# E12-06-114: DVCS/ $\pi^{0}$ Results

Hall-A Winter Collaboration Meeting January 21, 2021

Po-Ju Lin CEA, Université Paris-Saclay & IJCLab – Orsay on behalf of the DVCS collaboration

1

#### Picture of Nucleon



Form Factors (FFs)
 Spatial distribution
 Momentum distribution

Generalized Parton Distributions (GPDs)

Sz.

 $f(x,b_{\perp})$ 

b,

- ✓ Spatial distribution
- Longitudinal momentum distribution

- $x = \begin{bmatrix} \delta z_1 \\ x \\ z \\ 0 \end{bmatrix}$
- Parton Distribution Functions (PDFs)
  - Longitudinal momentum distribution
  - X Spatial distribution

#### GPDs

- Correlates the transverse position to the longitudinal momentum of the partons and thus provides a 3-D information of the nucleon.
- > Accessible through exclusive processes.

#### Factorization



The GPDs depend on the variables:

*x*: average longitudinal momentum frac.

- $\xi$ : longitudinal momentum diff.  $\approx x_{\rm B}/(2-x_{\rm B})$
- t: four momentum transfer (correlated to b, via Fourier transform)

D. Mueller et al, Fortsch. Phys. 42 (1994)
X.D. Ji, PRL 78 (1997), PRD 55 (1997)
A. V. Radyushkin, PLB 385 (1996), PRD 56 (1997)

- Deeply Virtual Compton Scattering (DVCS)
  - Hard exclusive production of a single photon
- → In Bjorken limit  $(Q^2 \& \nu \to \infty)$  at fixed  $x_B$ 
  - Hard Part: Calculable perturbatively
  - Soft Part: Nucleon structure parameterized by GPDs
- The minimum Q<sup>2</sup> at which factorization holds shall be tested through experiments

#### Deep Exclusive Processes





#### 4 chiral-even GPDs: helicity of parton unchanged

$$\mathbf{H}^q(x, \xi, t)$$
 $\mathbf{E}^q(x, \xi, t)$ viaDVCS $\widetilde{\mathbf{H}}^q(x, \xi, t)$  $\widetilde{\mathbf{E}}^q(x, \xi, t)$  $\mathbf{DVMP}$ 

+ 4 chiral-odd (transversity) GPDs: helicity of parton changed

$$\begin{array}{ll} \mathbf{H}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathsf{t}) & \mathbf{E}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathsf{t}) \\ \widetilde{\mathbf{H}}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathsf{t}) & \widetilde{\mathbf{E}}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathsf{t}) \end{array}$$

via DVMP

#### > DVCS

- Golden channel, simple and clean final state
- > Deeply Virtual Meson Production (DVMP)
  - Ability to probe the chiral-odd GPDs
  - Additional non-perturbative term from meson distribution amplitude

DVCS





#### DVCS - Results of the JLab 12 Experiment to Be Published



> Results ready, paper drafting will be finalized soon.

## Exclusive $\pi^0$ Production

 $e p \rightarrow e \pi^0 p$ 

$$\frac{d^{4}\sigma}{dQ^{2}dx_{B}dtd\phi} = \frac{1}{2\pi}\Gamma_{\gamma}(Q^{2}, x_{B}, E)\left[\frac{d\sigma_{T}}{dt} + \epsilon\frac{d\sigma_{L}}{dt} + \sqrt{2\epsilon(1+\epsilon)}\frac{d\sigma_{TL}}{dt}\cos(\phi) + \epsilon\frac{d\sigma_{TT}}{dt}\cos(\phi) + h\sqrt{2\epsilon(1-\epsilon)}\frac{d\sigma_{TL'}}{dt}\sin(\phi)\right]$$
  

$$\epsilon: \text{ degree of longitudinal polarization of the second secon$$

ion *h*: helicity of the initial lepton

- $\succ$  Factorization proven only for  $\sigma_{\rm I}$ , which depends on chiral-even GPDs only
- $\succ$  At sufficiently high Q<sup>2</sup>, expect  $\sigma_1 \propto Q^{-6}$  while  $\sigma_{\tau}$  asymptotically suppressed and  $\propto Q^{-8} \rightarrow \sigma_1$  dominance
- $\succ$  Previous experiments with limited reach in Q<sup>2</sup> show dominance of  $\sigma_{\tau}$
- $\succ$  Modeling of  $\sigma_{\tau} \rightarrow$  coupling between transversity GPDs and twist-3 pion amplitude

## Exclusive $\pi^0$ Production

 $e p \rightarrow e \pi^0 p$ 





S. V. Goloskokov and P. Kroll, Eur. Phys. J. C65:137 (2010)

---- G. R. Goldstein, J. O. Hernandez, S. Liuti, Phys. Rev. D84 (2011)

8

### Setup and Data Taken



## Exclusive $\pi^0$ Event Selection







- > π<sup>0</sup> events → select events with invariant mass  $m_{\gamma\gamma} = \sqrt{(q_1 + q_2)^2}$  around the π<sup>0</sup> mass
- Exclusivity  $\rightarrow$  remove the  $M_X^2$  contribution from inclusive channels, threshold  $\approx 1.15 \text{ GeV}^2$
- Main background: accidentals. The backgound in the signal coincidence window, [-3,3] ns, is estimated via other time windows.

#### **Cross-section Extraction**





#### Cross-sections

Cross section extracted at x<sub>B</sub> = 0.36, Q<sup>2</sup> = 3.11
 S. V. Goloskokov and P. Kroll, Eur. Phys. J. A47, 112 (2011)

\_ \_ \_ \_ \_ .

P. Kroll, private communications

 $\blacktriangleright$  Reasonable agreement  $\sigma_{U}$  and  $\sigma_{TT}$ 

- $\blacktriangleright$  Sign difference in  $\sigma_{\rm TL}$
- > Small  $\sigma_{TL'}$  with relatively large error
- Suggest a large σ<sub>T</sub> in σ<sub>U</sub>, and possibly a larger contribution of the logitudinal amplitude than the one expected by GK.
- Provide useful input for understanding the transversity GPDs in the valence domain

#### Cross-sections - Results of the JLab 12 Experiment submitted to PRL

•  $\sigma_{U} \land \sigma_{TT} = \sigma_{TL} \star \sigma_{TL'}$ 



M. Dlamini et al, arXiv:2011.11125 [hep-ex] 2020

## <u>Q<sup>2</sup> Dependence</u> – Results of the JLab 12 Experiment submitted to PRL



- Open Markers: P. Kroll, private communications
- Solid Markers: Experimental measurements
  - This work,  $x_B = 0.36$
  - This work,  $x_B = 0.48$
  - This work,  $x_B = 0.60$
  - E. Fuchey *et al,* Phys. Rev. C 83, 025201 (2011)
  - M. Defurne *et al*, Phys. Rev. Lett. 117, 262001 (2016)

 $< t' > = 0.1 \, GeV^2$ 

14

- $\succ$  C(Q<sup>2</sup>)<sup>A</sup> fit to experimental results in different x<sub>B</sub>
- > Q<sup>2</sup> dependence closer to Q<sup>-6</sup>, rather than Q<sup>-8</sup> as expected for  $\sigma_{T}$  at high Q<sup>2</sup>
- At this Q<sup>2</sup> and x<sub>B</sub> coverage, the asymptotic limit is still far away

### Summary and Outlook

#### **DVCS**

Results ready. Paper drafting will be finalized soon

#### Exclusive $\pi^0$

- Reasonable description of results by GK model
- Non-neglibible contributions from longitudinal and transverse amplitudes are needed to describe the data
- Provide inputs for transversity GPD parameterization
- Paper submitted to PRL, being reviewed M. Dlamini *et al*, arXiv:2011.11125 [hep-ex] 2020

#### Outlook

- Extension to higher Q<sup>2</sup> and lower x<sub>B</sub>
- Energy separation of DVCS cross section
- $\succ \sigma_{T}$  and  $\sigma_{L}$  separation of  $\pi^{0}$  production



Hall A Collaboration
Hall A technical staff
Accelerator staff
K. Kumericki and D. Müller
S. V. Goloskokov, P. Kroll, and S. Luiti

## Thank you!

## Backup Slides

DVCS





A. V. Belitsky, D. Meller, A. Kirchner, Phys. Rev. D 82

## DVCS - Results of the JLab 12 Experiment to Be Published





$$e p \rightarrow e \pi^{0} p \frac{d^{2}\sigma}{dt d\phi_{\pi}} = \frac{1}{2\pi} \left[ \left( \frac{d\sigma_{T}}{dt} + \epsilon \frac{d\sigma_{L}}{dt} \right) + \epsilon \cos 2\phi_{\pi} \frac{d\sigma_{TT}}{dt} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi_{\pi} \frac{d\sigma_{LT}}{dt} \right]$$

$$\frac{d\sigma_L}{dt} = \frac{4\pi\alpha}{k'} \frac{1}{Q^6} \left\{ \left(1 - \xi^2\right) \left| \langle \tilde{H} \rangle \right|^2 - 2\xi^2 \operatorname{Re} \left[ \langle \tilde{H} \rangle^* \langle \tilde{E} \rangle \right] - \frac{t'}{4m^2} \xi^2 \left| \langle \tilde{E} \rangle \right|^2 \right\}$$
Leading twist expected be dominant  
But measured as  $\approx$  only a few % of  $\frac{d\sigma_T}{dt}$ 

The other contributions arise from coupling between chiral-odd (quark helicity flip) GPDs to the twist-3 pion amplitude

$$\frac{d\sigma_T}{dt} = \frac{4\pi\alpha}{2k'} \frac{\mu_\pi^2}{Q^8} \left[ \left(1 - \xi^2 \left(|\langle H_T \rangle|\right)^2 - \frac{t'}{8m^2} \left(\langle \bar{E}_T \rangle\right)^2 \right] \right]$$

$$\frac{\sigma_{LT}}{dt} = \frac{4\pi\alpha}{\sqrt{2k'}} \frac{\mu_\pi}{Q^7} \xi \sqrt{1 - \xi^2} \frac{\sqrt{-t'}}{2m} \operatorname{Re}\left[ \langle H_T \rangle \right] \langle \tilde{E} \rangle \right]$$

$$\frac{\sigma_{TT}}{dt} = \frac{4\pi\alpha}{k'} \frac{\mu_\pi^2}{Q^8} \frac{t'}{16m^2} \left[ \langle \bar{E}_T \rangle \right]^2$$