Hands-on Start to MadGraph

1st Workshop on New Light Physics and Photon-beam Experiments, 03/08/2021 Yi-Ming Zhong (KICP, UChicago)

ymzhong@kicp.uchicago.edu

Slides available at https://github.com/ymzhong/mg5_aMC_tutorial

Who am I?

- Yiming Zhong is a postdoc follow at Kavli Institute for Cosmological Physics at the University of Chicago.
- Working on theoretical particle physics, dark matter/dark sector searches.
- Not affiliated with the MadGraph team.
- Using MadGraph for years. Writing new physics models for it.

Goal for this tutorial

- What is MadGraph?
- Generate events for *tree-level* processes
- Play with outputs
- Add a form-factor for fixed-target processes

Hands-on Start to MadGraph, Yi-Ming Zhong (KICP, UChicago)

What is MadGraph?

The Higgs discovery

Hands-on Start to MadGraph, Yi-Ming Zhong (KICP, UChicago)

What is MadGraph?

- MadGraph5_aMC@NLO (MG5_aMC) computes the matrix elements and generates Monte-Carlo events. Use Multi Channel Monte-Carlo
- + loop computation
- + interfaces with parton shower & hadronization event generators Pythia/ Herwig
- +

Just keep in mind, MG5_aMC

- Parton-level, fixed parton multiplicity, no control of large logs.
- Does not fully support polarized initial states.
- Is not good at sampling process with large t-channel cancellations. *
- Important to cross-check with other general event generators, such as <u>Pythia</u>, <u>WHIZARD</u>, <u>CalcHEP</u>, or specific event generators, such as <u>esepp</u>

Useful resource

- MG5_aMC Launchpad (https://launchpad.net/mg5amcnlo) Q&A
- MG5_aMC Wiki (<u>https://cp3.irmp.ucl.ac.be/projects/madgraph</u>)
- 'help' command inside MG5_aMC

Installation

- Requirement: gcc & gfortran >= 4.6, Python 2.7 or 3.7
- Setup/active suitable Python environment python --version
- Download MG5_aMC at https://launchpad.net/mg5amcnlo
- If you use Python 2.6, download MG5_aMC_v2.7.3.tar.gz at <u>https://launchpad.net/mg5amcnlo/+download</u>
- Untar and cd MG5_aMC folder

Get Involved	
Report a bug	⇒
Ask a question	⇒
Register a blueprint	⇒
🔺 Help translate	

Downloads

Hands-on Start to MadGraph, Yi-Ming Zhong (KICP, UChicago)

Don't forget the "spaces"

First example: Bhabha Scattering at BaBar

1. Launch the interface

- ./bin/mg5_aMC or python3 ./bin/mg5_aMC
- 2. Load the Standard Model with massive electrons and muons MG5 aMC>import model sm-full --modelname
- 3. Generate Bhabha Scattering

MG5 aMC>generate e+le-l>e+le-

4. Output

MG5 aMC>output newprocess

5. Launch

MG5 aMC>launch newprocess

Ask MG5 not to change (BSM) particle names

Change parameters in param_card and run_card

Do you want to edit a card (press enter to bypass editing)?

- 1. param : param_card.dat
- 2. run : run_card.dat

you can also

- enter the path to a valid card or banner.

- use the 'set' command to modify a parameter directly.
 The set option works only for param_card and run_card.
 Type 'help set' for more information on this command.
- call an external program (ASperGE/MadWidth/...).
 Type 'help' for the list of available command
- [0, done, 1, param, 2, run, enter path][90s to answer]

>set aEWM1 = 132
>set run_tag = BaBar
>set ebeam1 = 5.5
>set ebeam2 = 5.5
>set pt1 = 0
>set etal = 5
>set drll = 0
>0

The web portal

file:///home/zym/Downloads/MG5_aMC_v2_9_2/newprocess/crossx.html

... ⊘ ☆

Results in the sm-full for e + e - > e + e-

Run_card, param_card

. . .

Available Results

Run	Collider	Banner	Cross section (pb)	Events	Data	Output		Action
run_01	e+ e- 5.5 x 5.5 GeV	<u>BaBar</u>	$5.087e + 07 \pm 8.5e + 04$	10000	parton madevent	<u>LHE</u>	remove run	launch detector simulation

Main Page Events zipped in LHE format

Check the process

- main page > process information > html
- Better do it before launching the simulation

SubProcesses and Feynman diagrams

Directory	# Diagrams	# Subprocesses	FEYNMAN DIAGRAMS	SUBPROCESS
P1_epem_epem	6	1	html	e+ e- > e+ e-

6 diagrams (6 independent).

Diag is insimade by MadGraphS_aMC@NLO

Contributions from different channels

 $s = 5.0865e + 07 \pm 8.54e + 04$ (pb)

<u>Graph</u>	Cross-Section \downarrow	<u>Error</u>	Events (K)	<u>Unwgt</u>	<u>Luminosity</u>
/home/zym/Downloads/MG5_aMC_v2_9_2/newprocess/SubProcesses/P1_epem_epem	<u>5.087e+07</u>	8.54e+04	247.194	13861.0	0

 $s = 5.0865e + 07 \pm 8.54e + 04$ (pb)

<u>Graph</u>	Cross-Section \downarrow	Error	<u>Events (K)</u>	<u>Unwgt</u>	<u>Luminosity</u>
G4	<u>5.086e+07</u>	8.54e+04	226.164	12730.0	0.00025
G2.2	4899	43.5	7.01	369.0	0.0753
G3.2	<u>118.4</u>	0.633	7.01	375.0	3.17
G1	22.02	0.156	7.01	387.0	17.6

- Contribution from each integration channels (see launchpad discussion^{*}, ^{**})
- The exact channel to diagram mapping can be found at /MG5_aMC/newprocess/ SubProcesses/ config_subproc_map.inc

Run MG5_aMC wo the interface

- Put everything into a single file, then ./bin/mg5_aMC proc_card.dat
- If you already output a directory, cd the folder and try
 ./bin/generate_events
 proc_card.dat
 (only need commands after launch
 command)

Open								pro /Dow	oc_car(nloads/	d_bh /MG5_	abha _aMC_	.dat v2_9_2		
1 #****	****	***	********	***	*****	****	***	***	****	****	****	*****	****	Ì
2 #*					Mad	Gгар	h 5						*	
3 #*													*	
4 #*			*						*				*	
5 #*			*			* *			*				*	
6 #*				*	* * *	5 *	*	* *					*	
7 #*			*			* *			*				*	
8 #*			*						*				*	
9 #*													*	
10 #*													*	
11 #*	The	Ma	dGraph Dev	el	opmen	t Te	am	- P	lease	vis	sit (us at	*	
12 #*	htt	DS:	//server06	j.f	vnu.u	cl.a	c.b	e/p	гојес	ts/r	nada	raph	*	
13 #*									5				*	
4 #****	****	***	********	**	*****	****	***	***	*****	****	****	*****	****	
15 #*													*	
16 #*			Comma	nd	File	for	Ма	dGr	aph 5				*	
17 #*													*	
18 #*	ги	n a:	s ./bin/mo	15	file	name							*	
19 #*			, , -										*	
20 #****	****	***	********	**	*****	****	***	***	*****	****	****	*****	****	
21 import	t mo	del	sm-full ·	- m	odeln	ame								
22 # Defi	ine	mult	tiparticle	ı۱	abels									
23 define	ер	= a	ucdsu	I~	c~ d~	s~								
24 define	e i	= a	ucdsu	I~	c~ d~	s~								
25 define	e ĺ+	= (e+ mu+											
26 define	el-	= (e- mu-											
27 define	e vl	= 1	ve vm vt											
28 define	e vl	~ =	ve~ vm~ v	/t~										
29 # Spec	cifv	DLO	cess(es)	to	run									
30 genera	ate	e+ (e- > e+ e-											
31 # Out	but	DLO	cesses to	Ma	dEven	t di	гес	tor	v					
32 output	t ne	WDF	ocess 2						-					
33 launch	n ne	WDF	ocess 2											
34 set al	EWM1	=	132											
35 set ri	un t	adi	= BaBar											
36 set el	beam	1 =	5.5											
37 set el	beam	2 =	5.5											
38 set of	t1 =	 0	5.5											
39 set et	tal	= 5												
40														
41 # To (iene	rate	e events.	vo	u can	00	to	the	сгеа	ted	dire	ectory	hand	
42 # run	./b	in/o	ienerate e	ve	nts	90	20	cife	C1 C0		atri		, and	

Parameter scan w/ MG5_aMC

• One parameters

set me scan:[0.1, 0.5 ,1]
set me scan:range(0.1,1,0.1)
set me scan:[0.001*i for i in range(100,105)]

- Can be extended for more parameters
- Two correlated parameters

```
set ebeam1 scan1:[4.5, 5., 5.5]
set ebeam2 scan1:[4.5, 5., 5.5]
```

• check cross sections from the scan

```
launch newprocess -i
print_results --path=./cross_section.txt --format=short
```

Exercise 1

• Generate Compton process $\gamma e^- \rightarrow \gamma e^-$ for a fixed-target photon-beam experiment with $E_{\gamma} = 100$ MeV and $\eta_{max} = 5$.

Q1: How to set up a fixed-target experiment?

Q2: Why we need a cut on the pseudo-rapidity?

• Generate Compton process $\gamma N \rightarrow \gamma N$ for a fixed-target photon-beam experiment with $E_{\gamma} = 10$ MeV and $\eta_{max} = 5$.

Q3: Nucleon is not defined in the model. How to get around?

More on the syntax: add process

MG5_aMC>generate e+ e- > e+ e MG5_aMC>add process e+ e- > e+ e- a
 MG5_aMC>add process e+ e- > e+ e- a a
 MG5_aMC>display diagrams

More on the syntax: select process

- MG5_aMC>generate e+ e- > e+ e- /z h (MG5_aMC>display diagrams)
- MG5_aMC>generate e+ e- > z > e+ e-
- MG5 aMC>generate e+ e- > e+ e-\$\$ z h
- MG5 aMC>generate e+ e- > e+ e-\$\$ z /h

```
remove diagrams w/ z, h
```

only includes diagrams w/ s-channel z

remove diagrams w/ s-channel z, h

remove diagrams w/ s-channel z and diagrams w/ h

More on the syntax: add the decay chain Use , and ()

- MG5_aMC>generate $e^+ e^- > z h$, $z > l^+ l^ l^+ = e^+ mu^+$
- MG5 aMC>generate e+e- > z h, z > ta+ta-, h > b b~
- MG5_aMC>generate e+ e- > z h, (z > ta+ ta-, ta+ > j j vl~, ta- > l- vl vl~),h > b b~
 j=qucdsu~c~d~s~
- MG5_aMC>generate e+ e- > z h, (z > ta+ ta-, ta+ > j j
 vl~, (ta- > mu- vt vm~, mu- > all all all)), h > b b~

Want tau to decay to pions? add model taudecay_UFO

Alternative ways to perform the decays

• Use <u>MadSpin</u> MG5 aMC>generate e+ e- > z h

• Output to Pythia, let Pythia do the decays

The decays are always in isotropic way

>decay h > b b~
>decay z > ta+ ta>decay ta+ > all all all
>decay ta- > all all all

Only include the decay channels that kinematically accessible!

More on the decays

- Using narrow width approximation
 - MG5 aMC>generate e+e- > z h, z > l+l-
 - MG5_aMC>generate e+ e- > z h then use MadSpin
 >decay z > l+ l Only includes on-shell contributions
- Not using narrow width approximation MG5_aMC>generate e+ e- > l+ l- h Include non-resonant contributions

More on the decays

• What is the "bwcutoff" in run_card? Defines what means on-shell. Breit-Wigner

A resonate is considered to be on-shell if the invariant mass is within
[mass - bwcutoff*width, mass + bwcutoff*width].

Affects the cross section of the decay process (ab > cd, c > ef ...)
 bwcutoff ↑ ⇒ cross section ↑; bwcutoff ↓ ⇒ cross section ↓

• How to set the decay width (for BSM particles) in param_card? Use "auto" when possible.

Exercise 2

- Import the dark photon model then generate Compton-like process $\gamma e^- \rightarrow A' e^- \rightarrow (e^+ e^-) e^$ for a fixed-target photon-beam experiment with $E_{\gamma} = 100$ MeV. A' is the dark photon and we set its mass to be 5 MeV. Its coupling to the electrons is $g_V = 10^{-3}$.
- Q1: How to generate a process if we only want on-shell A'?
- Q2: How to generate a process if we want both on-shell and off-shell A'? (also without SM background.)
- Q3: How to generate a process if we only want off-shell A'? (also without SM background.)

Play with the simulated events

- The resulting events can be found inside /newprocess/Events/run_xx/unweighted_events.lhe.gz
- It is a zipped LHE file
- Unzip

all the events have the same probability of occurrence

- Open
- It contains: proc_card, run_card, param_card, number of events, cross section, an event list

Hands-on Start to MadGraph, Yi-Ming Zhong (KICP, UChicago)

	Events in Les Houches Accord (LHE)	QUARKS LEPTO d 1 $e^ u$ 2 ν_e s 3 $\mu^ c$ 4 ν_μ b 5 τ^-	$\begin{array}{c cccc} \textbf{DNS} & \textbf{GAUGE AND} \\ 11 & \textbf{HIGGS BOSONS} \\ 12 & g & (9) & 21 \\ 13 & \gamma & & 22 \\ 14 & Z^0 & & 23 \\ W^+ & & 24 \\ 15 & h^0/H_1^0 & & 25 \\ \end{array}$
ss section [pb]	<pre># Number of Events : 10000 # Integrated weight (pb) : 50865039.465 initialization <td>t 6 ν_τ</td><td>16</td></pre>	t 6 ν _τ	16
0 D	<		an event
# o par	<pre><eventsproc id<="" td=""><td>00 5.1100000000e-04 00 5.1100000000e-04 00 5.1100000000e-04 00 5.1100000000e-04</td><td>0.0000e+00 1.0000e+00 0.0000e+00 1.0000e+00 0.0000e+00 1.0000e+00 0.0000e+00 1.0000e+00</td></eventsproc></pre>	00 5.1100000000e-04 00 5.1100000000e-04 00 5.1100000000e-04 00 5.1100000000e-04	0.0000e+00 1.0000e+00 0.0000e+00 1.0000e+00 0.0000e+00 1.0000e+00 0.0000e+00 1.0000e+00
	PDG codeparentscolor p_1 p_2 p_3 p_4 flow[GeV][GeV][GeV][GeV]	mass [GeV]	distance helicity traveled [mm]

PDG code

Time to open Jupyter notebook

• copy your *.lhe.gz/*.lhe file to the Jupyter notebook folder

Exercise 3

taken from Tanedo's tutorial

• The forward-backward symmetry is defined by $A_{FB} = \frac{\sigma(\cos \theta > 0) - \sigma(\cos \theta < 0)}{\sigma(\cos \theta > 0) + \sigma(\cos \theta < 0)},$

where is the scattering angle of one of the outgoing fermions in the center-of-mass frame. It measures the net fraction of events move in the forward direction.

Now consider the SM process $e^+e^- \rightarrow e^+e^-$ at LEP. How does A_{FB} changes with respect to the central energy?

(scan over $\sqrt{s} = [60, 70, 80, 85, 90, 95, 100, 110, 120]$ GeV)

- For fixed-target collisions with nuclei, interactions take place inside the nuclei environment rather than the vacuum environment. This difference is taken account by the form factor.
- In many case, the form factor can be viewed as dressing a vertex with some functions, which usually have some momentum-dependence.
- How to add the form factor?

The Universal FeynRules Output (UFO) models

• Degrande et al (2012)

- __init__.py, object_library.py, function_library.py, write_param_card.py
- particles.py, parameters.py, vertices.py, lorentz.py, couplings.py, coupling_orders.py, decays.py, propagators.py, (CT_parameters.py, CT_vertices.py, CT_couplings.py)

$$V(a_1 \dots a_n l_1 \dots l_n; p_1 \dots p_n) = \sum_{ij} C_i(a_1 \dots a_n) G_{ij} L_j(l_1 \dots l_n; p_1 \dots p_n)$$

Vertex
Vertex
$$V_i(a_1 \dots a_n) G_{ij} L_j(l_1 \dots l_n; p_1 \dots p_n)$$

Example: add to $\log \frac{p_{W^+} \cdot p_{W^-}}{m_W^2}$ to the W^+W^-H vertex

 Make a folder with name "Fortran" inside the UFO model folder and make a file with name "function.f" inside the Fortran folder

2. Define a COMPLEX function for the form factor inside function.f

```
double complex function FormFactor(S1)
double complex S1
include 'input.inc' ! include all model parameter
FormFactor = LOG(S1/MW**2)
return
end
```

3. Open vertices.py inside the UFO model folder. Find the vertex you want to modify

4. Open lorentz.py inside the UFO model folder and changes the Lorentz structure with the newly defined FormFactor function

```
\begin{split} \log \frac{p_{W^+} \cdot p_{W^-}}{m_W^2} \\ \text{VVS1} &= \text{Lorentz}(\text{name} = `VVS1', \\ &\text{spins} = [3, 3, 1], \quad -1:\text{Einstein sum with the metric} \\ &\text{structure} = `FormFactor(P(-1, 1) * P(-1, 2)) * \text{Metric}(1, 2) ') \\ &\text{momentum of particle 1} \quad \text{momentum of particle 2} \\ \text{VVS2} &= \text{Lorentz}(\text{name} = `VVS2', \\ &\text{spins} = [3, 3, 1], \\ &\text{structure} = `FormFactor(P(-1, 1) * P(-1, 2)) \\ * P(-1, 1) * P(-1, 2) * \text{Metric}(1, 2) ') \end{split}
```

- 5. ./bin/mg5_aMC until output then pause $% \mathcal{M} = \mathcal{M} =$
- 6. cd /output_dir/Source/MODEL, check if the form factor function is added to model_function.f and model_functions.inc. If not, add the function to the end of model_function.f and declaim it in model_functions.inc.
- 7. cd /output_dir/Source/DHELAS, check if the vertex contains the form factor.
 8. make clean; make all
- 9. launch the simulation

Hands-on Start to MadGraph, Yi-Ming Zhong (KICP, UChicago)

ABC of the UFO language

- Degrande et al (2012)
- Follows (+ - -) metric
- In the UFO convention, all momenta are along the incoming direction.

$$p_1 = \begin{pmatrix} p_2 \\ p_1 & p_1 + p_2 + p_3 = 0 \\ p_3 & p_3 \end{pmatrix}$$

Table 6: Elementary Lorentz structures

Charge conjugation matrix: $C_{i_1i_2}$	C(1,2)
Epsilon matrix: $\epsilon^{\mu_1\mu_2\mu_3\mu_4}$	Epsilon(1,2,3,4)
Dirac matrices: $(\gamma^{\mu_1})_{i_2 i_3}$	Gamma(1, 2, 3)
Fifth Dirac matrix: $(\gamma^5)_{i_1i_2}$	Gamma5(1,2)
(Spinorial) Kronecker delta: $\delta_{i_1i_2}$	<pre>Identity(1,2)</pre>
Minkowski metric: $\eta_{\mu_1\mu_2}$	Metric(1,2)
Momentum of the $N^{\rm th}$ particle: $p_N^{\mu_1}$	P(1,N)
Right-handed chiral projector: $\left(\frac{1+\gamma 5}{2}\right)_{i_1i_2}$	ProjP(1,2)
Left-handed chiral projector $\left(\frac{1-\gamma 5}{2}\right)_{i_1i_2}$	ProjM(1,2)
Sigma matrices: $(\sigma^{\mu_1\mu_2})_{i_3i_4}$	Sigma(1,2,3,4)

Exercise 4

• In the DarkPhoton model, pretend the electron to be a nucleon and add the elastic G₂ form factor, Eq. (A18) of <u>https://arxiv.org/abs/0906.0580</u>, to the $\gamma N \bar{N}$ vertex. Re-generate the Compton-like process $\gamma N \rightarrow A'N$ and compare it to the same process without adding the form factor. (set $E_{\gamma} = 10$ MeV and $m_{A'} = 50$ MeV)

Thank you