
Hall A Analysis Software Update

Ole Hansen

Jefferson Lab

Hall A Collaboration Meeting
January 21, 2021

Ole Hansen (Jefferson Lab) Hall A Software Update Hall A Collab Meeting, 21 Jan 2021 1 / 21

C++ Analyzer Project “Podd” — Over 20 Years! (started ∼April 2000)

Ole Hansen (Jefferson Lab) Hall A Software Update Hall A Collab Meeting, 21 Jan 2021 2 / 21

Podd Development Status & Plans

Current release: 1.7.0 (∼ Feb 2021, sorry for the delay)
I Many updates and new features (see next page)
I Requires C++11 compiler
I Drops support for obsolete ROOT 5
I Final testing & documenting in progress

Priority development: 2.0-devel (hopefully Summer 2021)
I Multithreading
I Intended for SBS
I Will require C++17 (e.g. gcc 9+, available on ifarm)
I Existing code will need minor modifications

Auxiliary development: 1.8-devel (if time permits)
I Include features missed in 1.7
I Maintain system requirements and API of version 1.7 as much as possible

Ole Hansen (Jefferson Lab) Hall A Software Update Hall A Collab Meeting, 21 Jan 2021 3 / 21

New in Podd 1.7
Decoder upgrades

I Support for CODA 3 data format, bank data and event block decoding (Bob Michaels)
I EVIO upgraded to version 5.2 (better I/O performance and many bugfixes)
I Includes FADC decoders developed for Tritium experiments, to be reused in SBS

New module type: “InterStageModule”
I May combine information from arbitrary detectors after each processing stage
I Needed for coincidence time correction in Tritium ΛN
I Removes a significant limitation1 of Podd; many other possible uses

Build system overhaul
I CMake build system added (used by SBS, for example)
I SCons build system significantly improved (used by hcana)
I Old make system removed

Extensive code cleanup & reorganization
I Libraries split into core and Hall A parts: libPodd and libHallA

1Too many such limitations? See later for discussion
Ole Hansen (Jefferson Lab) Hall A Software Update Hall A Collab Meeting, 21 Jan 2021 4 / 21

Code Cleanup Example — Old (Left) vs. New (Right)

Ole Hansen (Jefferson Lab) Hall A Software Update Hall A Collab Meeting, 21 Jan 2021 5 / 21

Building with CMake
Prerequisites:

Install ROOT (root-config should be in PATH, or set $ROOTSYS)
I Farm: run setroot_CUE.csh. RHEL: install from EPEL. macOS: install from Homebrew.
I See also https://redmine.jlab.org/projects/podd/wiki/ROOT_Installation_Guide

Ensure you have CMake >= 3.5 (cmake --version. cmake3 on RedHat)

Building the Hall A analyzer with CMake
$ git clone https://github.com/JeffersonLab/analyzer.git
$ cd analyzer && mkdir build && cd build
$ cmake ..
$ make [-j4]
$./apps/analyzer

Notes:
Installing recommended (make install): Set CMAKE_INSTALL_PREFIX

For debug build, set CMAKE_BUILD_TYPE

Will phase out aging SCons build system (too many limitations)

Ole Hansen (Jefferson Lab) Hall A Software Update Hall A Collab Meeting, 21 Jan 2021 6 / 21

https://redmine.jlab.org/projects/podd/wiki/ROOT_Installation_Guide

Podd 2.0

Event-based parallelization/multithreading
I Important for SBS online replay
I Reduced memory footprint compared to multiple individual jobs
I Requires thread safe user code (→ only const or protected globals, statics)

I/O improvements
I Output system upgrade (full set of data types, object variables)
I TBD: HIPO output file format support
I TBD: EVIO 6 input format support (HIPO-like raw data files)

Ole Hansen (Jefferson Lab) Hall A Software Update Hall A Collab Meeting, 21 Jan 2021 7 / 21

ToyPodd Parallel Processing Prototype
Small standalone toy analyzer with hand-implemented multithreading
Mimics main components of Podd (e.g. decoder, analysis variables, output)
A few example “detectors” included whose processing is intended to burn CPU cycles

Ole Hansen (Jefferson Lab) Hall A Software Update Hall A Collab Meeting, 21 Jan 2021 8 / 21

Podd Parallelization Design

Output
Thread

Output
File

Analysis Thread 1

Work
Queue

Analysis Thread 2

Analysis Thread 3

Analysis Thread N

Results
Queue

Thread Pool

Input
Thread

Input
File

Free
Queue

Thread Pool with three thread-safe queues
Queues hold working sets: raw event buffer, analysis modules, event-by-event results
Options

I Sync event stream at certain points (e.g. scaler events, run boundaries)
I Preserve strict event ordering (at a considerable performance penalty)

Ole Hansen (Jefferson Lab) Hall A Software Update Hall A Collab Meeting, 21 Jan 2021 9 / 21

ToyPodd Performance Scaling Benchmark
Benchmark processing rate as function of number of analysis threads
Run on aonl1 (16 hyperthreaded cores, Intel Xeon E5-2650 v2 @ 2.60GHz), RHEL 7.9, idle
Admittedly extreme example: maximally CPU-bound (negligible I/O & memory use)

0 5 10 15 20 25 30 35
Number of analysis threads

0

50

100

150

200

250

300

350

400

An
al

ys
is

Ra
te

 (H
z)

88.4% eff

78.2% eff

Parallel Podd Prototype Performance Scaling
Ideal rate
Actual rate

0 5 10 15 20 25 30 35
Number of analysis threads

0

1

2

3

4

5

6

M
em

or
y

us
ag

e
(M

B)

0.1 MB/thread

Parallel Podd Prototype Memory Usage

Multiprocess memory usage (est.)
Multithreaded memory usage (meas.)
Fit

Ole Hansen (Jefferson Lab) Hall A Software Update Hall A Collab Meeting, 21 Jan 2021 10 / 21

More ToyPodd Benchmark Results

AMD Ryzen 5 3600 (6C/12T), macOS 11.1

2 4 6 8 10 12 14
Number of analysis threads

25

50

75

100

125

150

175

200

An
al

ys
is

Ra
te

 (H
z)

93.8% eff

84.1% eff

Parallel Podd Prototype Performance Scaling
Ideal rate
Actual rate

Intel i9-8950HK (6C/12T), MacBook Pro, macOS

2 4 6 8 10 12 14
Number of analysis threads

20

40

60

80

100

120

140

160

An
al

ys
is

Ra
te

 (H
z)

81.7% eff

65.6% eff

Parallel Podd Prototype Performance Scaling
Ideal rate
Actual rate

Apple M1 (4C/8T), Mac Mini, macOS

2 4 6 8 10
Number of analysis threads

20

40

60

80

100

120

140

An
al

ys
is

Ra
te

 (H
z)

93.0% eff

74.9% eff

Parallel Podd Prototype Performance Scaling
Ideal rate
Actual rate

Ole Hansen (Jefferson Lab) Hall A Software Update Hall A Collab Meeting, 21 Jan 2021 11 / 21

A Future Hall A Framework Candidate: ARIEL

https://github.com/JeffersonLab/ARIEL

Repackaged version of Fermilab’s art framework
w/custom build system. Based on CMSSW (LHC).
Intended as base software for SoLID, but
completely experiment-agnostic.
“art made usable”: Easy-to-install bundle of entire
art suite, independent of custom Fermilab package
manager. Installable from source.
Most recent art version 3.06.03 (Aug 2020) plus
dependency packages, integration tests, examples
(toyExperiment, art-workbook)
Task-based event-level multithreading (TBB)
Supported on Linux & macOS w/C++17

Ole Hansen (Jefferson Lab) Hall A Software Update Hall A Collab Meeting, 21 Jan 2021 12 / 21

https://github.com/JeffersonLab/ARIEL
https://github.com/cms-sw/cmssw

ARIEL Singularity Container
Singularity Container on CUE
ifarm1901> module load singularity
ifarm1901> singularity run /group/solid/apps/ARIEL.sif
Singularity> art --version
art 3.06.03
Singularity> ^D
ifarm1901>

NB: Singularity currently only works on Linux (but basically any Linux)
Download: https://solid.jlab.org/files/ARIEL.sif (775 MB)
Container software: Ubuntu 20.04 LTS base w/gcc 9.3.0. ROOT 6.22.06 w/C++17
Built-in help/documentation:

singularity run-help ARIEL.sif

Docker version planned

Ole Hansen (Jefferson Lab) Hall A Software Update Hall A Collab Meeting, 21 Jan 2021 13 / 21

https://solid.jlab.org/files/ARIEL.sif

Why a New Framework? Decoupled Algorithms & Data Objects

Very successful computing paradigm in HEP
for past 20+ years
Data objects (inputs & results)

I Mostly “dumb data” (structs)
I May reference other data objects

(with or without framework support)
I Persistable on disk (ROOT)
I Streamable via message services

(e.g. protobuf, zeromq)
Data consumers/producers (algorithms)

I Single algorithm per module
I Input configurable at run-time →

F modules are reusable
F multiple module instances possible

Data Producer

Input
Data 3

Input
Data 1

Input
Data 2

Output
Data 1

Output
Data 2

Config

Ole Hansen (Jefferson Lab) Hall A Software Update Hall A Collab Meeting, 21 Jan 2021 14 / 21

Analysis Flow Becomes Flexible: Analysis Chains

Track
Cand-
idates

Track
Tests

Track
Finder

Tracker
Clusters

Calo
Clusters

GEM Hit
Cluster
Finder

Tracker
Hits

Calo
Cluster
Finder

Calo
Hits

Track
Fitter

Conf=A

Fitted
Tracks

“A”

Track
Fitter

Conf=B

Fitted
Tracks

“B”

Track
Cand-
idates

Modules communicate exclusively via data objects
Module relationships configurable at run time
Multiple chains per job
Support for condition testing modules
Output modules (not shown) for DST and histogram/ntuple files

Ole Hansen (Jefferson Lab) Hall A Software Update Hall A Collab Meeting, 21 Jan 2021 15 / 21

A Simple Prototype Module

Ported benchmarking algorithm from my
“parallel Podd” toy analyzer.
Minimal framework overhead (see
screenshot). < 1 hour of beginner-level
work.
This example algorithm implements a
CPU-intensive calculation of π [1]

[1] Rabinowitz and Wagon, American Mathematical Monthly, 102 (3),
195-203 (March 1995), doi:10.2307/2975006

Ole Hansen (Jefferson Lab) Hall A Software Update Hall A Collab Meeting, 21 Jan 2021 16 / 21

https://doi.org/doi:10.2307/2975006

ARIEL Parallel Processing Benchmark
Exact same algorithm & hardware (aonl1) as for ToyPodd benchmark
Full framework w/ROOT output backend: higher base memory usage
Run in Singularity container: much newer compiler (gcc 9.3 vs. gcc 4.8 for ToyPodd)

0 5 10 15 20 25 30 35
Number of analysis threads

0

50

100

150

200

250

300

350

An
al

ys
is

Ra
te

 (H
z)

90.1% eff

84.9% eff

ARIEL Parallel Processing: Performance Scaling
Ideal rate
Actual rate

0 5 10 15 20 25 30 35
Number of analysis threads

0

50

100

150

200

250

300

350

M
em

or
y

us
ag

e
(M

B)

0.22 MB/thread

ARIEL Parallel Processing: Memory Usage

Multiprocess memory usage (est.)
Multithreaded memory usage (meas.)
Fit

Ole Hansen (Jefferson Lab) Hall A Software Update Hall A Collab Meeting, 21 Jan 2021 17 / 21

ARIEL for SBS?
Pros

I State-of-the-art multithreading readily available
I Custom analysis flows readily configurable
I Multi-pass analysis readily supported, will save much analysis time with high data volumes
I Consistent Hall A environment
I Infrastructure additions developed for SBS will benefit everyone in the art community
I Will build expertise with HEP-style framework software, which helps inform development for

SoLID, EIC etc.
Cons

I Learning curve
I Must add support for reading CODA data format (significant work)
I Must add some sort of conditions database support
I Must port existing reconstruction algorithms (fairly easy)
I Should add support for reading g4sbs file format (fairly easy)
I Runtime-configurable ntuple output module, like Podd’s, would be nice (moderate work)

Could deploy at later stage of SBS program

Ole Hansen (Jefferson Lab) Hall A Software Update Hall A Collab Meeting, 21 Jan 2021 18 / 21

Scientific Computing Status
Farm is now entirely running CentOS 7.7
Batch system has been transitioned to Slurm
swif2 workflow software being rolled out
Significantly increased farm resources over past year

I Disk: Lustre: 3.8 PB, Work: 465 TB
I CPU: 12330 cores / 24660 threads. Total capacity 215 M-core-hours/year
I Almost half the capacity is on AMD EPYC 7502 64C/128T systems (speed demons!)

Mass storage system
I Throughput ≈ 7 GB/s (uncompressed, theoretical)
I ≈ 150 PB capacity (LTO-8, uncompressed)
I Significant capacity headroom (more frames, LTO-9) with current silo, up to ≈ 325 PB.

Tape issue
I LTO-8 tapes written between ≈ August and December 2020 may be corrupted
I Mostly raw data!
I Duplicates written to M-8 tapes appear OK. Recovery underway.

Ole Hansen (Jefferson Lab) Hall A Software Update Hall A Collab Meeting, 21 Jan 2021 19 / 21

Next Analysis Workshop?
Results of 2019 survey re topics for next analysis workshop

Standouts
Advanced ROOT (e.g. dataframes)
Python analysis (e.g. PyROOT, uproot)
Simulations (not quite sure what to cover)
Actual physics analyses, esp. cross-sections

We should start planning. Date, length, format, contents . . .
Ole Hansen (Jefferson Lab) Hall A Software Update Hall A Collab Meeting, 21 Jan 2021 20 / 21

Summary

“Podd” analysis software continues to be actively maintained and used by current
experiments

Significant development work (multithreading etc.) underway for SBS

Hall A analysis may migrate to a new framework, e.g. ARIEL, in the medium term as our
demands on flexibility and performance rise

Another analysis workshop will be coming, perhaps this summer

Ole Hansen (Jefferson Lab) Hall A Software Update Hall A Collab Meeting, 21 Jan 2021 21 / 21

