Compton photo-production of dark particles

Sankha S. Chakrabarty

Department of Physics, University of Turin and INFN Turin, Italy

> In collaboration with: Igal Jaeglé, JLAB

First Workshop on New Light Physics and Photon Beam Experiments March 8-10, 2021

Outline

- Theory
- Photon beam experiments
- Background processes
- Sensitivities

Theory and Motivation

- Production of dark photon (A'), axion-like particle (ALP) (a) and dark scalar (ϕ) in Compton-like scattering processes.
- Relevant coupling terms:

 $\Delta \mathcal{L} \equiv \frac{\epsilon e \, \bar{\psi}_e \gamma_\mu \psi_e A'^\mu}{\Delta \mathcal{L} \equiv \frac{g_{ae}}{g_{ae}} \, \bar{\psi}_e \gamma_5 \psi_e a}$ $\Delta \mathcal{L} \equiv \frac{y_e}{\psi_e} \, \bar{\psi}_e \psi_e \phi$

$$\gamma + e \rightarrow \gamma / A' / a / \phi + e$$

• Corrections for atomic electrons:

$$\sigma = \sigma_{\text{free}} Z \left(1 + R \frac{\sigma(\gamma A \to A e^+ e^-)}{\sigma(\gamma e_A^- \to e_A^- e^+ e^-)} \right) (1 - F^2(q))$$

R = 0.0093 (Z-independent radiative correction)

$$F(q) = \left(1 + \frac{a^2 q^2}{4}\right)^{-2}$$
 (Hydrogen form factor)

(a: Bohr radius, q: momentum transferred to the recoil electron)

Photon beam experiments

GlueX:

- Located at Hall-D, Jefferson Laboratory, USA
- Photon beam is produced by *bremsstrahlung technique*.
- Tagged between $E_{\gamma} = (9 11)$ GeV with a resolution of $\Delta E_{\gamma} = 50$ MeV.
- Target: 30 cm long liquid Hydrogen cell
- Photon flux: $\Phi_{\gamma} = 50$ MHz.
- Charged particles and photons are tracked between polar angles of 1° and 120°.
- Data acquisition is triggered if 600 MeV is deposited in the FCAL.
- Track momentum resolution: $\frac{\Delta p}{p} \sim 3\%$.

LEPS2:

- Located at Spring-8, Sayo, Japan.
- Photon beam is produced by *laser back-scattering technique*.
- Tagged between $E_{\gamma} = (1.4 2.5)$ GeV with a resolution of $\Delta E_{\gamma} = 12$ MeV.
- Target: 5 cm long liquid Hydrogen cell
- Photon flux: $\Phi_{\gamma} = 5$ MHz.
- Charged particles are tracked between polar angles of 7° and 120° and photons between 40° and 120°.
- e^+e^- veto counter between 0° and 7° .
- Charged particles with momenta >100 MeV trigger data acquisition.
- Track momentum resolution: $\frac{\Delta p}{p} \sim 5\%$.

LEPS2:

- Located at Spring-8, Sayo, Japan.
- Photon beam is produced by *laser back-scattering technique*.

In this set-up, LEPS2 has no sensitivity to Compton-like scattering due to lack of tracking at lower polar angle. We have assumed charged particles at polar angles between 1° and 120° can be tracked.

and 120°.

- e^+e^- veto counter between 0° and 7°.
- Charged particles with momenta >100 MeV trigger data acquisition.
- Track momentum resolution: $\frac{\Delta p}{p} \sim 5\%$.

LEPS:

- Located at Spring-8, Sayo, Japan.
- Photon beam is produced by *laser back-scattering technique*.
- Tagged between $E_{\gamma} = (1.4 2.5)$ GeV with a resolution of $\Delta E_{\gamma} = 12$ MeV.
- Target: 5 cm long liquid Hydrogen cell
- Photon flux: $\Phi_{\gamma} = 5$ MHz.
- Charged particles are tracked between polar angles of -20° and 20° in the x-direction and between -10° and 10° in the y-direction.
- Charged particles with momenta >400 MeV trigger data acquisition.
- Track momentum resolution: $\frac{\Delta p}{p} \sim 0.6\%$.

FOREST:

- Located at ELPH, Tohoku, Japan.
- Photon beam is produced by *bremsstrahlung technique*.
- Tagged between $E_{\gamma} = (0.8 1.2)$ GeV with a resolution of $\Delta E_{\gamma} = 1$ MeV.
- Target: 5 cm long liquid Hydrogen cell
- Photon flux: $\Phi_{\gamma} = 4.5$ MHz.
- Charged particles are tracked between polar angles of -0.6° and 0.6° in the x-direction and between -1.2° and 1.2° in the y-direction.
- Charged particles with momenta >400 MeV trigger data acquisition.
- Track momentum resolution: $\frac{\Delta p}{p} \sim 0.6\%$.

Experiments	$\phi_\gamma [\gamma/s]$	E_{γ} range [GeV]	$\Delta E_{\gamma} [\text{MeV}]$
GlueX	5×10^7	9 - 11.5	50
LEPS2	$5 imes 10^6$	1.4 - 2.4	12
LEPS	5×10^6	1.4 - 2.4	12
FOREST	4.5×10^6	0.8 - 1.2	1

TABLE I. Tagged-photon-beam characteristics

TABLE II. Existing setup characteristics

Experiment	θ range [°]	$\Delta p/p$ [%]	$p_{\rm T}^{\rm track} [{\rm MeV}/c]$
GlueX	1 - 120	3	50
LEPS2	7 - 120	5	100
LEPS	0 - 10	0.6	400
FOREST	0 - 0.6	0.6	400

Kinematics:

- The recoil electron with a certain momentum cannot be emitted at arbitrarily large polar angle.
- Also, momentum and polar angle are strongly correlated for $A' \rightarrow e^+e^-$.

Background processes

- Standard Model Compton: $\gamma + e^- \rightarrow \gamma + e^-$.
- Pair production: $\gamma + A \rightarrow e^+e^- + A$.
- Triplet photoproduction: $\gamma + e^- \rightarrow e^+e^- + e^-$.
- Measuring a single track
- Assuming one month of beam time.
- Reconstructing the missing mass squared:

$$M^2 = s + m_e^2 - 2E_e^*\sqrt{s}$$

(\sqrt{s} : total energy in the COM frame, E_e^* : energy of the recoil electron in the COM frame)

Cuts to maximize signal to background: transverse momentum of A' is below 60, 26, 25, 10 MeV for GlueX, LEPS2, LEPS, FOREST.

Remaining background and signal for $\epsilon = 10^{-4}$

GlueX

LEPS2

0.002

LEPS

FOREST

Expected sensitivities

Similar sensitivities for invisible decay

For Beam Dump Experiments

