The treatment of divergences in parton densities

Ted Rogers
Jefferson Lab and Old Dominion University

With John Collins and Nobuo Sato: In preparation

9th Workshops of the APS Topical Group on Hadron Physics, April 142021

Historical: Two approaches to pdfs and factorization

- Track A:
- Define pdf in terms of ultraviolet renormalization of bare number density operator.

Historical: Two approaches to pdfs and factorization

- Track A:
- Define pdf in terms of ultraviolet renormalization of bare number density operator.
- Track B:
- Calculate higher order hard scattering amplitudes. "Absorb" collinear divergences into pdf.

Track A:

- Operator definition of the pdf from the beginning.
- The only divergences are ultraviolet.
- Deal with them using standard UV renormalization techniques.

Track A:

- Operator definition of the pdf from the beginning.
- The only divergences are ultraviolet.
- Deal with them using standard UV renormalization techniques.
- Factorization (e.g., DIS):
- Obtained from general region analysis.
- Beyond parton model: Higher order hard scattering constructed from nested subtractions.

Track A:

- Operator definition of the pdf from the beginning.
- The only divergences are ultraviolet.
- Deal with them using standard UV renormalization techniques.

$$
f^{\text {bare }, \mathrm{a}}(\xi) \equiv \int \frac{\mathrm{d} w^{-}}{2 \pi} e^{-i \xi p^{+} w^{-}}\langle p| \bar{\psi}_{0}\left(0, w^{-}, \mathbf{0}_{\mathrm{T}}\right) \frac{\gamma^{+}}{2} W\left[0, w^{-}\right] \psi_{0}\left(0,0, \mathbf{0}_{\mathrm{T}}\right)|p\rangle
$$

Track A:

- Operator definition of the pdf from the beginning.
- The only divergences are ultraviolet.
- Deal with them using standard UV renormalization techniques.

$$
\begin{aligned}
& f^{\text {bare,a }}(\xi) \equiv \int \frac{\mathrm{d} w^{-}}{2 \pi} e^{-i \xi p^{+} w^{-}}\langle p| \bar{\psi}_{0}\left(0, w^{-}, \mathbf{0}_{\mathrm{T}}\right) \frac{\gamma^{+}}{2} W\left[0, w^{-}\right] \psi_{0}\left(0,0, \mathbf{0}_{\mathrm{T}}\right)|p\rangle \\
& f^{\text {renorm }, \mathrm{a}}(\xi) \equiv Z^{a} \otimes f^{\text {bare,a }} \\
& Z^{a}=\delta(1-\xi)+\sum_{j=1}^{\infty} C_{j}\left(\frac{S_{\epsilon}}{\epsilon}\right)^{j}
\end{aligned}
$$

Track B:

- Assert(?): $\mathrm{d} \sigma=f$ "bare,b" $\otimes \mathrm{d} \hat{\sigma}$ \uparrow Massless partonic

Track B:

- Assert(?): $\mathrm{d} \sigma=f$ "bare,b" $\otimes \mathrm{d} \hat{\sigma}$

Massless partonic

- Collinear divergences! $\mathrm{d} \hat{\sigma}=\mathcal{C} \otimes \mathrm{d} \hat{\sigma}_{\text {finite }}$

Track B:

- Assert(?): $\mathrm{d} \sigma=f$ "bare, b " $\otimes \mathrm{d} \hat{\sigma} \longrightarrow$ Massless partonic
- Collinear divergences! $\mathrm{d} \hat{\sigma}=\mathcal{C} \otimes \mathrm{d} \hat{\sigma}_{\text {finite }}$
- So... $\mathrm{d} \sigma=f_{\text {"bare,b" }} \otimes \mathcal{C} \otimes \mathrm{d} \hat{\sigma}_{\text {finite }}$

Track B:

- Assert(?): $\mathrm{d} \sigma=f$ "bare, b" $\otimes \mathrm{d} \hat{\sigma} \longrightarrow$ Massless partonic
- Collinear divergences! $\mathrm{d} \hat{\sigma}=\mathcal{C} \otimes \mathrm{d} \hat{\sigma}_{\text {finite }}$
- So... $\mathrm{d} \sigma=f_{\text {"bare,b" }} \otimes \mathcal{C} \otimes \mathrm{d} \hat{\sigma}_{\text {finite }}$
- Absorb: $\quad f=f$ "bare,b" $\otimes \mathcal{C}$

Track B:

- Assert(?): $\mathrm{d} \sigma=f$ "bare, b" $\otimes \mathrm{d} \hat{\sigma} \longrightarrow$ Massless partonic
- Collinear divergences! $\mathrm{d} \hat{\sigma}=\mathcal{C} \otimes \mathrm{d} \hat{\sigma}_{\text {finite }}$
- So... $\mathrm{d} \sigma=f_{\text {"bare,b" }} \otimes \mathcal{C} \otimes \mathrm{d} \hat{\sigma}_{\text {finite }}$
- Absorb: $\quad f=f$ "bare,b" $\otimes \mathcal{C}$
- Then: $\quad \mathrm{d} \sigma=f \otimes \mathrm{~d} \hat{\sigma}_{\text {finite }}$

Track B:

- Issues:
- Bare pdf (f "bare,b") of step 1 is ill-defined or inconsistent.
- Collinear pdfs viewed as physical?

Track A vs. Track B Logic

- Do the differences have practical consequences?

Track A vs. Track B Logic

- Do the differences have practical consequences?
- Example: Track-B leads to arguments that pdf positivity is an absolute property of pdfs in certain schemes (MS-bar).
$f(x ; \mu) \geq 0 \quad$ A. Candido, S. Forte, and F. Hekhorn (2020), 2006.07377, JHEP 11 (2020) 129

Positivity example

- Stress-test assertions about DIS factorization in other finiterange renormalizable theories.

Positivity example

- Stress-test assertions about DIS factorization in other finiterange renormalizable theories.

$$
\mathcal{L}_{\mathrm{int}}=-\lambda \bar{\Psi}_{N} \psi_{q} \phi+\text { H.C. }
$$

- Exact $O\left(\lambda^{2}\right)$ DIS cross section is easy to calculate exactly.

Track A:

- Operator definition of the pdf from the beginning.
- The only divergences are ultraviolet.
- Deal with them using standard UV renormalization techniques.

$$
\begin{aligned}
& f^{\text {bare,a }}(\xi) \equiv \int \frac{\mathrm{d} w^{-}}{2 \pi} e^{-i \xi p^{+} w^{-}}\langle p| \bar{\psi}_{0}\left(0, w^{-}, \mathbf{0}_{\mathrm{T}}\right) \frac{\gamma^{+}}{2} W\left[0, w^{-}\right] \psi_{0}\left(0,0, \mathbf{0}_{\mathrm{T}}\right)|p\rangle \\
& f^{\text {renorm }, \mathrm{a}}(\xi) \equiv Z^{a} \otimes f^{\text {bare,a }} \\
& Z^{a}=\delta(1-\xi)+\sum_{j=1}^{\infty} C_{j}\left(\frac{S_{\epsilon}}{\epsilon}\right)^{j}
\end{aligned}
$$

Positivity example

Collinear Factorization

$$
F_{1}(x, Q)=\sum_{f} \int_{x}^{1} \frac{\mathrm{~d} \xi}{\xi}
$$

$$
\left.\begin{array}{l}
\times \underbrace{\frac{1}{2}\left\{\delta\left(1-\frac{x}{\xi}\right) \delta_{q f}+a_{\lambda}(\mu)\left(1-\frac{x}{\xi}\right)\left[\ln (4)-\frac{\left(\frac{x}{\xi}\right)^{2}-3 \frac{x}{\xi}+\frac{3}{2}}{\left(1-\frac{x}{\xi}\right)^{2}}-\ln \frac{4 x \mu^{2}}{Q^{2}(\xi-x)}\right]\right.}_{\hat{F}_{1, q / f}\left(x / \xi, \mu / Q ; a_{\lambda}(\mu)\right)} \delta_{p f}\}
\end{array}\right)
$$

Positivity example

Collinear Factorization

Positivity example

- Nothing forces the pdf to be strictly positive, even for relatively large Q .

Negative pdfs

Track B:

- Issues:
- Bare pdf (f "bare,b") of step 1 is ill-defined or inconsistent.
- Collinear pdfs viewed as physical?

Summary

- Historically two alternative ways of viewing divergences and their role in pdf definitions.
- Track A: UV renormalization - no collinear divergences
- Track B: Collinear absorption - absorb collinear divergences
- Track A is the more logically consistent approach.
- Most practical calculations are unaffected, but there are interesting exceptions:
- Positivity (Constraints on pdfs at low-ish Q?)
- Soffer bound
- Heavy quarks 5 Not discussed today

