Parity Violation in Deuteron Photodisintegration

W. M. Snow Physics Department Indiana University/CEEM IU Center for Spacetime Symmetries

Theoretical background/recent developments Recent experimental progress in NN weak interactions PV in deuteron photodisintegration at HIGS2

MAIN MESSAGE: we can test QCD sector of Standard Model in the two-nucleon regime to ~20% accuracy using parity violation in quark-quark weak interactions as an "inside-out" probe

Thanks: R. P. Springer, S. Gardner, A Walker-Loud, J. Nico, C. Crawford, A. Cordon...

What kind of a probe do we need to learn about strong QCD?

QCD coupling α_s

NN interaction (meson exchange) 1. We want a "<u>weak</u>" probe which does not disturb the strong dynamics and leaves the system in its ground state

2. We want an "inside-out" probe which is understood at short distance scales

3. We want a "<u>quark-quark</u>" probe so that we are highly sensitive to QCD dynamics

4. We want a "<u>symmetry-violating</u>" probe that we can see in the presence of strong dynamics

Can we understand quantitatively the evolution of strong dynamics from the q-q to the N-N level, through two nonperturbative scales?

The N-N Weak Interaction is what we want to study!

1. Is it "<u>weak</u>" enough not to disturb QCD effects? YES!

2. Is it an "inside-out" probe which is understood at short distance scales? YES! W and Z range [~1/100 fm] much smaller than nucleon

3. Is it a "<u>quark-quark</u>" probe? YES!

4. Is it a a "<u>symmetry-violating</u>" probe? YES! (QCD conserves parity, weak interaction violates parity)

So what's the problem?

Relative strength of weak / strong amplitudes in N-N system:

$$-rac{e^2}{M_W^2}/rac{g^2}{m_\pi^2}pprox 10^{-7}$$

Too damn weak: experiments are very hard. But there is hope....

q-q Weak/NN Weak: Two Simple Facts

(1) At energies below the W^{\pm} and Z° mass, the q-q weak interaction can be written in a current-current form, with contributions from charged currents and neutral currents.

$$\begin{split} M_{CC} &= \frac{g^2}{2M_W^2} J_{\mu,CC}^{\dagger} J_{CC}^{\mu}; \\ M_{NC} &= \frac{g^2}{\cos^2 \theta_W M_Z^2} J_{\mu,NC}^{\dagger} J_{NC}^{\mu} \\ J_{CC}^{\mu} &= \overline{u} \frac{1}{2} \gamma^{\mu} (1 - \gamma^5) \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} d \\ s \end{pmatrix}; \\ J_{NC}^{\mu} &= \sum_{q=u,d} \overline{q} \frac{1}{2} \gamma^{\mu} (c_V^q - c_A^q \gamma^5) q \end{split}$$

(2) If we use energies low enough that only S-waves are important for strong interaction, parity violation is dominated by S- P interference, we have 5 independent NN parity-violating transition amplitudes:

possible isospin changes from q-q weak interactions			
	Δ I		
charged current	0, 2 : (~V ² _{ud}) 1 : (~V ² _{us})		
neutral current	0, 1, 2		

Neutral currents dominate Δ I=1, Δ I=2 only comes from one 4-quark operator

LQCD Challenges for Parity Nonconservation

Ē	
-	

 $\Delta I=0,1,2$

O The "disconnected" quark loops are numerically more expensive, and stochastically noisier

 \bigcirc LQCD calculations can project onto definite ΔI

The $\Delta I=2$ P-odd 4-quark operator is the easiest one to calculate on the lattice. Cal-Lat +collaborators are performing the calculation now. GOAL: 10% accuracy

A. Walker-Loud

Create low energy NN(N) EFT: down-up approach

- Find something small to expand in: p/Λ_{π}
- Identify all operators consistent with underlying symmetry
- Determine how operators and coefficients scale
- Establish power counting
- Choose order to truncate
- Calculate observables

operators containing γ, p, n $\mathcal{L} = \sum_{i} \mathcal{C}_{i}(\mu) \mathcal{O}_{i}(\mu)$ coefficients include all other physics sum over terms \nearrow (to desired order) μ dependence!

R. P. Springer

Pionless Effective Field Theory for NN Weak Interaction

$$\begin{aligned} \mathcal{L}_{PV} &= -\left[\mathcal{C}^{(^{3}S_{1}-^{1}P_{1})} \left(N^{T}\sigma_{2} \ \vec{\sigma}\tau_{2}N \right)^{\dagger} \cdot \left(N^{T}\sigma_{2}\tau_{2}i\overset{\leftrightarrow}{D}N \right) \right. \\ &+ \mathcal{C}^{(^{1}S_{0}-^{3}P_{0})}_{(\Delta I=0)} \left(N^{T}\sigma_{2}\tau_{2}\tau^{2}\vec{n}N \right)^{\dagger} \left(N^{T}\sigma_{2} \ \vec{\sigma}\cdot\tau_{2}\vec{\tau}i\overset{\leftrightarrow}{D}N \right) \right. \\ &+ \mathcal{C}^{(^{1}S_{0}-^{3}P_{0})}_{(\Delta I=1)} \ \epsilon^{3ab} \left(N^{T}\sigma_{2}\tau_{2}\tau^{a}N \right)^{\dagger} \left(N^{T}\sigma_{2} \ \vec{\sigma}\cdot\tau_{2}\tau^{b}\overset{\leftrightarrow}{D}N \right) \\ &+ \mathcal{C}^{(^{1}S_{0}-^{3}P_{0})}_{(\Delta I=2)} \ \mathcal{I}^{ab} \left(N^{T}\sigma_{2}\tau_{2}\tau^{a}N \right)^{\dagger} \left(N^{T}\sigma_{2} \ \vec{\sigma}\cdot\tau_{2}\tau^{b}i\overset{\leftrightarrow}{D}N \right) \\ &+ \mathcal{C}^{(^{3}S_{1}-^{3}P_{1})} \ \epsilon^{ijk} \left(N^{T}\sigma_{2}\sigma^{i}\tau_{2}N \right)^{\dagger} \left(N^{T}\sigma_{2}\sigma^{k}\tau_{2}\tau_{3}\overset{\leftrightarrow}{D}^{j}N \right) \right] + h.c. \end{aligned}$$

Schindler/RPS NPA 846 (2010) 51

This is a complete, low-energy realization of NN weak interactions of QCD with all the terms to lowest order in p/Λ . Once C's determined from measurement, one can then PREDICT other measurements.

Works well for strong interactions of mesons and baryons. We can test it in a new sector (weak NN)

R. P. Springer

NN Weak Amplitudes in EFT+ 1/N_c Expansion of QCD

Large N expansion of QCD: works well for many low E observables (including strong NN couplings): what about weak NN couplings?

Large N_c estimates in rough agreement with data for strong NN interactions, and possibly weak NN interactions

This is good enough to guide choices for future NN weak experiments

Few-Body P-odd NN in progress: n-p, n-³He, n-⁴He

NPD γ Measurement of A $_{\gamma}$ at Oak Ridge SNS: done

$$A_{\gamma}(t)P_{n}\cos\theta = \frac{U_{\uparrow} - D_{\uparrow} - (U_{\downarrow} - D_{\downarrow})}{U_{\uparrow} + D_{\uparrow} + U_{\downarrow} + D_{\downarrow}}$$

 $A_{\gamma} = -0.107 f_{\pi}^{1} - 0.001 h_{\rho}^{1} - 0.004 h_{\omega}^{1}$

$$A_{\gamma}^{\vec{n}p} \approx \tilde{C}^{3S1 \rightarrow 3P}$$

Pionless EFT

DDH model

 $A_{np} = (-3.0 + / -1.4 \text{ [stat]} + / - 0.2 \text{ [sys]}) \times 10^{-8}$ $h_{\pi}^{1} = (2.6 \pm 1.2 (stat.) \pm 0.2 (sys.)) \times 10^{-7}$ D. Blyth et al, Phys. Rev. Lett. **121**, 242002 (2018).

n-³He PV measurement of A_p at Oak Ridge SNS: done

Sensitive to isoscalar couplings ($\Delta I=0$) of the hadronic weak interaction

```
A<sub>p</sub>=(1.58 +/- 0.97 [stat] +/- 0.24 [sys]) x 10<sup>-8</sup>
```

M. T. Gericke et al, Phys. Rev. Lett. 125, 131803 (2020)

NPD γ Measurement of A_v and n-³He PV measurement of A_p

Constrains a linear combination of P-odd amplitudes

Still more work in theory and experiment is needed

$$\begin{split} h_{\rho-\omega} &\equiv h^1_\omega + 0.46 h^1_\rho - 0.46 h^0_\omega - 0.76 h^0_\rho - 0.02 h^2_\rho \\ &= (12.9 \pm 5.7) \times 10^{-7} \; . \end{split}$$

P-odd Neutron Spin Rotation *P*_{PNC} in ⁴He at NIST

Beam

A

³He Ion Chamber

Φ

"pi-coil on" \rightarrow L-R measures PNC asymmetry, L+R measures systematics "pi-coil off" \rightarrow must give zero in absence of systematics

φ_{PNC} = [+2.1 ± 8.3 (stat) ±2.9 (sys)] x 10⁻⁷ rad/m

W. M. Snow, et al., RSI 86, 055101 (2015)H. E. Swanson et al, Phys. Rev. C 100, 015204 (2019).

In preparation for NIST, expect ~9E-7 rad/m

~10¹¹ to 10¹² polarized γ /sec (X100 increase in polarized gamma flux relative to HiGS1.)

Circularly polarized gammas (>~90%), fast (~100 Hz) and high-quality gamma helicity reversal possible

Controlled beam phase space: ~1% energy resolution on gamma energy (2-12 MeV)

These are attractive features in principle for parity violation experiments

Parity Violation in deuteron photodisintegration

Parity violation leads to helicity dependence of photodisintegration cross section

- The neutron can escape the target and its intensity can be detected in current mode
- Signal is helicity dependence of neutron current from target
- Detect also scattered and transmitted gammas for normalization/systematics effect suppression

Need to supply >~10¹⁶ gammas just above photodisintegration threshold.

Asymmetry A^L_{γ} in $\vec{\gamma}d \rightarrow np$ at leading order

Leading-order asymmetry at threshold

$$\begin{aligned} \mathcal{A}_{\gamma}^{L} &= \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}} \end{aligned} \begin{array}{l} \text{Helicity-dependent asymmetry} \\ \text{Detect either the n or p (neutron is easier)} \end{aligned} \\ &= -2\sqrt{\frac{2}{\pi}} \frac{M^{\frac{3}{2}}}{\kappa_{1} \left(1 - \gamma a^{1}S_{0}\right)} \left[\left(1 - \frac{2}{3}\gamma a^{1}S_{0}\right) g^{(^{3}S_{1} - ^{1}P_{1})} \right. \\ &+ \frac{\gamma a^{^{1}S_{0}}}{3} \left(g^{(^{1}S_{0} - ^{3}P_{0})}_{(\Delta l = 0)} - 2g^{(^{1}S_{0} - ^{3}P_{0})}_{(\Delta l = 2)}\right) \right], \end{aligned}$$

• Information independent of and complementary to $\vec{n}p \rightarrow d\gamma$

M.R. Schindler and R.P. Springer, Nucl. Phys. A 846 (2010) 51.

J. Vanasse and M.R. Schindler, nucl-th/ 1404.0658

Schindler, Springer (2009); Vanasse, Schindler (2014)

PV D Photodisintegration: Theory Optimization

PV asymmetry in pionless EFT under various assumptions

Remains the only known P-odd NN observable accessible to experiment which is sensitive to $\Delta I=2$ NN parity violation

 $\Delta I=2$ NN parity violation calculable in lattice gauge theory

Statistical figure of merit for PV in deuteron photodisintegration

Vanasse/Schindler, arXiv:1404.0658, PRC 90, 044001 (2014)

 A_{γ} (threshold)= -8.44 h_{ρ}^{0} +3.63 h_{ω}^{0} -17.6 h_{ρ}^{2}

Liu/Hyun/Desplanques, arXiv:0403009

Concept of P-odd Deuteron Photodisintegration Expt.

Suggested beam parameters for PV in deuteron photodisintegration.

Parameter	Value
Energy	2.25-2.30 MeV
Flux	1010
Polarization	Circular
Diameter	100 mm on target
Time Structure	10 Hz polarization flip

Circularly-polarized y Beam from HiGS2

The neutron can be moderated in the liquid deuterium target, escape with low energy (~10 meV), and be detected efficiently in current mode in a 3He/4He ion chamber

The transmitted and scattered γ s can be measured using current-mode γ detectors located behind the 3He/4He ion chamber

Cylindrical symmetry of detector array to help suppress possible systematic errors (partial analysis in Y. Li et al, Nucl. Inst. Meth. A 726, 67 (2013).)

Nucleus	J^{π}	Т	Energy (MeV)	τ_{γ}	abundance (%)		
⁴ He	0+		20.1	particle unstable	100	-		
4 He	0^{-}		21.1	particle unstable	100			
${}^{10}B$	2^{-}	0	5.110	particle unstable	19.4		Dai	rity Doublets in
${}^{10}B$	2^+	1	5.163	particle unstable	19.4		1 a	
^{12}C	2^{+}		11.16	particle unstable	99			Light Nuclai
^{12}C	2^-		11.83	particle unstable	99			LIGNLINUCIEI
^{12}C	2^{+}	1	16.107	particle unstable	99			0
^{12}C	2^-	1	16.58	particle unstable	99			
^{13}C	$1/2^{+}$		10.996	particle unstable	1			
^{13}C	$1/2^{-}$		11.080	particle unstable	1	P	Parity vio	lation is amplified by
^{14}N	0+	1	8.618	particle unstable	99.6			
^{14}N	0-	1	8.79	particle unstable	99.6	n	nixing of	closely-spaced states of
¹⁵ N	$5/2^{-}$	1	10.4497	particle unstable	0.4	0	pposite	parity
^{15}N	$5/2^+$	1	10.5333	particle unstable	0.4		ppoono	party
19 F	$1/2^+$		0	stable	100			
^{19}F	$1/2^{-}$		0.110	0.59 nsec	100	Т	heory m	nav be doable on the
^{19}F	$3/2^{-}$		1.4585	0.05 psec	100	i i	lices tir	
^{19}F	$3/2^{+}$		1.5541	2 fsec	100	Г	11652 lii	nescale
²¹ Ne	$1/2^{-}$		2.7885	0.09 nsec	0.3			
²¹ Ne	$1/2^+$		2.796		0.3	6	ondidat	an are known
²¹ Ne	$5/2^+$		3.7337		0.3	C	andidat	es are known
²¹ Ne	$5/2^{-}$		3.8829	0.06 psec	0.3			
²¹ Ne	$3/2^+$		4.684		0.3	1.	oomowb	at) loss domonding
²¹ Ne	$3/2^{-}$		4.726		0.3	(;	somewn	at) less demanding
²² Ne	2^+		4.457		9.2			
²² Ne	2^{-}		5.147		9.2	Sugges	sted beam p	parameters for PV in parity doublet
²³ Na	$1/2^{+}$		2.3909	0.6 psec	100	Pa	arameter	Value
²³ Na	$1/2^{-}$		2.6398	76 fsec	100		Energy	1-20 MeV
²³ Na	$5/2^{-}$		3.848	0.09 psec	100		Flux	10 ⁹ at 0.1-1% FWHM
²³ Na	$5/2^{+}$		3.9147	8 fsec	100	Pol	arization	Circular
²⁴ Mg	$5/2^{-}$		3.848	0.09 psec	100	- <u>10</u>	iameter	100 mm on target
^{24}Mg	$5/2^{+}$		3.9147	8 fsec	100	Time	Structure	10 Hz polorization fin
³² S	4		7.9500	0.09 psec	95	1 1100	structure	to fiz polarization hip
${}^{32}S$	4^{+}		7.966	-	95			

Some relevant properties of nuclei with opposite parity doublets which can be measured at $\mathrm{HI}\gamma\mathrm{S}$

NN parity violation: experiment summary

- Projected HiGS2 beam properties may suffice to perform parity violation measurements, but such experiments will place VERY stringent demands on HiGS2 performance
- Few precise NN weak interaction measurements in few-body systems exist. Any opportunity to measure something new is worth careful scrutiny
- PV in deuteron photodisintegration: only known process with clean access to $\Delta I=2$ piece of weak NN interaction
- Experience with slow neutron and γ current mode detector technology exists
- P-odd effects on parity doublets at HiGS2: may be theoretically calculable on HiGS2 timescale, asymmetries larger, experiments "easier"

N- N Weak Interaction: Size is Small, but Dynamical Mechanism is Interesting

NN repulsive core \rightarrow 1 fm range for NN strong force

 $|N\rangle = |qqqq\rangle + |qqqq\bar{q}\rangle + \cdots =$ valence + sea quarks + gluons + ...

interacts through NN strong force, mediated by mesons $|m\rangle = |q\bar{q}\rangle + |q\bar{q}q\bar{q}\rangle + \cdots$

QCD possesses only vector quark-gluon couplings \rightarrow **conserves parity**

W and Z exchange probe a range [~1/100 fm] small compared to nucleon size

Relative strength of weak / strong amplitudes:

$$rac{e^2}{M_W^2}/rac{g^2}{m_\pi^2}pprox 10^{-7}$$

Use **parity violation** to isolate the weak contribution to NN interaction.

NN strong interaction at low energy largely dictated by QCD chiral symmetry. Can be parametrized by effective field theory methods.

NN weak interaction: $\Delta I=0$, 1, and 2, 5 S-P amplitudes

Below the W^{\pm}/Z° mass, q-q weak interaction can be written in a current-current form (charged currents and neutral currents)

$$M_{CC} = \frac{g^2}{2M_W^2} J^{\dagger}_{\mu,CC} J^{\mu}_{CC} \underline{\qquad} M_{NC} = \frac{g^2}{\cos^2 \theta_W M_Z^2} J^{\dagger}_{\mu,NC} J^{\mu}_{NC}$$
$$J^{\mu}_{CC} = \overline{u} \frac{1}{2} \gamma^{\mu} (1 - \gamma^5) \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} d \\ s \end{pmatrix}; J^{\mu}_{NC} = \sum_{q=u,d} \overline{q} \frac{1}{2} \gamma^{\mu} (c_V^q - c_A^q \gamma^5) q$$

At low energy only S-waves are important for strong interaction, parity violation is dominated by S- P interference,

Then we have 5 independent NN parity-violating transition amplitudes:

 $\label{eq:starsest} \begin{array}{l} {}^{3}S_{1} \Leftrightarrow {}^{1}P_{1}(\Delta I = 0, \, np); \, {}^{3}S_{1} \Leftrightarrow {}^{3}P_{1}(\Delta I = 1, \, np); \, {}^{1}S_{0} \Leftrightarrow {}^{3}P_{0}(\Delta I = 0, 1, 2; \, nn, pp, np) \end{array}$

Simple Level Diagram of n-p System

 $\dot{n} + p \rightarrow d + \gamma$ is primarily sensitive to the $\Delta l = 1$ component of the weak interaction

- Weak interaction mixes in *P* waves to the singlet and triplet *S*-waves in initial and final states.
- Parity conserving transition is M1.
- Parity violation arises from mixing in *P* states and interference of the *E*1 transitions.
- A_{γ} is coming from ${}^{3}S_{1} {}^{3}P_{1}$ mixing and interference of E1-M1 transitions in $\Delta I = 1$ channel.

Mixing amplitudes: $\langle {}^{3}S_{1} | V_{W} | {}^{3}P_{1} \rangle; \Delta I = 1$ $\langle {}^{3}S_{1} | V_{W} | {}^{1}P_{1} \rangle; \Delta I = 0$ $\langle {}^{1}S_{0} | V_{W} | {}^{3}P_{0} \rangle; \Delta I = 2$

NN Weak Amplitudes in EFT: 5 s-p Amplitudes, 2 lead in N_c

$$\begin{split} V_{LO}^{PNC}(\mathbf{r}) &= \Lambda_{0}^{1S_{0}-^{3}P_{0}} \left(\frac{1}{i} \frac{\overleftarrow{\nabla}_{A}}{2m_{N}} \frac{\delta^{3}(\mathbf{r})}{m_{\rho}^{2}} \cdot (\sigma_{1} - \sigma_{2}) - \frac{1}{i} \frac{\overleftarrow{\nabla}_{S}}{2m_{N}} \frac{\delta^{3}(\mathbf{r})}{m_{\rho}^{2}} \cdot i(\sigma_{1} \times \sigma_{2}) \right) \\ &+ \Lambda_{0}^{3S_{1}-^{1}P_{1}} \left(\frac{1}{i} \frac{\overleftarrow{\nabla}_{A}}{2m_{N}} \frac{\delta^{3}(\mathbf{r})}{m_{\rho}^{2}} \cdot (\sigma_{1} - \sigma_{2}) + \frac{1}{i} \frac{\overleftarrow{\nabla}_{S}}{2m_{N}} \frac{\delta^{3}(\mathbf{r})}{m_{\rho}^{2}} \cdot i(\sigma_{1} \times \sigma_{2}) \right) \\ &+ \Lambda_{1}^{1S_{0}-^{3}P_{0}} \left(\frac{1}{i} \frac{\overleftarrow{\nabla}_{A}}{2m_{N}} \frac{\delta^{3}(\mathbf{r})}{m_{\rho}^{2}} \cdot (\sigma_{1} - \sigma_{2})(\tau_{1z} + \tau_{2z}) \right) \\ &+ \Lambda_{1}^{3S_{1}-^{3}P_{1}} \left(\frac{1}{i} \frac{\overleftarrow{\nabla}_{A}}{2m_{N}} \frac{\delta^{3}(\mathbf{r})}{m_{\rho}^{2}} \cdot (\sigma_{1} + \sigma_{2})(\tau_{1z} - \tau_{2z}) \right) \\ &+ \Lambda_{2}^{1S_{0}-^{3}P_{0}} \left(\frac{1}{i} \frac{\overleftarrow{\nabla}_{A}}{2m_{N}} \frac{\delta^{3}(\mathbf{r})}{m_{\rho}^{2}} \cdot (\sigma_{1} - \sigma_{2})(\tau_{1} \otimes \tau_{2})_{20} \right), \end{split}$$

$$\begin{split} \Lambda_{0}^{+} &\equiv \frac{3}{4} \Lambda_{0}^{3S_{1}-1P_{1}} + \frac{1}{4} \Lambda_{0}^{1S_{0}-3P_{0}} \sim N_{c} & \Lambda_{0}^{-} &\equiv \frac{1}{4} \Lambda_{0}^{3S_{1}-1P_{1}} - \frac{3}{4} \Lambda_{0}^{1S_{0}-3P_{0}} \sim 1/N_{c} \\ & \Lambda_{2}^{1S_{0}-3P_{0}} \sim N_{c}, & \Lambda_{1}^{1S_{0}-3P_{0}} \sim \sin^{2}\theta_{w} \\ & 1/N_{c} = 1/3 & \Lambda_{1}^{3S_{1}-3P_{1}} \sim \sin^{2}\theta_{w} \\ & N_{c} = 3 & \sin^{2}\theta_{w} \sim 1/4 \end{split}$$

1/N_c analysis: Phillips, Samart, Schat, arXiv:1410.1157, PRL 114, 062301 (2015) Schindler, Springer, Vanasse, arXiV:1510.07598, PRC 93, 025502 (2016)

NN Weak Amplitudes in EFT+ $1/N_c$: $\Delta I=0$ and $\Delta I=2$

leading order NN weak amplitudes are constrained-> make PREDICTIONS Other three amplitudes are suppressed by $1/N_c^2 = 1/9$ or $sin^2\theta_W/N_c \sim 1/12$ from Gardner, Haxton, Holstein, arXiv: 1704.02617

NN Weak Amplitudes in EFT+ $1/N_c$: $\Delta I=1$ Amplitudes

This data determines the two $\Delta I=1$ amplitudes which should be suppressed by $1/N_c^2 = 1/9$ or $\sin^2\theta_w/N_c \sim 1/12$

¹⁸F experiment is already consistent with the predicted $1/N_c$ suppression in a combination of $\Delta I=1$ partial waves.

NPDGamma has determined one $\Delta I=1$ channel Then: we will know something about 4 out of the 5 NN weak amplitudes

Predictions of PV Asymmetry for the γ +d \rightarrow n + p reaction

A_L^{γ} in EFT(\neq): NLO results

- Fix PV couplings to model estimates
- "Reasonable ranges:" A^γ_L varies over orders of magnitude and sign

Vanasse, Schindler (2014) J. Vanasse and M.R. Schindler, nucl-th/ 1404.0658

Where to measure?

Vanasse, Schindler (2014)

NN Weak Interaction: use EW parity violation to probe QCD

In the Standard Model, the structure of the quark-quark weak interaction is known from the electroweak sector. However, strong QCD **confines color** and **breaks chiral symmetry**, thereby strongly correlating the quarks in both the *initial* and *final* nucleon ground states.

Two aspects of qq weak interaction make it useful as an interesting probe of QCD:

(1) Since it is weak, it probes the nucleons in their ground states without exciting them.

(2) Since it is short-ranged compared with the size of the nucleon, NN weak amplitudes should be first-order sensitive to **quark-quark correlation effects in the nucleon**.

qq Weak \rightarrow NN Weak: What can we learn?

(1) NN weak interactions can DIRECTLY test quantum chromodynamics (QCD) via lattice gauge theory.

Calculation of the $\Delta I=2$ NN weak amplitude on the lattice is in progress (a "computational frontier" of the Standard Model).

ΔI=2 NN weak amplitude measurement can test QCD

(2) NN weak interactions can test QCD in low energy limit using effective field theory (EFT) treatment.

New 1/N_c expansion+EFT predicts LARGE isospin dependence of NN weak amplitudes.

Chiral EFT of QCD testable by slow neutron experiments

(3) NN weak interaction is a "test case" for our ability to trace symmetryviolating effects across strong interaction scales

How to use EDM/v0ββ constraints in nucleons/nuclei to constrain physics of T violation and L violation?

Let's understand the P violation physics in QCD systems, where we know the P-odd operators from the Standard Model Large Nc limit of QCD

t'Hooft 1974, Witten 1979

Large N_c Implications for Future Hadronic Parity Violation Experiments: Some P-odd effects are "large"

S. Gardner, W.C. Haxton, B.R. Holstein, arXiv:1704.02617v1 (2017)					
Observable	Exp. Status	LO Expectation	LO LEC Dependence		
$\label{eq:Approx} A_{\rm p}(\vec{\rm n} + {}^3{\rm He} \rightarrow {}^3{\rm H+p})$	ongoing	$-1.8 imes 10^{-8}$	$-\Lambda_0^+ + 0.227\Lambda_2^{1S_0 - {}^3P_0}$		
$A_{\gamma}(\vec{n} + d \rightarrow t + \gamma)$	8×10^{-6} (see text) [58]	$7.3 imes 10^{-7}$	$\Lambda_0^+ + 0.44\Lambda_2^{1S_0 - {}^3P_0}$		
$P_{\gamma}(\mathbf{n} + \mathbf{p} \to \mathbf{d} + \gamma)$	$(1.8 \pm 1.8) \times 10^{-7}$ [57]	1.4×10^{-7}	$\Lambda_0^+ + 1.27\Lambda_2^{1S_0 - {}^3P_0}$		
$\left \frac{d\phi^{\mathrm{n}}}{dz} \right _{\mathrm{parahydrogen}}$	none	$9.4 \times 10^{-7} \mathrm{~rad/m}$	$\Lambda_0^+ + 2.7\Lambda_2^{1S_0 - {}^3P_0}$		
$\frac{d\phi^{\rm n}}{dz} \Big _{\rm ^4He}$	$(1.7 \pm 9.1 \pm 1.4) \times 10^{-7}$ [56]	$6.8 \times 10^{-7} \text{ rad/m}$	Λ_0^+		
$A_L(\vec{\mathbf{p}} + \mathbf{d})$	$(-3.5 \pm 8.5) \times 10^{-8} $ [43]	-4.6×10^{-8}	$-\Lambda_0^+$		

Only two leading-order EFT terms (Λ_0^+ , Λ_2) in large N_c analysis

Relatively large expected P-odd asymmetries for experiments!

Measure Λ_2 to compare with lattice prediction

Measurable in future experiments at NIST, ILL, ESS, PIK,...

N+D->T+γ Parity Violation

3-body system: calculation doable in pionless EFT and using Fadeev equations

PV asymmetry should be "large" (~10⁻⁶)

~10⁻⁷ statistical error on asymmetry would be possible at NIST, ILL, ESS,...

C. Crawford sketch

Liquid Parahydrogen Spin Rotation

2-body system, sensitive to $\Delta I=2$ amplitude!

PV spin rotation angle seems to be "large" (10⁻⁶ rad/m) using $1/N_c$ estimate

Can use same components as for the helium spin rotation apparatus except for the cryogenic target

The famous "Lobashev" n-p parity experiment

Unpolarized n-p capture, look for circular polarization of 2.2 MeV gamma

Result (1984): Pγ=(1.8 +/- 1.8) x 10⁻⁷

2-body system, sensitive to $\Delta I=2$ amplitude!

1.4 X10⁻⁷ in EFT+1/N_c estimate

Now it is interesting as a QCD test

V. N. Knyazkov et al, Nucl. Phys. A417, 209 (1984)

Conclusions

Advances in Lattice& EFT theory-> NN parity violation can test nonperturbative QCD in a qualitatively new regime

Final NPDGamma and n-³He PV results public very soon

Three experiments appear within reach statistically:

(1) n-⁴He spin rotation (EFT+1/N_c test, under construction) (2) NDTGamma parity violation (EFT+1/N_c test, R&D needed) (3) n-p spin rotation (sensitive to $\Delta I=2$)

Circular polarization in n-p capture ("Lobashev experiment"): can see $\Delta I=2$ piece: can we find a very intense thermal n beam somewhere?

When ANNI beam at ESS beam is constructed, can get ~X5 more **POLARIZED**, **PULSED** cold neutrons for this physics

q-q Weak Interaction->N-N: Isospin Dependence

At energies below the W^{\pm} and Z° mass, the q-q weak interaction can be written in a current-current form, with contributions from charged currents and neutral currents.

possible isospin changes from q-q weak interactions

	ΔI
charged current	0, 2 : (~V ² _{ud}) 1 : (~V ² _{us})
neutral current	0, 1, 2

NN Weak Interaction:

5 Independent Elastic Scattering Amplitudes at Low Energy

Using isospin symmetry applied to NN elastic scattering we get the usual Pauli-allowed L,S,J combinations:

I_{tot} = 1 (isospin-Symmetric):

Space-S (even L) \otimes spin-A (S_{tot} = 0) \Rightarrow ¹S₀, ¹D₂, ¹G₄, ...

or Space-A (odd L) \otimes spin-S (S_{tot} = 1) \Rightarrow ³P_{0,1,2}, ³F_{2,3,4}, ...

I_{tot} = 0 (isospin-Antisymmetric):

Space-A (odd L) \otimes spin-A (S_{tot} = 0) \Rightarrow ¹P₁, ¹F₃, ...

Space-S (even L) \otimes spin-S (S_{tot} = 1) \Rightarrow ³S₁, ³D_{1,2,3}, ³G_{3,4,5}, ...

(2S+1)L_J notation, with L=0,1,2,3,4,... denoted as S,P,D, F,G,...

If we use energies low enough that **only S-waves are important for strong interaction**, parity violation is dominated by **S-***P* **interference**,

Then we have **5 independent NN parity-violating transition amplitudes:** ${}^{3}S_{1} \Leftrightarrow {}^{1}P_{1}(\Delta I=0, np); {}^{3}S_{1} \Leftrightarrow {}^{3}P_{1}(\Delta I=1, np); {}^{1}S_{0} \Leftrightarrow {}^{3}P_{0}(\Delta I=0, 1, 2; nn, pp, np)$

QCD and Baryons in the N_c Expansion

QCD in limit $N_c \rightarrow \infty$

- Taken with $g^2 N_c$ fixed
- Simplifications
 - Color-singlet physical states
 - Mesons, glueballs: Weakly interacting $\sim 1/\sqrt{N_c}$
- Systematic expansion in 1/N_c
- Seems to work well phenomenologically

- Bound state of N_c quarks
- Completely antisymmetric in color: $\epsilon_{i_1i_2\cdots i_{N_c}}q^{i_1}q^{i_2}\cdots q^{i_{N_c}}$
- Baryon mass *M* ~ *N*_c
- $\lim N_c \to \infty$: SU(4) spin-flavor symmetry: $u \uparrow$, $u \downarrow$, $d \uparrow$, $d \downarrow$

t'Hooft 1974, Witten 1979