## Status of Polarized Atomic Hydrogen Target

#### V. Tyukin<sup>1</sup>

<sup>1</sup>Inst. of Nuclear Physics IGU Mainz, Germany

1st Workshop on New Light Physics & **Photon Beam Experiments** 



#### Outline

- P2 Experiment at MESA
- Polarimetry at MAMI and MESA
  - Polarimetry status
  - Mott and Møller Scattering
  - Proposal E. Chudakov & V. Luppov
- Actual design
  - Hardware actual design
  - Cooling power estimation
  - Hardware in fabrication
- Summary
  - Status



#### Outline

- P2 Experiment at MESA
- Polarimetry at MAMI and MESA
  - Polarimetry status
  - Mott and Møller Scattering
  - Proposal E. Chudakov & V. Luppov
- Actual design
  - Hardware actual design
  - Cooling power estimation
  - Hardware in fabrication
- Summary
  - Status



#### **MESA** accelerator



#### P2 Experiment @ MESA

- MESA accelerator is being built in Mainz which will allow a next generation parity violation experiment
- ullet CW spin polarized electron beam, polarization  $\sim$  85 %
- Beam current  $\sim$  150  $\mu$ A, beam energy  $\sim$  155 MeV
- $\bullet$  Experiment collect  $\sim 10^{11}\,\frac{1}{s}$  for 10000 h
- High stability of position, energy and intensity of beam
- Beam polarization significantly contributes in precision
- Weak mixing angle :  $\Delta \sin^2(\theta_W) = 0.14\%$

DOI 10.1140/epja/i2018-12611-6



## MAMI and MESA photo cathodes



- $\bullet$   $I_{\mathsf{MAMI}} \sim 100.0 \,\mu\mathsf{A}$
- $E_{\text{MAMI}} \sim 180.0 1500.0 \,\text{MeV}$ ,
- $P_{\rm MAMI} \sim 85 \%$
- 7 days/24 hours

- MAMI & MESA use super lattice photo cathodes SVT Associates
- Beam polarization could vary up to 10% during run
- Red line a new photo cathode
- Black line a good used cathode



#### Outline

- P2 Experiment at MESA
- Polarimetry at MAMI and MESA
  - Polarimetry status
  - Mott and Møller Scattering
  - Proposal E. Chudakov & V. Luppov
- Actual design
  - Hardware actual design
  - Cooling power estimation
  - Hardware in fabrication
- Summary
  - Status



#### Polarimeter chain at MESA

- Double Mott polarimeter at 100.0 keV
- Mott polarimeter at 5.0 MeV
- Møller polarimeter at 55.0 155.0 MeV with polarized atomic hydrogen target. Proposed in 2004 and revised in 2012 Dr. E. Chudakov and Dr. V. Luppov<sup>1</sup>
- The goals at MESA  $P_{\text{Mott, double}} = P_{\text{Mott, 5.0 MeV}} = P_{\text{Møller,H}}$
- Accuracy  $\Delta P < 0.5\%$
- Online measurements only Møller polarimeter

1. E. Chudakov, V. Luppov IEEE, V. 51, 2004; E. Chudakov, Nuovo Cim, V. C35, 2012



#### Møller and Mott scatterings







#### Mott polarimeters at MAMI and MESA



- MAMI 3.5 MeV
- MESA double 100 keV, 5.0 MeV
- Scattering on heavy nucleous
- $P = \frac{A_{exp}}{S_{eff}}$
- Target Au Z=79, A=197
- $\rho_{Au} \times L_{Au} = 6.0 \times 10^{18} \, \text{cm}^{-2}$
- Current up to  $20 \,\mu\text{A}$
- Foil thickness  $0.1 1.0 \,\mu\mathrm{m}$
- Problems: determination of  $S_0$ , radiative effects, extrapolation uncertainties of  $S_{eff}$ , target induced background reduces  $A_{exp}$
- Overall accuracy of  $\leq 1.0\%$



#### Møller polarimeter at MAMI 180.0-1500.0 MeV



- Scattering on heavy or ligth nucleous
- Target Fe Z=26, A=59
- $\rho_{\rm Fe} \times L_{\rm Fe} = 6.0 \times 10^{19} \, {\rm cm}^{-2}$
- Energy range 0.15 12.0 GeV
- Current up to  $1 \mu A$
- $\bullet$  Foil thickness 5.0 10.0  $\mu m$
- Problems: target saturation, Levchuk effect
- Overall accuracy of ≤ 1.0%



#### Hydrogen target for Møller polarimeters



- Scattering on hydrogen nucleous
- Target H, Z=1, A=1
- Ionization energy = 13.6 eV
- $\rho_{\rm H} \times L_{\rm H} = 6.0 \times 10^{16} \, {\rm cm}^{-2}$
- Energy range 0.15 12.0 GeV
- ullet Current up to 1000.0  $\mu A$
- No Levchuk effect
- Overall accuracy of  $\leq 0.14\%$

# The main idea of Polarized Atomic Hydrogen Target

Møller scattering of electron beam

$$\left(\frac{d\sigma}{d\Omega}\right)_{CM} = \left(\frac{d\sigma^0}{d\Omega}\right)_{CM} \times \left(1 + \sum_{i,j=x,y,z} a_{ij} P_i^B P_j^T\right) \tag{1}$$

where:  $P_j^T$ ,  $P_i^B$  target and beam polarizations, z - beam direction, x, y - scattering directions

$$A_{exp} = \frac{N^{\uparrow_p\uparrow} - N^{\uparrow_p\downarrow_p}}{N^{\uparrow_p\uparrow} + N^{\uparrow_p\downarrow_p}} = a_{zz}P^BP^T.$$
 (2)

it would be more convenient with:  $a_{zz}^{max} = -\frac{7}{9}$ ,  $P^{T} = 1.00$ 

$$A_{exp} = -\frac{7}{9} P^B$$





## Complication from hyperfine splitting

Molecular hydrogen  $H_2$  opposite electron spin Atomic hydrogen  $H: \vec{\mu} \approx \vec{\mu}_e$  in magnetic field



High field seekers:

$$\begin{array}{c|c} |a\rangle & \downarrow_e \uparrow_p \rangle \cos(\theta) - \left| \uparrow_e \downarrow_p \right\rangle \sin(\theta) \\ |b\rangle & \downarrow_e \downarrow_p \rangle \end{array}$$

Low field seekers:

$$\begin{array}{l} |c\rangle \left|\downarrow_{e}\uparrow_{p}\right\rangle \sin(\theta) + \left|\uparrow_{e}\downarrow_{p}\right\rangle \cos(\theta) \\ |d\rangle \left|\uparrow_{e}\uparrow_{p}\right\rangle \\ \tan{(2\theta)} \approx \frac{0.05}{B} \text{, } \sin(\theta) = 0.0035 \end{array}$$

- gas: parallel electron spins 2-body kinematic suppression
- gas: 3-body density suppression
- ullet surface: strong unless coated  $\sim$  50 nm film of superfluid  $^4{
  m He}$

Polarization of hydrogen target  $P^T \sim (1 - 10^{-4}) \sim 0.9999$ 



14/26

#### Storage cell in 1980



- $ho_{
  m H} \sim$  3.0 imes 10  $^{18}$  cm  $^{-3}$  gas lifetime of several minutes
- $\rho_{\rm H} \sim 3.0 \times 10^{14} \, {\rm cm}^{-3}$  gas lifetime of hours
- I. F. Silvera and J. T. M. Walraven.
   Phys. Rev. Lett. V.44, N.3 (1980)
- Tools: cut, copy, rotate, align



Pirture: Scientific American V.246, N.1 1982 and JSTOR





- Force in the field gradient  $-\vec{\nabla}\left(\vec{\mu}_{H} \times \vec{B}\right)$
- ullet H in |c
  angle and |d
  angle states are repelled towards the low-field region
- $B_{sole}$ =8.0 T,  $L_{sole}$ =400 mm,  $D_{sole}$ =130 mm
- Wall of storage cell is coated  $\sim$  50 nm film of superfluid  $^4$ He at  $T_{\text{wall}} = 0.25 0.30 \, \text{K}$





- ullet Force in the field gradient  $-ec
  abla\left(ec{\mu}_{H} imesec{B}
  ight)$
- ullet H in |c
  angle and |d
  angle states are repelled towards the low-field region
- $B_{sole}$ =8.0 T,  $L_{sole}$ =400 mm,  $D_{sole}$ =130 mm
- Wall of storage cell is coated  $\sim$  50 nm film of superfluid  $^4$ He at  $T_{\text{wall}} = 0.25 0.30 \, \text{K}$





- Force in the field gradient  $\vec{
  abla} \left( \vec{\mu}_{H} imes \vec{B} \right)$
- ullet H in |c
  angle and |d
  angle states are repelled towards the low-field region
- $B_{sole}$ =8.0 T,  $L_{sole}$ =400 mm,  $D_{sole}$ =130 mm
- Wall of storage cell is coated  $\sim$  50 nm film of superfluid  $^4$ He at  $T_{\text{wall}} = 0.25 0.30 \, \text{K}$





- Force in the field gradient  $-\vec{\nabla}\left(\vec{\mu}_{H}\times\vec{B}\right)$
- ullet H in |a
  angle and |b
  angle states are pulled into high-field region
- $B_{sole}$ =8.0 T,  $L_{sole}$ =400 mm,  $D_{sole}$ =130 mm
- Wall of storage cell is coated  $\sim$  50 nm film of superfluid <sup>4</sup>H at  $T_{\text{wall}} = 0.25 0.30 \, \text{K}$





- Force in the field gradient  $-\vec{\nabla}\left(\vec{\mu}_{H}\times\vec{\textit{B}}\right)$
- ullet H in |a
  angle and |b
  angle states are pulled into high-field region
- $B_{sole}$ =8.0 T,  $L_{sole}$ =400 mm,  $D_{sole}$ =130 mm
- Wall of storage cell is coated  $\sim 50\,\mathrm{nm}$  film of superfluid  $^4\mathrm{H}$  at  $T_{\mathrm{wall}} = 0.25 0.30\,\mathrm{K}$





- Force in the field gradient  $-\vec{\nabla}\left(\vec{\mu}_{H}\times\vec{\textit{B}}\right)$
- ullet H in |a
  angle and |b
  angle states are pulled into high-field region
- $B_{sole}$ =8.0 T,  $L_{sole}$ =400 mm,  $D_{sole}$ =130 mm
- Wall of storage cell is coated  $\sim$  50 nm film of superfluid <sup>4</sup>H at  $T_{\text{wall}} = 0.25 0.30 \, \text{K}$





- Force in the field gradient  $-\vec{\nabla}\left(\vec{\mu}_{H}\times\vec{B}\right)$
- ullet H in |a
  angle and |b
  angle states are pulled into high-field region
- $B_{sole}$ =8.0 T,  $L_{sole}$ =400 mm,  $D_{sole}$ =130 mm
- Wall of storage cell is coated  $\sim$  50 nm film of superfluid <sup>4</sup>H at  $T_{\text{wall}} = 0.25 0.30 \, \text{K}$





- Force in the field gradient  $-\vec{\nabla}\left(\vec{\mu}_{H}\times\vec{\textit{B}}\right)$
- ullet H in |a
  angle and |b
  angle states are pulled into high-field region
- $B_{sole}$ =8.0 T,  $L_{sole}$ =400 mm,  $D_{sole}$ =130 mm
- Wall of storage cell is coated  $\sim$  50 nm film of superfluid <sup>4</sup>H at  $T_{\text{wall}} = 0.25 0.30 \, \text{K}$





- Force in the field gradient  $-\vec{\nabla}\left(\vec{\mu}_{H}\times\vec{B}\right)$
- ullet H in |a
  angle and |b
  angle states are pulled into high-field region
- $B_{sole}$ =8.0 T,  $L_{sole}$ =400 mm,  $D_{sole}$ =130 mm
- Wall of storage cell is coated  $\sim 50\,\mathrm{nm}$  film of superfluid  $^4\mathrm{H}$  at  $T_{\mathrm{wall}} = 0.25 0.30\,\mathrm{K}$





- Force in the field gradient  $-\vec{\nabla}\left(\vec{\mu}_{H}\times\vec{B}\right)$
- ullet H in |a
  angle and |b
  angle states are pulled into high-field region
- $B_{sole}$ =8.0 T,  $L_{sole}$ =400 mm,  $D_{sole}$ =130 mm
- Wall of storage cell is coated  $\sim$  50 nm film of superfluid <sup>4</sup>H at  $T_{\text{wall}} = 0.25 0.30 \, \text{K}$





- ullet Force in the field gradient  $-ec{
  abla}\left(ec{\mu}_{H} imesec{m{B}}
  ight)$
- ullet H in |a
  angle and |b
  angle states are pulled into high-field region
- $B_{sole}$ =8.0 T,  $L_{sole}$ =400 mm,  $D_{sole}$ =130 mm
- Wall of storage cell is coated  $\sim 50\,\mathrm{nm}$  film of superfluid  $^4\mathrm{H}$  at  $T_{\mathrm{wall}} = 0.25 0.30\,\mathrm{K}$





- Force in the field gradient  $-\vec{\nabla}\left(\vec{\mu}_{H}\times\vec{\textit{B}}\right)$
- ullet H in |a
  angle and |b
  angle states are pulled into high-field region
- $B_{sole}$ =8.0 T,  $L_{sole}$ =400 mm,  $D_{sole}$ =130 mm
- Wall of storage cell is coated  $\sim$  50 nm film of superfluid  $^4$ H at  $T_{\text{wall}} = 0.25 0.30 \, \text{K}$





- Force in the field gradient  $-\vec{\nabla}\left(\vec{\mu}_{H}\times\vec{B}\right)$
- ullet H in |a
  angle and |b
  angle states are pulled into high-field region
- $B_{sole}$ =8.0 T,  $L_{sole}$ =400 mm,  $D_{sole}$ =130 mm
- Wall of storage cell is coated  $\sim$  50 nm film of superfluid <sup>4</sup>H at  $T_{\text{wall}} = 0.25 0.30 \, \text{K}$





- Force in the field gradient  $-\vec{\nabla}\left(\vec{\mu}_{H}\times\vec{B}\right)$
- ullet H in |a
  angle and |b
  angle states are pulled into high-field region
- $B_{sole}$ =8.0 T,  $L_{sole}$ =400 mm,  $D_{sole}$ =130 mm
- Wall of storage cell is coated  $\sim 50\,\mathrm{nm}$  film of superfluid  $^4\mathrm{H}$  at  $T_{\mathrm{wall}} = 0.25 0.30\,\mathrm{K}$



## Polarized Atomic Hydrogen Target



- $L_{\rm H} = 0.20 \, {\rm m}$ ,  $D_{\rm H} = 0.02 \, {\rm m}$ ,  $\rho_{\rm H} = 3.0 \times 10^{15} \, {\rm cm}^{-3}$
- $\rho_{\rm H} \times L_{\rm H} = 6.0 \times 10^{16} \, {\rm cm}^{-2}$ ,  $P^T \sim 0.9999$
- Gas lifetime  $\sim 1.0 \, h$

Nobody has put the target in a high power beam



#### Outline

- P2 Experiment at MESA
- Polarimetry at MAMI and MESA
  - Polarimetry status
  - Mott and Møller Scattering
  - Proposal E. Chudakov & V. Luppov
- Actual design
  - Hardware actual design
  - Cooling power estimation
  - Hardware in fabrication
- Summary
  - Status



#### Requirements to cryostat: heat load, cooling power

- Wall is coated by super fluid  ${}^4{\rm He}$  film at  $T_{\rm wall} = 0.25 0.30\,{\rm K}$
- $P_{rec} = 10.0 \, \text{mW}$ , H-pair recombination energy, depends on feed rate of atomic hydrogen
- $P_{fb}$ =10.0 mW, film burners and transition unit
- $P_{bb}$ =25.0 mW, estimated black body radiation to mixing chamber from warm parts of beam line.
- $P_{cooling} = P_{rec} + P_{fb} + P_{bb} = 45.0 \, \text{mW}$
- In an ideal case:  $P_{cooling} \sim 45.0 \,\mathrm{mW}$  at  $T_{mc} = 0.25 \,\mathrm{K}$  and  $\dot{n}_{He3} = 16.5 \, \frac{\mathrm{mmol}}{\mathrm{s}}$
- In a real case:  $P_{cooling} \sim 60.0 \, \mathrm{mW}$  at  $T_{mc} = 0.25 \, \mathrm{K}$  and  $\dot{n}_{He3} = 40.0 \, \frac{\mathrm{mmol}}{\mathrm{s}}$

Special thanks N. Borisov JINR, Dr. T. Niinikoski, Dr. N. Doshita CERN



#### Dilution unit, FN-HX, still, MC, H-source, FB





- The star of success
- All elements are highly interconnected

1) Still, 12) FB, 16) H-source at 1K, 2,4) MC, 2,4,10) FN-HX, Sole not show

- The key unit of cryostat
- Discussed in JINR 2019, 2020

Original technical drawing by N. Borisov, I.Gorodnov

# Under construction, ready in 2022



# Under construction, ready in 2022



## Under construction, ready in 2022





















## View of the PAHT in ExH4 (preliminary)



### Outline

- P2 Experiment at MESA
- Polarimetry at MAMI and MESA
  - Polarimetry status
  - Mott and Møller Scattering
  - Proposal E. Chudakov & V. Luppov
- Actual design
  - Hardware actual design
  - Cooling power estimation
  - Hardware in fabrication
- Summary
  - Status



# Summary and outlook

- The Møller polarimeter for MESA
- Collaboration or technology transfer necessary
  - Film burners experience with superfluid helium films
  - Møller polarimeter discussions
  - Some technological efforts
  - Some design challenges still have to be solved (e.g. FX-HX, Target "clearing")
- Horizontal oriented dilution cryostat mixing <sup>3</sup>He in <sup>4</sup>He
- Superconductive magnet ist separated from cryostat
- Detector of Møller electrons JLAB, W&M, JGU, Lous. Uni
- Funding secure
- Under construction: JGU Mainz, JINR Dubna
- Cooling down precooler 2020, full test 2022, on beam 2023



# Thank for support











Thank you for your attention!



#### **Abstract**

One aim for the new electron accelerator MESA is to measure the weak mixing angle in electron proton scattering with high precision. This results in a requirement for beam polarization measurement of  $\Delta P/P\approx 0.5\%$ . The Møller polarimeter proposed in 2004 opens the way to reach a sufficiently accurate measurement. The polarized atomic hydrogen target is under construction. The current status including recent modifications is presented.

#### **HM-05 Simulation**



- Efficiency  $\epsilon = 1 e^{-\text{ntu}}$
- Area outside  ${}^{3}$ He :  $S = 873 \, \text{cm}^{2}$ ,  $V \sim 14000 \, \text{cm}^{3}$
- Area inside  ${}^{3}$ He,  ${}^{4}$ He:  $S = 526 \text{ cm}^{2}$ ,  $V = 37.7 \text{ cm}^{3}$

#### **HM-05 Calculation**



#### HM-05 Photo



- Fully welded out of stainless steel
- Four-way heat exchanger <sup>3</sup>He, <sup>4</sup>He vs <sup>3</sup>He, <sup>4</sup>He

Courtesy: staff Inst. of Nucl. Phys. JGU, staff Swagelok Ltd,



#### Outline

5

Let us have a dream

- Møller polarimeter
- Advantage of tracking
- Atomic hydrogen feed system





## Assumption: target is ready





- The hydrogen density varies along the target length  $L_H=\pm 0.20\,\mathrm{m}$  according to the field strength. With  $B_{\mathrm{max}}=8T$  reaches  $\rho_{\mathrm{max}H}=3.0\times 10^{15}\,\mathrm{cm}^{-3}$
- $\theta_{cm} = 90^{\circ}$ ,  $\theta_{scat1} = 4.70^{\circ}$ ,  $\theta_{scat2} = -4.70^{\circ}$ ,  $E_{1,2} = 75 \text{ MeV}$



## Møller polarimeter

Chicane Dispersion in vertical axis and quad focus on horizontal axis



Courtesy Prof. K.Kumar, Ass. Prof. R. Beminiwattha

# Target and detector



- Target at  $z = -0.2 \dots + 0.2 \,\mathrm{m}$  and detector at  $z = +0.5 \,\mathrm{m}$
- Scattering inside of solenoid on atoms of hydrogen
- Scattering on atoms of residual gases outside of magnetic field
- Vertex reconstruction in Møller detector is advantageous
- The tracker should operate with full beam intensity at  $\sim$  583 electron
- The polarization measurement could be performed by the

# Measurement of hydrogen density inside the target

- Full reconstruction of the Møller event using a tracker would mean full reconstruction of its kinematics
- Tracks of pairs of Møller electrons bend inside the magnetic field and then fly outwards in straight lines
- If one would track these pairs in coincidence, reconstructing their trajectories backwards would allow for a precise 3D vertex reconstruction, because one could make the condition of the tracks intersecting.
- Knowledge of the beam profile finally would allow for even a 3D density distribution.
- One could track the electrons with 3-4 layers of Mupix chips, similar to how it will be done in the P2 tracker.
- In addition, information about the pressure of <sup>4</sup>He and film of super fluid <sup>4</sup>He on wall over time.

# Operating with atomic hydrogen

- $\bullet$  Atomic hydrogen losses  $\sim 1.0 \times 10^{14} \, \frac{atom}{s}$
- Dissociator at room temperature, filling time  $\sim$  1.0 h, Baffles of feed system blocked due to frozen hydrogen, not available continuously
- Classic atomic hydrogen beam source
  - ▶ Suppress flux of  $H_2$  and H in states  $|c\rangle$  and  $|d\rangle$
  - ▶ Inlet only H in states  $|a\rangle$  and  $|b\rangle$
  - ▶ It seems continuous operation possible
- Cryogenic atomic hydrogen source at 1K



## Conventional atomic hydrogen source



Thanks Dr. D. Toporkov, INP, Russia, Dr. F. Rathmann, Dr. Ralf W. Engels, FZ Jülich



# Cryogenic atomic hydrogen source





- atomic fluxes  $10^{14} \frac{\text{atoms}}{\text{sec}}$
- flux H in  $|c\rangle$  and  $|d\rangle$  states is supressed
- inlet only H in  $|a\rangle$  and  $|b\rangle$  states
- long time operation

