What can we learn from gravitational waves emitted by heavy neutron stars mergers?

Nicolas Yunes Illinois Center for Advanced Studies of the UniverseUniversity of Illinois at Urbana-Champaign

[in collaboration with **Hun Tan, Travis Dore**, Jaki Noronha-Hostler and Veronica Dexheimer]

> DNP Workshop before April APS '21 April 14th, 2021

What is it that you do?

What is it that you do?

What can we learn about nuclear physics from the inspiral of heavy neutron stars?

A zoo of sources

Modelling 1. Create template "filters"

Modelling 1. Create template "filters"

Data Analysis

Modelling 1. Create template "filters"

Data2. Cross-correlate filters & dataAnalysis

Modelling 1. Create template "filters"

2. Cross-correlate filters & data Data Analysis

$\mathcal{L} = e^{-\frac{1}{2}(s-h \mid s-h)} = e^{4\Re \int \left[\tilde{s}^*(f) - \tilde{h}^*(f,\lambda^{\mu})\right] \left[\tilde{s}(f) - \tilde{h}(f,\lambda^{\mu})\right] \frac{df}{S_n(r)}}$

Modelling 1. Create template "filters"

2. Cross-correlate filters & data Data Analysis

function

Modelling 1. Create template "filters"

2. Cross-correlate filters & data Data Analysis

Modelling 1. Create template "filters"

2. Cross-correlate filters & data Data Analysis

Fourier transform $\longrightarrow \mathcal{L} = e^{-\frac{1}{2}(s-h \mid s-h)} = e^{4\Re \int \left[\tilde{s}^*(f) - \tilde{h}^*(f,\lambda^{\mu})\right] \left[\tilde{s}(f) - \tilde{h}(f,\lambda^{\mu})\right] \frac{df}{S_n(r)}}$

Modelling 1. Create template "filters"

2. Cross-correlate filters & data Data Analysis

Fourier transform $\longrightarrow \mathcal{L} = e^{-\frac{1}{2}(s-h \mid s-h)} = e^{4\Re \int \left[\tilde{s}^*(f) - \tilde{h}^*(f,\lambda^{\mu})\right] \left[\tilde{s}(f) - \tilde{h}(f,\lambda^{\mu})\right] \frac{df}{S_n(r)}}$

detector noise (spectral noise density)

Modelling 1. Create template "filters"

2. Cross-correlate filters & data Data Analysis

1. Create template "filters" Modelling

2. Cross-correlate filters & data Data Analysis

Modelling 1. Create template "filters"

2. Cross-correlate filters & data Data Analysis 3. Find filter that maximizes the likelihood function.

1. Create template "filters" Modelling

2. Cross-correlate filters & data Data Analysis 3. Find filter that maximizes the likelihood function.

The waveform model is key to extract physics information from **GW data through matched** filtering

test-particles $T \sim 10^{6} \text{ K} \sim 10^{-5} \text{ MeV}$

test-particles $T \sim 10^{6} \text{ K} \sim 10^{-5} \text{ MeV}$

tidal deformations $T \sim 10^8 \text{ K}? \sim 10^{-3} \text{ MeV }?$

test-particles $T \sim 10^{6} \text{ K} \sim 10^{-5} \text{ MeV}$

tidal deformations merger $T \sim 10^8 \text{ K}? \sim 10^{-3} \text{ MeV }?$ $T \sim 10^{12} \text{ K} \sim 10^{2} \text{ MeV}$

test-particles $T \sim 10^{6} \text{ K} \sim 10^{-5} \text{ MeV}$

tidal deformations $T \sim 10^8 \text{ K}? \sim 10^{-3} \text{ MeV }?$

post-merger

test-particles $T \sim 10^{6} \text{ K} \sim 10^{-5} \text{ MeV}$

tidal deformations $T \sim 10^8 \text{ K}? \sim 10^{-3} \text{ MeV}?$

 $\tilde{h}(f) = \mathcal{A}(f)e^{i\psi_{\rm pp}(f) + i\psi_{\rm tidal}(f)}$

merger $T \sim 10^{12} \text{ K} \sim 10^{2} \text{ MeV}$

post-merger

test-particles $T \sim 10^{6} \text{ K} \sim 10^{-5} \text{ MeV}$

tidal deformations $T \sim 10^8 \text{ K}? \sim 10^{-3} \text{ MeV }?$

 $\tilde{h}(f) = \mathcal{A}(f)e^{i\psi_{\rm pp}(f) + i\psi_{\rm tidal}(f)}$

merger $T \sim 10^{12} \text{ K} \sim 10^{2} \text{ MeV}$ post-merger

 $\psi_{\text{tidal}} = f(m_1, m_2) v(f)^5 \Lambda$

test-particles $T \sim 10^{6} \text{ K} \sim 10^{-5} \text{ MeV}$

tidal deformations $T \sim 10^8 \text{ K}? \sim 10^{-3} \text{ MeV }?$

 $\tilde{h}(f) = \mathcal{A}(f)e^{i\psi_{\rm pp}(f) + i\psi_{\rm tidal}(f)}$

merger $T \sim 10^{12} \text{ K} \sim 10^{2} \text{ MeV}$ post-merger

 $\psi_{\text{tidal}} = f(m_1, m_2) v(f)^5 \Lambda$ $\Lambda = g(m_1, m_2)\lambda_1 + h(m_1, m_2)\lambda_2$

test-particles $T \sim 10^{6} \text{ K} \sim 10^{-5} \text{ MeV}$

tidal deformations $T \sim 10^8 \text{ K}? \sim 10^{-3} \text{ MeV }?$

 $\tilde{h}(f) = \mathcal{A}(f)e^{i\psi_{\rm pp}(f) + i\psi_{\rm tidal}(f)}$

Gravitational waves encode the tidal deformabilities

merger $T \sim 10^{12} \text{ K} \sim 10^{2} \text{ MeV}$ post-merger

 $\psi_{\text{tidal}} = f(m_1, m_2) v(f)^5 \Lambda$ $\Lambda = g(m_1, m_2)\lambda_1 + h(m_1, m_2)\lambda_2$

[see e.g. Yagi & Yunes, Phys. Repts 681 (2017)]

* "it" being nuclear physics.

* "it" being nuclear physics.

Yunes

[see e.g. Yagi & Yunes, Phys. Repts 681 (2017)]

Yunes

First GW measurements of Love (and Radius)

[LIGO, PRL 121 ('18)]

First GW measurements of Love (and Radius)

The GW170817 observation allowed for the first GW constraints on the Love number (and thus the radius)

[LIGO, PRL 121 ('18)]

Recent studies indicate a steep rise or bump

Bedaque & Steiner, PRL 114, '15; Alford et al, PRD92, '15, Ranea-Sandoval, et al, PRC93, Tews, et al, PRC98, '18

Recent studies indicate a steep rise or bump

One physical mechanism: Quarkyonic Matter

Bedaque & Steiner, PRL 114, '15; Alford et al, PRD92, '15, Ranea-Sandoval, et al, PRC93, Tews, et al, PRC98, '18

See e.g. Zhao & Lattimer, 2004.08293.

Recent studies indicate a steep rise or bump

One physical mechanism: Quarkyonic Matter

Bedaque & Steiner, PRL 114, '15; Alford et al, PRD92, '15, Ranea-Sandoval, et al, PRC93, Tews, et al, PRC98, '18

Other studies indicate sharp kinks

Recent studies indicate a steep rise or bump

One physical mechanism: Quarkyonic Matter

Other studies indicate sharp kinks

Kinky and bumpy neutron stars

[**Tan**, Noronha-Hostler, Yunes, PRL 125, '20; + in prep with Dexheimer, Dore]

Kinky and bumpy neutron stars

[Tan, Noronha-Hostler, Yunes, PRL 125, '20; + in prep with Dexheimer, Dore]

Yunes

Kinky and bumpy neutron stars

If GW190814 is a NS-BH merger, what does this say about c_s^2 ?

+ in prep with Dexheimer, Dore]

Isn't this in conflict with LIGO's observations?

[Tan, Noronha-Hostler, Yunes, PRL 125, '20; + in prep with Dexheimer, Dore]

The spectral representation cannot capture bumps/kinks/jumps in the EOS, can push the M-R curve out-of-bounds!

[**Tan**, Noronha-Hostler, Yunes, PRL 125, '20; + in prep with Dexheimer, Dore]

[**Tan**, Noronha-Hostler, Yunes, PRL 125, '20; + in prep with Dexheimer, Dore] • Black holes are not deformed so $\Lambda = 0$

[**Tan**, Noronha-Hostler, Yunes, PRL 125, '20; + in prep with Dexheimer, Dore]

- Black holes are not deformed so $\Lambda = 0$
- Light neutron stars are more deformed (large Λ)

[**Tan**, Noronha-Hostler, Yunes, PRL 125, '20; + in prep with Dexheimer, Dore]

- Black holes are not deformed so $\Lambda = 0$
- Light neutron stars are more deformed (large Λ)
- Heavy neutron stars are less deformed (small Λ)

[**Tan**, Noronha-Hostler, Yunes, PRL 125, '20; + in prep with Dexheimer, Dore]

- Black holes are not deformed so $\Lambda = 0$
- Light neutron stars are more deformed (large Λ)
- Heavy neutron stars are less deformed (small Λ)

Not possible to measure Λ in GW190814 due to massive BH

[**Tan**, Noronha-Hostler, Yunes, PRL 125, '20; + in prep with Dexheimer, Dore]

- Black holes are not deformed so $\Lambda = 0$
- Light neutron stars are more deformed (large Λ)
- Heavy neutron stars are less deformed (small Λ)

Not possible to measure Λ in GW190814 due to massive BH

Needs measurements of $\Lambda \sim 3-20$, current detectors can measure $\Lambda \sim 100 - 400$

• Large maximum mass of a neutron star is possible when incorporating dramatic change in the degrees of freedom (quarks???)

- Large maximum mass of a neutron star is possible when incorporating dramatic change in the degrees of freedom (quarks???)
- Spectral EOS misses this behavior, one must use caution with restricted phenomenological EoSs that may miss important physics

- Large maximum mass of a neutron star is possible when incorporating dramatic change in the degrees of freedom (quarks???)
- Spectral EOS misses this behavior, one must use caution with restricted phenomenological EoSs that may miss important physics
- Measuring Λ (tidal deformation) is key to distinguish between NS and BH in a binary

- Large maximum mass of a neutron star is possible when incorporating dramatic change in the degrees of freedom (quarks???)
- Spectral EOS misses this behavior, one must use caution with restricted phenomenological EoSs that may miss important physics
- Measuring Λ (tidal deformation) is key to distinguish between NS and BH in a binary
- Future upgrades crucial to a further understanding Quantum Chromodynamics

- Large maximum mass of a neutron star is possible when incorporating dramatic change in the degrees of freedom (quarks???)
- Spectral EOS misses this behavior, one must use caution with restricted phenomenological EoSs that may miss important physics
- Measuring Λ (tidal deformation) is key to distinguish between NS and BH in a binary
- Future upgrades crucial to a further understanding Quantum Chromodynamics

"Assumptions are made and most assumptions are wrong."

Thank You

Why start with speed of sound: c_s^2 ?

Connection to the susceptibilities $\chi_2 = \frac{d^2 P}{d\mu_B^2} \text{ at } T=0:$ $c_s^2 = n_B / (\mu_B \chi_2)$

McLerran & Reddy, Phys. Rev. Lett. 122, 122701 (2019)

Gravitational-wave strain

GW170817

Gravitational-wave strain

GW170817

Bistaryfl@erectalReetescuiey

 $\tilde{h}(f) = \mathcal{A}(f)$

$$e^{i\psi_{\rm pp}(f)+i\psi_{\rm tidal}(f)}$$

$\psi_{\text{tidal}} = f(m_1, m_2) v(f)^5 \Lambda$

$\Lambda = g(m_1, m_2)\lambda_1 + h(m_1, m_2)\lambda_2$

Bistary floweeta the society

$$\tilde{h}(f) = \mathcal{A}(f)e^{i\psi_{\rm pp}(f) + i\psi_{\rm tidal}(f)}$$

 $\psi_{\text{tidal}} =$

$$\Lambda = g(m_1, m_2)\lambda_1 + h(m_1, m_2)\lambda_2$$

$$f(m_1, m_2) v(f)^5 \Lambda$$

Use binary Love relations to write $\lambda_1 = \lambda_1(\lambda_2)$ and then a GW measurement of Λ gives you $\lambda_{1,}$ and the relations give you λ_{2} !

Bistary flowed at Reet a society

$$\tilde{h}(f) = \mathcal{A}(f)e^{i\psi_{\rm pp}(f) + i\psi_{\rm tidal}(f)}$$

 $\psi_{\text{tidal}} =$

$$\Lambda = g(m_1, m_2)\lambda_1 + h(m_1, m_2)\lambda_2$$

$$f(m_1, m_2) v(f)^5 \Lambda$$

Use binary Love relations to write $\lambda_1 = \lambda_1(\lambda_2)$ and then a GW measurement of Λ gives you $\lambda_{1,}$ and the relations give you λ_{2} !

Bistary fl Genetra i Reet a society

$$\tilde{h}(f) = \mathcal{A}(f)e^{i\psi_{\rm pp}(f) + i\psi_{\rm tidal}(f)}$$

 $\psi_{\text{tidal}} =$

$$\Lambda = g(m_1, m_2)\lambda_1 + h(m_1, m_2)\lambda_2$$

$$f(m_1, m_2) v(f)^5 \Lambda$$

Use binary Love relations to write $\lambda_1 = \lambda_1(\lambda_2)$ and then a GW measurement of Λ gives you λ_{1} , and the relations give you λ_{2} !

If you have measured (m_1,λ_1) and (m_2,λ_2) , then $\lambda_1 = \lambda_1(C_1)$ and $\lambda_2 = \lambda_2(C_2)$ relations give you (m_1, R_1) and (m_2, R_2) !

Texesbafdnesse of Rehnavity bjects

Texesbafdhesse of Rehnavity bjects

Ī

Texesbafdhessenf Rehnavitybjects

Ī

 $\bar{\lambda} = \frac{\lambda}{M^5}$

T $\bar{I} = \frac{I}{M^3}$

Texesbafdnesse of Reptacity bjects

T $\bar{I} = \frac{I}{M^3}$

Texesbafdnesse of Reptacity bjects

 $\frac{\lambda}{M^5}$

T $\bar{I} = \frac{I}{M^3}$

Texesbafdnesse caf Reptacity bjects

T $\bar{I} = \frac{I}{M^3}$

Textsbafdnessenf Rehnavitybjects

$$\bar{\lambda} = \frac{\lambda}{M^5}$$

T $\bar{I} = \frac{I}{M^3}$

0	APR
ĕ	ALF5
0	AP3
Õ	AP4
Õ	SLy
	SGI
	SGI-YBZ6-SAA3
	SV
	SkI4
	SkI4-YBZ6-SAA3
0	LS220
0	Shen
\circ	ENG
Q	MPA1
Q	MS1
0	MS1b
Q	WFF1
0	WFF2
	DBHF ⁽²⁾ (A)
	NIY5KK [*]
	GA-FSU2.1
	GA-FSU2.1-180
	G4
	H4
	GCR
	MPa
	MPaH
A	SQM1
	SQM2
	SQM3
	fit
	Newtonian
4	

[Yagi & Yunes, Science 341 ('13), Yagi & Yunes, PRD 88 ('13)]

0	APR
ĕ	ALF5
0	AP3
Õ	AP4
Õ	SLy
	SGI
	SGI-YBZ6-SAA3
	SV
	SkI4
	SkI4-YBZ6-SAA3
0	LS220
0	Shen
\circ	ENG
Q	MPA1
Q	MS1
O	MS1b
Q	WFF1
0	WFF2
	DBHF ⁽²⁾ (A)
	NIY5KK [*]
	GA-FSU2.1
	GA-FSU2.1-180
	G4
	H4
	GCR
	MPa
	MPaH
A	SQM1
	SQM2
	SQM3
	fit
	Newtonian
4	

[Yagi & Yunes, Science 341 ('13), Yagi & Yunes, PRD 88 ('13)]

0	APR
ĕ	ALF5
0	AP3
Õ	AP4
Õ	SLy
	SGI
	SGI-YBZ6-SAA3
	SV
	SkI4
	SkI4-YBZ6-SAA3
0	LS220
0	Shen
\circ	ENG
Q	MPA1
Q	MS1
O	MS1b
Q	WFF1
0	WFF2
	DBHF ⁽²⁾ (A)
	NIY5KK [*]
	GA-FSU2.1
	GA-FSU2.1-180
	G4
	H4
	GCR
	MPa
	MPaH
A	SQM1
	SQM2
	SQM3
	fit
	Newtonian
4	

[Yagi & Yunes, Science 341 ('13), Yagi & Yunes, PRD 88 ('13)]

[Yagi & Yunes, Science 341 ('13), Yagi & Yunes, PRD 88 ('13)]

The moment of inertia, quadrupole moment and Love number satisfy (approx Universal), EoS-insensitive relations!

[Yagi & Yunes, Science 341 ('13), Yagi & Yunes, PRD 88 ('13)]

Binary Love relations

$$\bar{\lambda}_{s,a} = \frac{1}{2} \left(\bar{\lambda}_1 \pm \bar{\lambda}_2 \right)$$

[Yagi & Yunes, CQG Letters 33 ('16)]

Binary Love relations

$$\bar{\lambda}_{s,a} = \frac{1}{2} \left(\bar{\lambda}_1 \pm \bar{\lambda}_2 \right)$$

[Yagi & Yunes, CQG Letters 33 ('16)]

The tidal Love numbers satisfy (approx Universal), EoS-insensitive relations (that only depend on the mass ratio)!

Yunes

Via stacking (with aLIGO at design sensitivity, 2021-2023)

Yunes

[Agathos et al, PRD 92 ('05)]

Yunes

[Agathos et al, PRD 92 ('05)]

Single and future observations with 3G detectors $(\lambda_0 = 150, \text{GW170817})$

2021		2025	2
aLIGO aVirgo KAGRA	A+	LIGO-India	

improved quantum noise improved thermal coating increased range to 140% wrt aLIGO

silicon mirrors and suspensions low temperature (120K) increased range to 200% wrt aLIGO

Moderate Improvements

2029

2033

2036

Voyager

2021		2025	2
aLIGO aVirgo KAGRA	A+	LIGO-India	

improved quantum noise improved thermal coating increased range to 140% wrt aLIGO

silicon mirrors and suspensions low temperature (120K) increased range to 200% wrt aLIGO

Moderate Improvements

2029

Voyager

2033

2036

2021		2025	2
aLIGO aVirgo KAGRA	A+	LIGO-India	

improved quantum noise improved thermal coating increased range to 140% wrt aLIGO

silicon mirrors and suspensions low temperature (120K) increased range to 200% wrt aLIGO

Moderate Improvements

2029 Voyager

2033

2036

2021		2025	2
aLIGO aVirgo KAGRA	A+	LIGO-India	

improved quantum noise improved thermal coating increased range to 140% wrt aLIGO

Moderate Improvements

2021		2025	2
aLIGO aVirgo KAGRA	A+	LIGO-India	

improved quantum noise improved thermal coating increased range to 140% wrt aLIGO

Moderate Improvements

2021		2025	2
aLIGO aVirgo KAGRA	A+	LIGO-India	

improved quantum noise improved thermal coating increased range to 140% wrt aLIGO

Moderate Improvements

3G ground-based detectors

3G ground-based detectors

