Shining a Light on the QGP -
Experimental Summary of Photon Measurements at RHIC and LHC

Friederike Bock, Oak Ridge National Laboratory

9th Workshop of the APS Topical Group on Hadronic Physics
Probing the QGP with Direct Photons

Can we determine the point where the QGP switches on?
Let’s start with the base-line!

- Large variety of results available from 19.4 GeV - 13 TeV for (isolated) direct photons
 → New results at $\sqrt{s} = 13$ TeV
- Decent agreement at large \sqrt{s} & high p_T between pQCD & data
- All pp data seem to align on a common x_T-curve within $\pm(20 - 50\%)$, if scaled with $(\sqrt{s})^n$ with $n = 4.5$
- Intriguing number:
 → Pure vector gluon exchange: $n = 4$
 → Scale breaking effects in QCD could increase this number
 → Closer look needed if data could be described even better by slightly different n - could help pin down prompt photon contribution even at low p_T

Intriguing number:

- Pure vector gluon exchange: $n = 4$
- Scale breaking effects in QCD could increase this number
- Closer look needed if data could be described even better by slightly different n - could help pin down prompt photon contribution even at low p_T
Let’s start with the base-line!

- Large variety of results available from 19.4 GeV - 13 TeV for (isolated) direct photons
 → New results at $\sqrt{s} = 13$ TeV

- Decent agreement at large \sqrt{s} & high p_T between pQCD & data

- All pp data seem to align on a common x_T-curve within ±(20 – 50)%, if scaled with $(\sqrt{s})^n$ with $n = 4.5$

- Intriguing number:
 → Pure vector gluon exchange: $n = 4$
 → Scale breaking effects in QCD could increase this number
 → Closer look needed if data could be described even better by slightly different n - could help pin down prompt photon contribution even at low p_T
Direct Photon in pp(\(\bar{p}\)) collisions

Let’s start with the base-line!

- Large variety of results available from 19.4 GeV - 13 TeV for (isolated) direct photons

 → New results at \(\sqrt{s} = 13\) TeV

- Decent agreement at large \(\sqrt{s}\) & high \(p_T\) between pQCD & data

- All pp data seem to align on a common \(x_T\)-curve within \((20 - 50)\%\), if scaled with \((\sqrt{s})^n\) with \(n = 4.5\)

- Intriguing number:

 → Pure vector gluon exchange: \(n = 4\)

 → Scale breaking effects in QCD could increase this number

 → Closer look needed if data could be described even better by slightly different \(n\) - could help pin down prompt photon contribution even at low \(p_T\)
New: First results on virtual photon measurement in pp collisions at 7 TeV & 13 TeV

No large thermal component expected $O(0.1-1\%)$ in pp

Similar size of uncertainties of real & virtual photon measurements ($O(5\%)$) at LHC at low p_T

Measuring γ_{dir} for low p_T @ LHC energies very challenging

@ RHIC energies possible for $p_T > 1.5 \text{ GeV/c}$
(Virtual) Direct Photons in pp at low p_T

- **New:** First results on virtual photon measurement in pp collisions at 7 TeV & 13 TeV
- No large thermal component expected O(0.1-1%) in pp
- Similar size of uncertainties of real & virtual photon measurements (O(5%)) at LHC at low p_T
- Measuring γ_{dir} for low p_T @ LHC energies very challenging
 @ RHIC energies possible for $p_T > 1.5$ GeV/c
Direct Photons in p–Au at RHIC at low p_T

Increasing the system size

- Measured direct photon excess ratio in MB & 0-5% p–Au collisions at $\sqrt{s_{NN}} = 200$ GeV
- Reevaluated the pp reference data including external conversions in fit
- No clear excess yield at low p_T seen in d-Au MB & p-Au MB collisions with respect to pp, well described by pQCD calculation
- Excess of low p_T direct photon with respect to pp seen for 0-5% central collisions
- Indication for thermal contribution also in central p–Au collisions

F. Bock (ORNL)
Increasing the system size

- Measured direct photon excess ratio in MB & 0-5% p–Au collisions at \(\sqrt{s_{NN}} = 200 \) GeV
- Reevaluated the pp reference data including external conversions in fit
- No clear excess yield at low \(p_T \) seen in d-Au MB & p-Au MB collisions with respect to pp, well described by pQCD calculation
- Excess of low \(p_T \) direct photon with respect to pp seen for 0-5% central collisions
- Indication for thermal contribution also in central p–Au collisions
Direct Photons in p–Au at RHIC at low p_T

Increasing the system size

- Measured direct photon excess ratio in MB & 0-5% p–Au collisions at $\sqrt{s_{NN}} = 200$ GeV
- Reevaluated the pp reference data including external conversions in fit
- No clear excess yield at low p_T seen in d-Au MB & p-Au MB collisions with respect to pp, well described by pQCD calculation
- Excess of low p_T direct photon with respect to pp seen for 0-5% central collisions
- Indication for thermal contribution also in central p–Au collisions
Direct Photons in p–Pb at LHC at low p_T

How about at LHC?

- Combination of 4 reconstruction techniques via BLUE method
- Individual sys uncertainties O(5-10%), combined total O(4-5%)
- Upper limits at 90% C.L. (arrows) determined where R_γ with total uncertainties consistent with unity
- 0-20% central collisions don’t show a significant excess
- NLO & thermal (Shen et al.) calculations consistent with measurements

Theory calculations from:
W. Vogelsang (CT10,nCTEQ15,EPPS16/GRV), J.F. Paquet (CTEQ6.1M/BFG), C. Shen
How about at LHC?

- Combination of 4 reconstruction techniques via BLUE method
- Individual sys uncertainties O(5-10%), combined total O(4-5%)
- Upper limits at 90% C.L. (arrows) determined where R_γ with total uncertainties consistent with unity
- 0-20% central collisions don’t show a significant excess
- NLO & thermal (Shen et al.) calculations consistent with measurements

Theory calculations from:
W. Vogelsang (CT10,nCTEQ15,EPPS16/GRV), J.F. Paquet (CTEQ6.1M/BFG), C. Shen
Direct Photons in p–Pb at LHC at low p_T

How about at LHC?

- Combination of 4 reconstruction techniques via BLUE method
- Individual sys uncertainties O(5-10%), combined total O(4-5%)
- Upper limits at 90% C.L. (arrows) determined where R_γ with total uncertainties consistent with unity
- 0-20% central collisions don’t show a significant excess
- NLO & thermal (Shen et al.) calculations consistent with measurements

Theory calculations from:
W. Vogelsang (CT10,nCTEQ15,EPPS16/GRV), J.F. Paquet (CTEQ6.1M/BFG), C. Shen

New ATLAS pPb 8.16 TeV publication
PLB 796 (2019) 230
Shen et al. arXiv:1609.02590
Direct photon yield in Au-Au at $\sqrt{s_{NN}} = 39, 62.4, 200$ GeV & Cu-Cu at $\sqrt{s_{NN}} = 200$ GeV & Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV follow similar behavior at low p_T

Spectra normalized by $(dN_{ch}/d\eta)^{\alpha}$, where $\alpha = 1.25 \pm 0.02$ obtained from simultaneous fit to N_{coll} vs $dN_{ch}/d\eta$ for all collision systems
Direct photon yield in Au-Au at $\sqrt{s_{NN}} = 39, 62.4, 200$ GeV & Cu-Cu at $\sqrt{s_{NN}} = 200$ GeV & Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV follow similar behavior at low p_T

- Spectra normalized by $(dN_{ch}/d\eta)^\alpha$, where $\alpha = 1.25 \pm 0.02$ obtained from simultaneous fit to N_{coll} vs $dN_{ch}/d\eta$ for all collision systems

- Other scaling relations possible as well!

Needs further thought: $A + A \rightarrow \gamma + X$ for $y = 0$
Direct Photon Spectra at RHIC - BES & Cu-Cu

- Direct photon yield in Au-Au at $\sqrt{s_{NN}} = 39, 62.4, 200$ GeV & Cu-Cu at $\sqrt{s_{NN}} = 200$ GeV & Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV follow similar behavior at low p_T
- Spectra normalized by $(dN_{ch}/d\eta)^{\alpha}$, where $\alpha = 1.25 \pm 0.02$ obtained from simultaneous fit to N_{coll} vs $dN_{ch}/d\eta$ for all collision systems

Other scaling relations possible as well!

Needs further thought
Why does the low p_T direct photon yield appear to scale with $(dN_{ch}/d\eta)^\alpha$?
Direct Photon Spectra - N_{ch} scaling?

Why does the low p_T direct photon yield appear to scale with $(dN_{ch}/d\eta)^\alpha$?
Direct Photon Spectra - N_{ch} scaling?

- Story not as clear, when looking at STAR data in addition
- Theoretically not easy to understand scaling across different $\sqrt{s_{NN}}$
- Prompt and thermal photons should scale with different slopes at one $\sqrt{s_{NN}}$
- Can we learn something about admixture from different p_T cuts?

Why does the low p_T direct photon yield appear to scale with $(dN_{ch}/d\eta)^{\alpha}$?
Why does the low p_T direct photon yield appear to scale with $(dN_{ch}/d\eta)^{\alpha}$?

- Story not as clear, when looking at STAR data in addition
- Theoretically not easy to understand scaling across different $\sqrt{s_{NN}}$
- Prompt and thermal photons should scale with different slopes at one $\sqrt{s_{NN}}$
- Can we learn something about admixture from different p_T cuts?
Central points for direct photon yield and $v_2^{\gamma, \text{dir}}$ underestimated by most theoretical calculations by factors of 2-5.
Central points for direct photon yield and $v_2^{\gamma,\text{dir}}$ underestimated by most theoretical calculations by factors of 2-5.

New: $v_2^{\gamma,\text{dir}}$ compatible with $v_2^{\gamma,\text{dir}} = 0$ within 1.4(1.0)σ in p_T range ($0.9 < p_T < 2.1$ GeV/c)

No deviation beyond 2σ from theory observed for spectra or v_2

Similar observations for all theoretical calculations despite very different setups.
Photon yield increased by \approx factor 2 for $p_T < 3$ GeV/c

T_{eff} appears to change

v_2 at LHC compatible with v_2 measured at $\sqrt{s_{NN}} = 0.2$ TeV

Similar scaling behavior of direct photon v_2 as for charged hadrons

⇒ Many photons produced in late stages of collision - HG-phase
Direct Photon Yield and Flow - Comparison to PHENIX

- Photon yield increased by ≈ factor 2 for $p_T < 3$ GeV/c
- T_{eff} appears to change

γ-yield at LHC compatible with v_2 measured at $\sqrt{s_{NN}} = 0.2$ TeV

- Similar scaling behavior of direct photon v_2 as for charged hadrons
 \Rightarrow Many photons produced in late stages of collision - HG-phase
Direct Photon Yield and Flow - Comparison to PHENIX

- Photon yield increased by \(\approx \) factor 2 for \(p_T < 3 \text{ GeV/c} \)
- \(T_{\text{eff}} \) appears to change

\[dN/dy \propto \frac{1}{2\pi N_{\text{ch}} p_T} \]

\[\hat{v}_2 \text{ at LHC compatible with } \hat{v}_2 \text{ measured at } \sqrt{s_{NN}} = 0.2 \text{ TeV} \]
- Similar scaling behavior of direct photon \(\hat{v}_2 \) as for charged hadrons
 \(\Rightarrow \) Many photons produced in late stages of collision - HG-phase

Is there a way to disentangle the contributions of the two phases at RHIC & LHC?
Photons as probes for the initial state & scaling properties

What can we learn about the scaling properties when going from $\text{pp} \rightarrow \text{p-A} \rightarrow \text{A-A}$ from γ spectra?
Isolated direct photon measurement in p–Pb collisions at $\sqrt{s_{NN}} = 8$ TeV by ATLAS

- N_{coll} scaling works at mid rapidity
- Prompt photon production at large p_T in forward and backward region could constrain nPDFs & energy loss scenarios significantly
- Current precision not yet sufficient to do so
- Slight preference for no energy loss in p–Pb collisions
Isolated Photons as calibration & tagging objects for jet modification studies in p-A and A-A collisions
- γ-h and γ-jet correlations in p(d)-A & A-A collisions

- **Base-line measurements in pp & p-Pb 5 TeV (ALICE)**
- Access to intermediate photon p_T triggered correlation (10-40 GeV/c) functions even @ LHC energies
- No significant modification of jet fragmentation observed in p-A collisions
- $\gamma_{dir} + \text{jet}$ and $\pi^0 + \text{jet}$ show similar level of suppression of recoil jet, stronger for $R = 0.2$ than for $R = 0.5$
Modification of jet properties in Pb-Pb collisions

Constraining quark-jet modification

γ+jet p_T-balance & γ-tagged jet FF
- pp-like peaked $x_{J\gamma}$ in peripheral Pb-Pb, smeared in central Pb-Pb
 - Variation in jet-by-jet E-loss
- γ-tagged jet frag. functions different modification in central evts. than inclusive jets

ξ_T & gamma-tagged Jet shape
- Central PbPb collisions \rightarrow enhancement of low-p_T part. and a depletion of high-p_T part. ξ_T^γ modified stronger compared to ξ_{jet}
- Larger enhancement at large r & Smaller depletion at intermediate r compared to di-jets
 - Increased quark fraction (70-80%)?
 - Lower jet p threshold (higher fraction of quenched jets)?
Modification of jet properties in Pb-Pb collisions

Constraining quark-jet modification

\(\gamma^+ \text{jet } p_T \)-balance & \(\gamma \)-tagged jet FF

- pp-like peaked \(x_{J\gamma} \) in peripheral Pb-Pb, smeared in central Pb-Pb
- \(\gamma \)-tagged jet frag. functions different modification in central evts. than inclusive jets

& gamma-tagged Jet shape from CMS

- Central PbPb collisions \(\rightarrow \) enhancement of low-\(p_T \) part. and a depletion of high-\(p_T \) part. \(\xi_T^\gamma \) modified stronger compared to \(\xi_{\text{jet}} \)
- Larger enhancement at large \(r \) & Smaller depletion at intermediate \(r \) compared to di-jets
- Increased quark fraction (70-80%)?
- Lower jet \(p \) threshold (higher fraction of quenched jets)?
Thanks to all speakers & the organizers for making this conference possible!

Questions?
BACKUP
Direct Photons in pp at LHC at low p_T

- Systematic uncertainties of individual meas.
 - dominated by p_T-independent material unc. of 4.5% PCM, 2.8% EMC & global E-scale unc. 3% PHOS
- Combination of 3 reconstruction techniques via BLUE method
- NLO prediction plotted as
 $$ R_{\text{NLO}} = 1 + \left(\gamma_{\text{dir}}^{\text{NLO}} \cdot N_{\text{Coll}} \right) / \gamma_{\text{dec}} $$
- Upper limits at 90% C.L. (arrows) determined where R_γ with total uncertainties consistent with unity
Direct Photons in pp at LHC at low p_T

- Systematic uncertainties of individual meas.
 - dominated by p_T-independent material unc. of 4.5% PCM, 2.8% EMC & global E-scale unc. 3% PHOS
- Combination of 3 reconstruction techniques via BLUE method
- NLO prediction plotted as
 \[R_{NLO} = 1 + (\gamma_{NLO}^{dir} \cdot N_{Coll}) / \gamma_{dec} \]
- Upper limits at 90% C.L. (arrows) determined where R_γ with total uncertainties consistent with unity
Constraints to FF from RHIC

- pQCD calculation depend on fragmentation component
- High precision data from PHENIX further constrains FF
- Data favor BFG II FF over BFG I and GLV
 → BFG II FF has largest gluon contribution

\[
\frac{1}{2\pi\Delta y} \frac{d\sigma}{dp_T}
\]
More differential data available from ATLAS & CMS for inclusive direct photon production at 7, 8 & 13 TeV (isolated)

Reasonable agreement with different pQCD calculations & event generators

New results on isolated $\gamma + N$ jet production test pQCD up to $O(\alpha_{em}^4)$
More differential data available from ATLAS & CMS for inclusive direct photon production at 7, 8 & 13 TeV (isolated)

Reasonable agreement with different pQCD calculations & event generators

New results on isolated $\gamma + N$ jet production test pQCD up to $O(\alpha_{em} \alpha s^4)$
More differential data available from ATLAS & CMS for inclusive direct photon production at 7, 8 & 13 TeV (isolated)

Reasonable agreement with different pQCD calculations & event generators

New results on isolated $\gamma + N$ jet production test pQCD up to $O(\alpha_{em}\alpha s^4)$
Measured direct photon excess ratio in d–Au collisions at \(\sqrt{s_{NN}} = 200 \text{ GeV} \) over wide \(p_T \) range

- Small hint at suppression at high \(p_T \), statistical precision not sufficient

\[\rightarrow R_{dA} \text{ slightly better described if Cronin, isospin and shadowing effect are included} \]

- No significant low \(p_T \) \(R_{dA} \)

\[\text{Data/Fit} \]

\[\gamma_{\text{virtual}} \text{-tagging} \]

\[\pi^0 \text{-tagging} \]

\[\text{statistical subtraction} \]

\[\text{NLO pQCD} \]

\[\mu = 1.0p_T \]

\[\mu = 0.5p_T \]

\[\mu = 2.0p_T \]

\[\text{initE} \Delta \text{Cronin+Isospin+Shadowing} \]

\[\text{d+Au} = 200 \text{ GeVNNs} \]

\[\text{dAR} \]

\[\text{γ}_{\text{virtual}} \text{-tagging} \]

\[\pi^0 \text{-tagging} \]

\[\text{Cronin+Isospin} \]

\[\text{Cronin+Isospin+Shadowing} \]

\[\text{Cronin+Isospin+Shadowing+ΔE} \text{init} \]

\[\text{(GeV/c)} \]

\[T_p \]

\[0 2 4 6 8 10 12 14 16 18 20 \]

\[0 0.5 1 1.5 2 \]

\[\text{fit uncertainty} \]

\[\text{(b) p+p data/fit} \]
High $p_T \gamma_{dir}$ scale with N_{Coll}

- No indication of nuclear effects

\Rightarrow hadronic suppression = Final State Effect

- Indication for relevance of photons from jet-plasma interactions for $p_T < 6 \text{ GeV/c}$

- 20-30% reduction of direct photon R_{AA} expected due to energy loss
Nearly no centrality dependence in R_γ, peripheral still $\sim 5\%$ excess, although not statistically significant anymore.

- Excess $\approx 20\%$ in 0–20% Au–Au, systematic uncertainties $O(5\%)$

- Strong excess above extrapolated pp measurement (green curve) seen in all centrality classes

- Slope of excess depends very little on centrality ($T_{\text{eff}} \approx 235 \pm 40$ MeV/c)
Virtual direct photon spectrum measured by STAR at low p_T disagrees between 1-3 GeV/c by a factor 2.

BUT: Large syst. errors due to unmeasured eta contribution at low p_T.
Direct Photon Excess in Pb-Pb at LHC

- Direct photon excess measured with combined PCM + PHOS in 3 centrality classes with 2010 Pb–Pb data
- R_γ excess at high p_T for all centralities
- γ^{dec} suppressed by $\approx R_{\text{AA}}^\pi^0$ → larger excess in central collisions
- Low $p_T \sim 15\%$ excess in 0–20% and $\sim 9\%$ in 20–40%
- In agreement with NLO pQCD, JETPHOX above 5 GeV/c
- No low p_T excess seen in pp collisions at same center-of-mass energy
- Scaled pp spectrum & upper limits fully consistent with Pb–Pb results
Direct Photons in Pb-Pb at LHC

- Direct photon excess measured with combined PCM + PHOS in 3 centrality classes with 2010 Pb–Pb data
- R_{γ} excess at high p_T for all centralities
- γ^{dec} suppressed by $\approx R_{\AA A}^{\gamma^0}$
 \rightarrow larger excess in central collisions
- Low $p_T \sim 15\%$ excess in $0 - 20\%$ and $\sim 9\%$ in $20 - 40\%$
- In agreement with NLO pQCD, JETPHOX above 5 GeV/c
- No low p_T excess seen in pp collisions at same center-of-mass energy
- Scaled pp spectrum & upper limits fully consistent with Pb–Pb results
Direct Photon in Pb-Pb at LHC

- Direct photon excess measured with combined PCM + PHOS in 3 centrality classes with 2010 Pb–Pb data
- R_γ excess at high p_T for all centralities
- γ^{dec} suppressed by $\approx R^{\pi^0}_{AA}$
 \rightarrow larger excess in central collisions
- Low $p_T \sim 15\%$ excess in 0 – 20% and $\sim 9\%$ in 20 – 40%
- In agreement with NLO pQCD, JETPHOX above 5 GeV/c
- No low p_T excess seen in pp collisions at same center-of-mass energy
- Scaled pp spectrum & upper limits fully consistent with Pb–Pb results
Direct Photons in Pb-Pb at LHC

- Direct photon excess measured with combined PCM + PHOS in 3 centrality classes with 2010 Pb–Pb data
- R_γ excess at high p_T for all centralities
- γ^{dec} suppressed by $\approx R_\pi^0_{\AA\AA}$
 → larger excess in central collisions
- Low $p_T \sim 15\%$ excess in $0 - 20\%$ and
 $\sim 9\%$ in $20 - 40\%$
- In agreement with NLO pQCD, JETPHOX above 5 GeV/c
- No low p_T excess seen in pp collisions at same center-of-mass energy
- Scaled pp spectrum & upper limits fully consistent with Pb–Pb results
- Direct photon ν_2 & ν_3 comparable to that of other hadrons
- Two independent methods give comparable result
- Theory not able to reproduce large ν_2 and even less ν_3
Direct Photon Yield and Flow - At RHIC

- Large yield and large anisotropy have been observed in Au–Au at 200 GeV by PHENIX
- Challenge for theory to describe both measurements simultaneously
- Large yield from early emission?
- Large v_2 from late emission?

⇒ Direct Photon Puzzle
Cocktail Simulation of Decay Photon v_2

Decay photon v_2:

- KE_T scaling: v_2 of mesons scales with KE_T

 \[
 KE_T = m_T - m = \sqrt{p_T^2 + m^2} - m
 \]

 $\Rightarrow v_2^0 \approx v_2^{\pi^\pm}$ ($m^0 \approx m^{\pi^\pm}$)

- v_2 of various mesons (X) calculated via KE_T (quark number) scaling from $v_2^{K^\pm}$

 \[
 v_2^X(p_T^X) = v_2^{K^\pm} \left(\sqrt{(KE_T^X + m^{K^\pm})^2} - (m^{K^\pm})^2\right)
 \]

- Decay photon v_2 from different mesons obtained from cocktail calculation
\(\nu_2^{\gamma,\text{inc}} \) measured with PCM & PHOS

→ Corrected for BG flow from impurities

[\text{JPFG 44 (2917) no. 2, 025106}]

→ Assumed to be independent

→ Consistent, \(p \)-values of 0.93 (0-20%) & 0.43 (20-40%)
ν_2^γ Inclusive and Decay

- ν_2^γ,inc measured with PCM & PHOS
 - Corrected for BG flow from impurities
 - Assumed to be independent
 - Consistent, p-values of 0.93 (0-20%) & 0.43 (20-40%)

- $p_T < 3 \text{ GeV}/c$: $\nu_2^\gamma,\text{inc} = \nu_2^\gamma,\text{dec}$
 - Either no contribution of γ_{dir}
 - or $\nu_2^\gamma,\text{inc} \approx \nu_2^\gamma,\text{dec}$
 - Theory $\sim 30 - 40\%$ too high

- $p_T > 3 \text{ GeV}/c$: $\nu_2^\gamma,\text{inc} < \nu_2^\gamma,\text{dec}$
 - Direct photon ν_2 contribution with $\nu_2^{\text{direct}} < \nu_2^{\text{decay}}$
 - Mainly prompt photons
Direct Photon v_2 0-20 & 20-40 % Pb-Pb at LHC

Direct photon v_2:

$$v_2^{\gamma,\text{dir}} = \frac{R_{\gamma} \cdot v_2^{\gamma,\text{inc}} - v_2^{\gamma,\text{dec}}}{R_{\gamma} - 1}$$

- Measured R_{γ} often less than $2\sigma_{\text{sys}}$ deviation from 1

⇒ Central value & unc. calculated using MC simulation following Bayesian approach with probability distributions of true values of $R_{\gamma}^t(p_T)$, $v_2^{\gamma,\text{dec},t}(p_T)$, $v_2^{\gamma,\text{inc},t}(p_T)$ assuming R_{γ} can’t be smaller unity & partially p_T correlated unc.

- Large direct photon v_2 for $p_T < 3$ GeV/c measured
- Magnitude of $v_2^{\gamma,\text{dir}}$ comparable to hadrons
- Result points to late production times of direct photons after flow is established
Direct photon v_2:

$$v_2^{\gamma, \text{dir}} = \frac{R_\gamma \cdot v_2^{\gamma, \text{inc}} - v_2^{\gamma, \text{dec}}}{R_\gamma - 1}$$

- Measured R_γ often less than $2\sigma_{\text{sys}}$ deviation from 1

⇒ Central value & unc. calculated using MC simulation following Bayesian approach with probability distributions of true values of $R_\gamma^t (p_T)$, $v_2^{\gamma, \text{dec}, t} (p_T)$, $v_2^{\gamma, \text{inc}, t} (p_T)$ assuming R_γ can’t be smaller unity & partially p_T correlated unc.

- Large direct photon v_2 for $p_T < 3 \text{ GeV}/c$ measured

- Magnitude of $v_2^{\gamma, \text{dir}}$ comparable to hadrons

- Result points to late production times of direct photons after flow is established
Jet observables: a quick reminder

\[\xi^{\text{jet}} = \ln \frac{|p^{\text{jet}}|^2}{p^{\text{track}} \cdot p^{\text{jet}}} \] (1)

\[\xi^{\gamma}_{T} = \ln \frac{-|p^{\gamma}_{T}|^2}{p^{\text{track}}_{T} \cdot p^{\gamma}_{T}} \] (2)