Exotic hadron searches in photoproduction GHP2021

Astrid N. Hiller Blin

ahblin@jlab.org

Phys. Rev. D100 (2019) 034010

1907.09393 [hep-ph]

Phys. Rev. D102 (2020) 114010

2008.01001 [hep-ph]

April 16, 2021

The family of exotics

- Since 2003:
 discovery of many new unexpected resonance candidates in hadron colliders
- E.g. **mesons** whose J^{PC} cannot be matched by $qar{q}$ content (π_1)

• XYZ states Guo et al., 1912.07030

Brambilla et al., 1907.07583
Hosaka et al., 1603.09229

- Baryons with exotic flavor content, e.g. positive strangeness or negative charm
- Pentaquarks, di-baryons, gluonium, quark-gluon hybrids, ...

- Lepton beams provide efficient probes of the hadron spectrum,
 due to their point-like nature, free of kinematical effects from 3-body dynamics
- Independent confirmation
- Limited statistics so far at COMPASS and JLab (not yet seen in photoproduction):
 promising for searches with higher-luminosity in electron-ion colliders!

XYZ photoproduction dynamics

- t-channel exchanges assumed to give leading contributions
- **Fixed spin** near threshold: full s dependence, but asymptotically s^j (exceeds unitarity bound)
- Reggeization at high energies: tower of particles with increasing spin
- Couplings determined from known experimental branching fractions
- VMD assumed for determination of top couplings

$$\begin{array}{c}
\gamma \\
q'
\end{array}$$

$$< \lambda_{\mathcal{Q}} \lambda'_{N} | T | \lambda_{\gamma} \lambda_{N} > = \sum_{V, \mathcal{E}} \frac{ef_{V}}{m_{V}} \mathcal{F}_{\lambda_{V} = \lambda_{\gamma}, \lambda_{\mathcal{Q}}}^{\alpha_{1} \cdots \alpha_{j}} \mathcal{P}_{\alpha_{1} \cdots \alpha_{j}; \beta_{1} \cdots \beta_{j}}^{\beta_{1} \cdots \beta_{j}} \mathcal{B}_{\lambda_{N} \lambda'_{N}}^{\beta_{1} \cdots \beta_{j}} \\
\downarrow k$$

$$\begin{array}{c}
p \\
p'\\
\delta_{0}
\end{array}$$

$$\left(\frac{4 p(t) q(t)}{s_{0}} \right)^{j-M} \mathcal{N}_{\mu\mu'}^{j} \frac{d_{\mu\mu'}^{j}(\theta_{t})}{\xi_{\mu\mu}^{(l)}(s, t)} \frac{1}{t - m_{\mathcal{E}}^{2}} \longrightarrow -\alpha' \Gamma(j - \alpha(t)) \left[\frac{1 + \tau e^{-i\pi\alpha(t)}}{2} \right] \left(\frac{s}{s_{0}} \right)^{\alpha(t) - M}$$

$$N \\
\end{array}$$

Z+ photoproduction: 1+-

- Focus on the 3 narrow states with large branching fractions into pion and vector
- Exotic minimum quark content: $Qar Qq_1ar q_2$
- Pion exchange and VMD
- Sizeable cross sections especially at low energies

X and axial vector photoproduction

- Focus on the famous X(3872), largely isospin violating, and similar non-exotic χ_{c1}
- ω and ρ exchanges give main contributions
- Extremely suppressed cross sections at high energies: threshold most promising

Y (hybrid?) and vector-meson photoproduction

- Known to be well described by Pomeron exchange:
 we use fits from our previous works to LE (GlueX/SLAC) and HE (HERA/ZEUS);
 parameters assumed intrinsic to Pomeron
 ANHB et al., Phys. Rev. D 94 (2016) 034002
 Winney et al., Phys. Rev. D 100 (2019) 034019
- Coupling ratio to usual J/ψ estimated from decay ratios into $gg\gamma$:

$$R_{\psi^{'}} \approx$$
 0.55 (compatible with HERA/ZEUS $\sqrt{\sigma_{\psi^{'}}/\sigma_{\psi}} \sim 0.39$)

 $R_Y \approx 1.5$ (suggests affinity to gluons as expected for a hybrid Y)

Good candidates for EIC: diffractive production increases with energy!

GHP2021

April 16th, 2021

LHCb discovery

 $P_{c}(4\dot{3}12)^{\dagger}$

200

• 2015: exotic-like structures in $J/\psi \, p$ channel found

LHCb collaboration, PRL 115 (2015) 072001; PRL 122 (2019) 222001

4250 4300 4350 4400 4450 4500 4550 4600

 $\int P_c(4457)$

 $m_{J/\psi p}$ [MeV]

- K^-p resonances (Λ : sud content) not sufficient to fit data
- Compact 5-quark state or weakly-bound \(\bar{D}^*\Sigma_c^{(*)}\)
 interpretations possible
- Or possibly just kinematic effects

Pentaquarks in J/ψ photoproduction

- Confirmation of resonant nature vs kinematic effects
- Peak close to threshold: low background
- Non-resonant contribution Pomeron exchange;
 Resonant amplitude Breit-Wigner ansatz and VMD assumption

- Fits to GlueX data (no peak evidence) allowed for P_c branching fractions of 1-5%
- If photoproduction experiments fail in finding signals,
 the scenario of LHCb signals being kinematic effects in the final-state is favoured

Discriminatory power of polarization observables

- Polarization observables more sensitive to broader or overlapping signals
- With sensitivity studies provided by JPAC, Hall A Lol submitted: measuring A(K)_{LL} Lol12-18-001 (PAC 46)

• Beam asymmetries Σ can provide complementary information!

Summary

- X and Z states most promising close to threshold;
 diffractive states such as the Y are good candidates for the EIC
- P_c searches require higher luminosity at low energies:
 polarization observables!

Outlook:

Albaladejo et al., SNOWMASS21-RF7_RF0-120 Albaladejo et al., SNOWMASS21-RF7_RF0-090 Albaladejo et al., SNOWMASS21-RF7_RF0-081

- **Semi-inclusive** reactions: though complicating the identification of final states, they have larger cross sections
- Electroproduction: better experimental feasibility
- Studies trivially extended to other XYZP once information about them is available