, R. J. Hill, and G. Lee, Phys. Lett. B **777**, 8 (2018).

Theory model input for the nucleon interactions and medium effects from Rocco and Lovatto.
Goal: Find a suitable input model that describes the nuclear effects, where the only correction to match the data is the magnetic form factor.

### **Cross section ratio** <sup>3</sup>**H**/<sup>3</sup>**He Comparison**

![](_page_24_Figure_1.jpeg)

 $G_M^p$ ,  $G_E^p$  and  $G_E^n$  form factors were taken from: Z. Ye, J. Arrington, R. J. Hill, and G. Lee, Phys. Lett. B **777**, 8 (2018).

Theory model input for the nucleon interactions and medium effects from Rocco and Lovatto.
Goal: Find a suitable input model that describes the nuclear effects, where the only correction to match the data is the magnetic form factor.

#### **Implications of the E12-11-112 preliminary results**

- ☆ Preliminary E12-11-112 show a high impact for the medium effects, and currently the contribution to the form factor is under study.
- The uncertainty of the higher  $Q^2$  points will decrease once the mass spectrometer analysis from the tritium cell are received.
- ☆ The final uncertainty has a maximum 1.5% in the region of interest, which will be enough to claim a precise measurement.

#### **Future Work**

- ☆ We are in the process of cross checking the cross section results with other group member (Shujie Li).
- More systematic studies are being done to reduce the uncertainties.
- ☆ Check with other theory models, specially in the region of interest. We are contacting other theory physicists to help understanding the medium effects.
- $\Rightarrow$  Publish the results.

![](_page_25_Figure_9.jpeg)

# Thank you !

# Do you have any questions?

![](_page_26_Picture_2.jpeg)