
Precision Electroweak Physics at Low 
Energy

Misha Gorshteyn
Johannes Gutenberg-Universität Mainz

Collaborators: 
Jens Erler 
Xu Feng 
Chuck Horowitz 
Daniel Galviz 
Lu-Chang Jin 
Oleksandr Koshchii  
Peng-Xian Ma 
Hiren Patel 
Michael Ramsey-Musolf 
Chien-Yeah Seng 
Hubert Spiesberger

GHP 2021 - Jefferson Lab (Virtual) - April 13, 2021



1950’s: V - A Fermi theory; 

History of Radiative Corrections to β Decay

7

experimental information is consistent with pure V , A, V ′ and A′ interactions. Possible deviations, which in the
four-component neutrino framework involve quadratic expressions in gi, g′i(i = S, T, P ) are expected to be very small
and can therefore be treated at the tree level. The products of these small deviations with (α/2π)f(x) and (α/2π)g(x)
are of second order in the small quantities and, therefore, are not considered significant.
At present, very precise measurements of ρ, δ, ξ and η are carried out in the TWIST experiment at TRIUMPH

(Bayes et al., 2011), and a very accurate determination of τµ has been made by the Mulan collaboration at PSI
(Webber et al., 2011).

C. The V -A Theory

The discovery of parity non-conservation led to another very important development: by greatly increasing the
number of observables available for experimental and theoretical study, it opened the way for the determination of
the basic phenomenological interaction. This led Sudarshan and Marshak (1957, 1958) and Feynman and Gell-Mann
(1958) to propose a universal V -A Fermi Interaction for charged current processes, such as muon decay, β decay and
the semileptonic decays of hyperons.
In the case of muon decay, this theory implies the validity of Eqs.(9,10) and furthermore states that

gA = −gV . (22)

Using the Fierz transformations (Fierz, 1937), Eqs.(9,10,22) lead to the following coupling constants g̃i, g̃′i in the
charge-exchange order:

g̃S = g̃′S = g̃T = g̃′T = g̃P = g̃′P = 0, (23)

g̃V = −g̃A = gV = −g̃′V = g̃′A . (24)

Defining Gµ ≡
√
2gV , Eqs.(9,10,22,23,24) lead to

L = −
Gµ√
2
[ψ̄νµγ

µ(1− γ5)ψµ][ψ̄eγµ(1 − γ5)ψνe ] + h.c. , (25)

= −
Gµ√
2
[ψ̄eγ

µ(1 − γ5)ψµ][ψ̄νµγµ(1 − γ5)ψνe ] + h.c. . (26)

Thus, the interaction Lagrangian for muon decay in the V -A theory has a very simple and elegant form that in-
volves a single coupling constant and is preserved in passing from the charge-retention to the charge-exchange order.
Eqs.(9,10,22) lead also to the sharp predictions:

ρ = δ = 3/4 , (27)

η = 0 , (28)

ξ = 1 , (29)

as can be readily verified by inserting Eq.(22) into Eqs.(12,13).
With the neglect of strong interaction effects, in the original version of the V -A theory other four-fermion interaction

processes were described by Lagrangian densities of the same form as Eq.(25). For example, for n → p+ e− + ν̄e, the
basic process for β decay, the Lagrangian density was postulated to be of the form.

Lβ−decay = −
GV√
2
[ψ̄pγ

µ(1− γ5)ψn][ψ̄eγµ(1 − γ5)ψνe ] + h.c. , (30)

where GV is the vector coupling constant in β-decay.

D. Radiative Corrections to Muon Decay in the V -A Theory and the Fermi Constant

Taking into account Eqs.(22,27,28,29), we see that in the V -A theory, the energy-angle distributions of e−(e+) in
muon decay are simply obtained by setting |gA| = gV = Gµ/

√
2, η = 0, ξ = 1 in the two-component theory expression

(Eq.(14)). In particular, the O(α) corrections are still governed by the functions f(x) and g(x). Furthermore, using
the transformation ψe → ψ′

e = γ5ψe, me → −me discussed in Section II.A, it can be shown that in the V -A theory
there are no contributions to the differential decay rate (Eq.(14)) that involve odd powers of me (Roos and Sirlin,
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1971). This implies that corrections of O((α/π)me/mµ) are absent and that the leading mass-dependent corrections
to the differential decay rate are of O((α/π)m2

e/m
2
µ ln(m

2
µ/m

2
e)). On the other hand, in the calculation of integrated

observables such as the total decay rate, the integration over the electron or positron momentum does give rise to
corrections of O(α) proportional to (me/mµ)3, as well as even powers of me/mµ (van Ritbergen and Stuart, 1999a).

Radiative corrections of O(α2) to the electron spectrum were evaluated by Anastasiou, Melnikov, and Petriello
(2007); Arbuzov (2003); Arbuzov, Czarnecki, and Gaponenko (2002); Arbuzov and Melnikov (2002).
Recently, the TWIST collaboration (Bayes et al., 2011) reported very accurate measurements of the parameters

ρ, δ and Pπ
µ ξ in the four-component neutrino framework of the general Fermi theory (Pπ

µ is the initial degree of
polarization of the muon from π decay):

ρ = 0.74977± 0.00012 (stat.)± 0.00023 (syst.) ; (31)

δ = 0.75049± 0.00021 (stat.)± 0.00027 (syst.) ; (32)

Pπ
µ ξ = 1.00084± 0.00029 (stat.)+0.00165

−0.00063 (syst.) . (33)

These results are in very good agreement with the predictions of the V -A theory, Eqs.(27, 29) and Pπ
µ = 1, at a high

level of precision. As mentioned before, the radiative corrections (RC) play a crucial role in the analysis. The authors
also use these results to derive interesting bounds for the combinations |(gR/gL)ζ| and (gL/gR)m2 in the generalized
left-right symmetry model (gL and gR are the gauge couplings of WL and WR, ζ the mixing angle when WL and WR

are expressed in terms of the mass eigenstates W1 and W2, and m2 the mass of W2).
The radiative corrections to the muon lifetime τµ have been the subject of great interest and detailed studies. In

fact, the argument given at the end of Section II.A can be generalized: it has been shown that to leading order in
Gµ, but all orders in α, the radiative corrections to muon decay in the V -A theory are finite after mass and charge
renormalization (Berman and Sirlin, 1962). The detailed calculations reach now the two-loop level and lead to:

1

τµ
=

G2
µm

5
µ

192π3
F (x)[1 + δµ], (34)

where x = m2
e/m

2
µ, F (x) = 1 − 8x − 12x2 lnx + 8x3 − x4 is a tree-level phase-space factor and δµ is the radiative

correction.
Neglecting very small terms proportional to powers of me/mµ, we have

δµ =
α

2π

(

25

4
− π2

)[

1 +
2α

3π
ln

(

mµ

me

)]

+ 6.700
(α

π

)2
+ · · · . (35)

The O(α) term has been known since the end of the 1950’s (Berman, 1958; Kinoshita and Sirlin, 1959a), the logarith-
mic term of O(α2) was derived in 1971 (Roos and Sirlin, 1971), and the last term in 1999 (van Ritbergen and Stuart,
1999a,b; Steinhauser and Seidensticker, 1999), about 40 years after the one-loop correction! The two terms of O(α2)
nearly cancel each other. Including very small one and two-loop contributions proportional to powers of me/mµ

(Pak and Czarnecki, 2008; van Ritbergen and Stuart, 1999a), we have

δµ = −4.19948× 10−3 + 1.06× 10−6 , (36)

where the first and second terms stand for the one and two-loop contributions, respectively. This reveals that when the
corrections are expressed in terms of α, as in Eq.(35), the O(α2) effects are very small, and the originalO(α) calculation
turns out to be very accurate. Alternatively, δµ is frequently written in the form (van Ritbergen and Stuart, 1999a,b;
Steinhauser and Seidensticker, 1999)

δµ =
α(mµ)

2π

(

25

4
− π2

)

+ 6.700

(

α(mµ)

π

)2

+ C(x) + · · · , (37)

where α(mµ) = 1/135.9026283 . . . is the running α(µ) parameter at the mµ scale. In this second form the logarithmic
term of O(α2) has been absorbed in the O(α(mµ)) contribution, and the O(α2(mµ)) effects are ≈ 3.6 × 10−5,
considerably larger than in Eq.(36). The correction δµ has been also studied using optimization methods that select
the optimal scale in α(µ), permit to analyze the scheme dependence of the calculations and estimate the unknown
terms of O(α3(mµ)) (Ferroglia, Ossola, and Sirlin, 1999). This analysis leads to an estimated error of ≈ 2.6 × 10−7

in δµ due to the truncation of the perturbative series.
C(x) in Eq.(37) denotes very small RC proportional to powers of x. Specifically,

C(x) =
α(mµ)

π

[

x(−12 lnx− 9− 4π2 + 16π2x1/2) +O(x2)
]

−
(

α(mµ)

π

)2

0.0784 + · · · . (38)
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2
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µm
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µ
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4
− π2
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α(mµ)

π
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where α(mµ) = 1/135.9026283 . . . is the running α(µ) parameter at the mµ scale. In this second form the logarithmic
term of O(α2) has been absorbed in the O(α(mµ)) contribution, and the O(α2(mµ)) effects are ≈ 3.6 × 10−5,
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C(x) =
α(mµ)

π

[

x(−12 lnx− 9− 4π2 + 16π2x1/2) +O(x2)
]

−
(

α(mµ)

π

)2

0.0784 + · · · . (38)
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π
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(

α(mµ)

π

)2

0.0784 + · · · . (38)

RC (2-loop):
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The terms of O(α(mµ)xl/π) (l = 1, 3/2) were derived by van Ritbergen and Stuart (1999a). Their expression differs
from that in Eq.(38) because of the factorization of F (x) in our Eq.(36), which was not employed by those authors.
For clarity, we point out that to the stated level of accuracy, our result for 1/τµ based on Eqs.(34, 37, 38) through the
terms of O(α(mµ)xl/π) , is equivalent to that obtained in their 1999 paper. The contribution of O((α(mµ)/π)2) was
derived years later (Pak and Czarnecki, 2008) and amounts to −4.3× 10−7. An interesting feature is that its leading
contribution is linear in me/mµ: − (α(mµ)/π)

2 (5/4)π2x1/2 = −3.27× 10−7.
Because of the high precision of the τµ measurement (Webber et al., 2011) and the theoretical clarity of Eqs.(34,35,

37,38), GF , the universal Fermi constant of the weak interactions, is identified with Gµ. Inserting the experimental
value τµ = 2196980.3(2.2) ps, Eqs.(34, 37, 38) lead to δµ = −4.19818× 10−3 and

GF = Gµ = 1.1663788(7)× 10−5 GeV−2 , (39)

an important 0.6 ppm determination (Webber et al., 2011).
We note that the evaluation of δµ in the α and α(mµ) schemes, namely δµ = −4.19842 × 10−3 (Eq.(36)) and

δµ = −4.19818 × 10−3, respectively, differ by −2.4 × 10−7. This difference is consistent with the estimate of the
third order coefficient in the α(mµ) expansion on the basis of the optimization methods, namely (c3)est. ≈ −20
(Ferroglia, Ossola, and Sirlin, 1999). The effect of this difference on the determination of GF (Eq.(39)), is also small
in comparison with the current experimental error.

We also note that, in some theoretical discussions of 1/τµ, a factor (1 + 3m2
µ/M

2
W ) that represents the tree level

correction from the W -boson propagator, is applied in the r. h. s. of Eq.(34). Since this factor does not arise in
the Fermi theory framework, it is not included in our Eq.(34). It has been pointed out by van Ritbergen and Stuart
(1999a) that, in ST calculations, it can be more naturally included in the electroweak correction ∆r (cf. Eq.(54)).
More generally, it can be included in the expressions of the form GF (1 − EWC) where EWC denotes a generic
electroweak correction such as ∆r̂,∆r̂W , and ∆reff (cf. Eqs.(57, 58, 66)). On the other hand, it is useful to observe
that this factor would amount to an addition of only ≈ 5× 10−7 to such electroweak correction, which is negligible at
the current level of accuracy.

E. The Universality of the Weak Interactions and the Conserved Vector Current Hypothesis

The principle of universality of the weak interactions is a concept of enduring significance. In fact, it has motivated,
at least in part, several important developments in particle physics.
The origin of the idea can be traced to 1947–49, when several authors (Klein, 1948; Lee, Rosenbluth, and Yang, 1949;

Pontecorvo, 1947; Puppi, 1948, 1949; Tiomno and Wheeler, 1949) noted that the basic processes µ− → e− + νµ + ν̄e,
n → p+ e− + ν̄e, and µ− + p → n+ νµ are characterized approximately by the same coupling constant, of magnitude
≈ 10−5 GeV−2. On this basis they proposed a universal weak interaction among the doublets (νe, e), (νµ, µ) and (p, n).
In 1951, Enrico Fermi stated that this similarity is probably not accidental and has a deep meaning not understood
at the time (Fermi, 1951). He also suggested a possible analogy with the universality of electric-charge.
In their 1958 paper, Feynman and Gell-Mann (1958) compared Gµ with GV , the vector coupling in β-decay ex-

tracted from 14O decay, a superallowed (0+ → 0+) Fermi transition in which only the vector current contributes to
zeroth order in α. They found GV = Gµ within roughly 1%. The result was very surprising, since even if one assumed
GV = Gµ at the Lagrangian level as a manifestation of universality, a close equality was not expected because nucleons
in β-decay are affected by strong interactions, while this is not the case for the leptons in muon decay. This prompted
Feynman and Gell-Mann (1958) to invoke the conserved vector current (CVC) hypothesis, previously discussed by
Gershtein and Zeldovich (1955). Specifically, the hadronic vector current in β decay is assumed to be conserved in the
presence of the strong interactions. Since conservation laws are generally associated with symmetries of the theory,
they further identified it with the ∆I3 = 1 isospin current. The near equality GV ≈ Gµ could then be understood on
the basis of two concepts: the principle of universality that states GV = Gµ at the Lagrangian level, and CVC that
implies that the strong interactions do not renormalize GV at q2 = 0 in the limit of isospin invariance.
CVC, in turn, had another important consequence. If the strangeness conserving (∆S = 0) vector cur-

rent is conserved, it would be natural to assume that the strangeness non-conserving (∆S = 1) vector cur-
rent in semileptonic decays is also conserved in some suitable limit. This was one of the main motivations for
the search for higher partial symmetries of the Strong Interactions. A number of possibilities were considered
(Behrends, Dretlein, Fronsdal, and Lee, 1962), culminating with the phenomenologically successful SU(3)flavor sym-
metry (Gell-Mann, 1962; Gell-Mann and Ne’eman, 1964). Gell-Mann also noted that a normalization of the hadronic
currents is necessary in order to define precisely the concept of universality. This was an important motivation for
Current Algebra (Gell-Mann, 1964a). In fact, the non-linearity of the basic Current Algebra relation

[Ja
0 (x), J

b
0(y)]x0=y0

= i fabcJc
0(x)δ

3(x⃗− y⃗) , (40)

τμ = 2196980.3(2.2)ps

GF = Gμ = 1.1663788(7) × 10−5GeV−2

Precise measurement of muon lifetime:

Precise determination of Fermi constant:

2
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experimental information is consistent with pure V , A, V ′ and A′ interactions. Possible deviations, which in the
four-component neutrino framework involve quadratic expressions in gi, g′i(i = S, T, P ) are expected to be very small
and can therefore be treated at the tree level. The products of these small deviations with (α/2π)f(x) and (α/2π)g(x)
are of second order in the small quantities and, therefore, are not considered significant.
At present, very precise measurements of ρ, δ, ξ and η are carried out in the TWIST experiment at TRIUMPH

(Bayes et al., 2011), and a very accurate determination of τµ has been made by the Mulan collaboration at PSI
(Webber et al., 2011).

C. The V -A Theory

The discovery of parity non-conservation led to another very important development: by greatly increasing the
number of observables available for experimental and theoretical study, it opened the way for the determination of
the basic phenomenological interaction. This led Sudarshan and Marshak (1957, 1958) and Feynman and Gell-Mann
(1958) to propose a universal V -A Fermi Interaction for charged current processes, such as muon decay, β decay and
the semileptonic decays of hyperons.
In the case of muon decay, this theory implies the validity of Eqs.(9,10) and furthermore states that

gA = −gV . (22)

Using the Fierz transformations (Fierz, 1937), Eqs.(9,10,22) lead to the following coupling constants g̃i, g̃′i in the
charge-exchange order:

g̃S = g̃′S = g̃T = g̃′T = g̃P = g̃′P = 0, (23)

g̃V = −g̃A = gV = −g̃′V = g̃′A . (24)

Defining Gµ ≡
√
2gV , Eqs.(9,10,22,23,24) lead to

L = −
Gµ√
2
[ψ̄νµγ

µ(1− γ5)ψµ][ψ̄eγµ(1 − γ5)ψνe ] + h.c. , (25)

= −
Gµ√
2
[ψ̄eγ

µ(1 − γ5)ψµ][ψ̄νµγµ(1 − γ5)ψνe ] + h.c. . (26)

Thus, the interaction Lagrangian for muon decay in the V -A theory has a very simple and elegant form that in-
volves a single coupling constant and is preserved in passing from the charge-retention to the charge-exchange order.
Eqs.(9,10,22) lead also to the sharp predictions:

ρ = δ = 3/4 , (27)

η = 0 , (28)

ξ = 1 , (29)

as can be readily verified by inserting Eq.(22) into Eqs.(12,13).
With the neglect of strong interaction effects, in the original version of the V -A theory other four-fermion interaction

processes were described by Lagrangian densities of the same form as Eq.(25). For example, for n → p+ e− + ν̄e, the
basic process for β decay, the Lagrangian density was postulated to be of the form.

Lβ−decay = −
GV√
2
[ψ̄pγ

µ(1− γ5)ψn][ψ̄eγµ(1 − γ5)ψνe ] + h.c. , (30)

where GV is the vector coupling constant in β-decay.

D. Radiative Corrections to Muon Decay in the V -A Theory and the Fermi Constant

Taking into account Eqs.(22,27,28,29), we see that in the V -A theory, the energy-angle distributions of e−(e+) in
muon decay are simply obtained by setting |gA| = gV = Gµ/

√
2, η = 0, ξ = 1 in the two-component theory expression

(Eq.(14)). In particular, the O(α) corrections are still governed by the functions f(x) and g(x). Furthermore, using
the transformation ψe → ψ′

e = γ5ψe, me → −me discussed in Section II.A, it can be shown that in the V -A theory
there are no contributions to the differential decay rate (Eq.(14)) that involve odd powers of me (Roos and Sirlin,

Neutron and nuclear beta decay rates:   
Kaon and hyperon decays? ( ) 
Is weak interaction universal? Strong interaction effects?

GV < Gμ
ΔS = 1
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where fabc(a, b, c = 1 . . . 8) are the SU(3) structure constants, determines the normalization of the hadronic currents.
SU(3)flavor also led to the fundamental concept of quarks (Gell-Mann, 1964b; Zweig, 1964) and the quark model of
hadrons.

F. Radiative Corrections to β Decay in the V -A Theory

When the CVC hypothesis was formulated, it was natural to suspect that the ≈ 1% difference between GV and Gµ

was due to electromagnetic corrections. Here, we have in mind electromagnetic corrections not contained in Fermi’s
Coulomb-function which is automatically included in the theory of β-decay. However, when the O(α) corrections to
the decay probability of neutron β-decay were calculated by Berman (1958) and Kinoshita and Sirlin (1959a) in the
V -A theory (cf. Eq.(30)), a striking result was found: contrary to the case of muon decay, the O(α) corrections to
β-decay were logarithmically divergent! In particular, the detailed expression found by Kinoshita and Sirlin (1959a)
for the O(α) corrections to the electron or positron spectrum is given by

∆Pd3p =
α

2π
P 0d3p

{

6 ln

(

Λ

mp

)

+ g(E,Em) +
9

4

}

, (41)

g(E,Em) = 3 ln

(

mp

me

)

−
3

4
−

4

β
Li2

(

2β

1 + β

)

+ 4

[

tanh−1 β

β
− 1

] [

(Em − E)

3E
−

3

2
+ ln

{

2(Em − E)

me

}]

+
tanh−1 β

β

[

2(1 + β2) +
(Em − E)2

6E2
− 4 tanh−1 β

]

, (42)

where p and E are the momentum and energy of the electron or positron, Em is the end-point energy, β = p/E, mp

the proton mass, Λ the ultraviolet cutoff, and

P 0d3p =
8G2

V

(2π)4
(Em − E)2d3p (43)

is the uncorrected spectrum. In deriving Eq.(41), strong interactions have been neglected, so these results represent
the corrections to the β-decay of “bare nucleons” devoid of hadronic structure. Very small contributions of O(E/mp)
have been also neglected.

The reason why the corrections to β decay are divergent in the V -A theory while those for muon decay are finite,
can be understood in two ways:

i) In contrast to the muon decay case, starting with the interaction Lagrangian of Eq.(30) appropriate to β-decay,
it is not possible to bring the two charged particles into the same covariant while retaining only V and A
interactions. Thus, the analogy with QED discussed in Section II.A is lost in the case of β-decay and the
corrections are divergent.

ii) Using a current algebra formulation, it can be shown that in the V -A theory the divergent part of the corrections
to Fermi transitions is of the form

α

2π
P 0d3p 3[1 + 2Q̄] ln(Λ/M) , (44)

where Q̄ is the average charge of the underlying hadronic fields in the process and M a relevant mass. In the
case of Eq.(30), the underlying fields are the neutron and proton so that Q̄ = 1/2 and the divergent part is
(α/2π)P 0d3p 6 ln(Λ/M), in agreement with Eq.(41). In the case of muon decay, the roles of p and n are played
by νµ and µ−, so that Q̄ = −1/2 and Eq.(44) vanishes, consistent with the fact that the corrections to muon
decay are finite in the V -A theory. It is interesting to note that in the corrections proportional to |MF |2, where
MF is the Fermi matrix element, the terms 3 ln(Λ/M) and 6Q̄ ln(Λ/M) in Eq.(44) arise from the vector and
axial vector currents, respectively. Similarly, in Eq.(41) 3 ln(Λ/mp) + g(E,Em) is the contribution from the
vector current while the remaining 3 ln(Λ/mp) + 9/4 emerges from the axial vector current. Thus, although the
axial vector current does not contribute to the Fermi matrix element at the tree-level, it plays a very important
role in O(α).

The finding that the radiative corrections to β-decay in the V -A theory are divergent, while those to muon-decay
are convergent, created a serious theoretical problem since both processes are fundamental observables. Originally,
Feynman, Berman, Kinoshita and Sirlin thought that this conundrum was due to the fact that strong interactions had
been ignored in the calculations of the β-decay corrections. In fact, it was easy to imagine that strong interactions
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where fabc(a, b, c = 1 . . . 8) are the SU(3) structure constants, determines the normalization of the hadronic currents.
SU(3)flavor also led to the fundamental concept of quarks (Gell-Mann, 1964b; Zweig, 1964) and the quark model of
hadrons.

F. Radiative Corrections to β Decay in the V -A Theory

When the CVC hypothesis was formulated, it was natural to suspect that the ≈ 1% difference between GV and Gµ

was due to electromagnetic corrections. Here, we have in mind electromagnetic corrections not contained in Fermi’s
Coulomb-function which is automatically included in the theory of β-decay. However, when the O(α) corrections to
the decay probability of neutron β-decay were calculated by Berman (1958) and Kinoshita and Sirlin (1959a) in the
V -A theory (cf. Eq.(30)), a striking result was found: contrary to the case of muon decay, the O(α) corrections to
β-decay were logarithmically divergent! In particular, the detailed expression found by Kinoshita and Sirlin (1959a)
for the O(α) corrections to the electron or positron spectrum is given by

∆Pd3p =
α

2π
P 0d3p

{

6 ln

(

Λ

mp

)

+ g(E,Em) +
9

4

}

, (41)

g(E,Em) = 3 ln

(

mp

me

)

−
3

4
−

4

β
Li2

(

2β

1 + β

)

+ 4

[

tanh−1 β

β
− 1

] [

(Em − E)

3E
−

3

2
+ ln

{

2(Em − E)

me

}]

+
tanh−1 β

β

[

2(1 + β2) +
(Em − E)2

6E2
− 4 tanh−1 β

]

, (42)

where p and E are the momentum and energy of the electron or positron, Em is the end-point energy, β = p/E, mp

the proton mass, Λ the ultraviolet cutoff, and

P 0d3p =
8G2

V

(2π)4
(Em − E)2d3p (43)

is the uncorrected spectrum. In deriving Eq.(41), strong interactions have been neglected, so these results represent
the corrections to the β-decay of “bare nucleons” devoid of hadronic structure. Very small contributions of O(E/mp)
have been also neglected.
The reason why the corrections to β decay are divergent in the V -A theory while those for muon decay are finite,

can be understood in two ways:

i) In contrast to the muon decay case, starting with the interaction Lagrangian of Eq.(30) appropriate to β-decay,
it is not possible to bring the two charged particles into the same covariant while retaining only V and A
interactions. Thus, the analogy with QED discussed in Section II.A is lost in the case of β-decay and the
corrections are divergent.

ii) Using a current algebra formulation, it can be shown that in the V -A theory the divergent part of the corrections
to Fermi transitions is of the form

α

2π
P 0d3p 3[1 + 2Q̄] ln(Λ/M) , (44)

where Q̄ is the average charge of the underlying hadronic fields in the process and M a relevant mass. In the
case of Eq.(30), the underlying fields are the neutron and proton so that Q̄ = 1/2 and the divergent part is
(α/2π)P 0d3p 6 ln(Λ/M), in agreement with Eq.(41). In the case of muon decay, the roles of p and n are played
by νµ and µ−, so that Q̄ = −1/2 and Eq.(44) vanishes, consistent with the fact that the corrections to muon
decay are finite in the V -A theory. It is interesting to note that in the corrections proportional to |MF |2, where
MF is the Fermi matrix element, the terms 3 ln(Λ/M) and 6Q̄ ln(Λ/M) in Eq.(44) arise from the vector and
axial vector currents, respectively. Similarly, in Eq.(41) 3 ln(Λ/mp) + g(E,Em) is the contribution from the
vector current while the remaining 3 ln(Λ/mp) + 9/4 emerges from the axial vector current. Thus, although the
axial vector current does not contribute to the Fermi matrix element at the tree-level, it plays a very important
role in O(α).

The finding that the radiative corrections to β-decay in the V -A theory are divergent, while those to muon-decay
are convergent, created a serious theoretical problem since both processes are fundamental observables. Originally,
Feynman, Berman, Kinoshita and Sirlin thought that this conundrum was due to the fact that strong interactions had
been ignored in the calculations of the β-decay corrections. In fact, it was easy to imagine that strong interactions

RC to spectrum:

Sirlin’s function: 
(QED beyond Coulomb distortion)

10

where fabc(a, b, c = 1 . . . 8) are the SU(3) structure constants, determines the normalization of the hadronic currents.
SU(3)flavor also led to the fundamental concept of quarks (Gell-Mann, 1964b; Zweig, 1964) and the quark model of
hadrons.

F. Radiative Corrections to β Decay in the V -A Theory

When the CVC hypothesis was formulated, it was natural to suspect that the ≈ 1% difference between GV and Gµ

was due to electromagnetic corrections. Here, we have in mind electromagnetic corrections not contained in Fermi’s
Coulomb-function which is automatically included in the theory of β-decay. However, when the O(α) corrections to
the decay probability of neutron β-decay were calculated by Berman (1958) and Kinoshita and Sirlin (1959a) in the
V -A theory (cf. Eq.(30)), a striking result was found: contrary to the case of muon decay, the O(α) corrections to
β-decay were logarithmically divergent! In particular, the detailed expression found by Kinoshita and Sirlin (1959a)
for the O(α) corrections to the electron or positron spectrum is given by

∆Pd3p =
α

2π
P 0d3p

{

6 ln

(

Λ

mp

)

+ g(E,Em) +
9

4

}

, (41)

g(E,Em) = 3 ln

(

mp

me

)

−
3

4
−

4

β
Li2

(

2β

1 + β

)

+ 4

[

tanh−1 β

β
− 1

] [

(Em − E)

3E
−

3

2
+ ln

{

2(Em − E)

me

}]

+
tanh−1 β

β

[

2(1 + β2) +
(Em − E)2

6E2
− 4 tanh−1 β

]

, (42)

where p and E are the momentum and energy of the electron or positron, Em is the end-point energy, β = p/E, mp

the proton mass, Λ the ultraviolet cutoff, and

P 0d3p =
8G2

V

(2π)4
(Em − E)2d3p (43)

is the uncorrected spectrum. In deriving Eq.(41), strong interactions have been neglected, so these results represent
the corrections to the β-decay of “bare nucleons” devoid of hadronic structure. Very small contributions of O(E/mp)
have been also neglected.
The reason why the corrections to β decay are divergent in the V -A theory while those for muon decay are finite,

can be understood in two ways:

i) In contrast to the muon decay case, starting with the interaction Lagrangian of Eq.(30) appropriate to β-decay,
it is not possible to bring the two charged particles into the same covariant while retaining only V and A
interactions. Thus, the analogy with QED discussed in Section II.A is lost in the case of β-decay and the
corrections are divergent.

ii) Using a current algebra formulation, it can be shown that in the V -A theory the divergent part of the corrections
to Fermi transitions is of the form

α

2π
P 0d3p 3[1 + 2Q̄] ln(Λ/M) , (44)

where Q̄ is the average charge of the underlying hadronic fields in the process and M a relevant mass. In the
case of Eq.(30), the underlying fields are the neutron and proton so that Q̄ = 1/2 and the divergent part is
(α/2π)P 0d3p 6 ln(Λ/M), in agreement with Eq.(41). In the case of muon decay, the roles of p and n are played
by νµ and µ−, so that Q̄ = −1/2 and Eq.(44) vanishes, consistent with the fact that the corrections to muon
decay are finite in the V -A theory. It is interesting to note that in the corrections proportional to |MF |2, where
MF is the Fermi matrix element, the terms 3 ln(Λ/M) and 6Q̄ ln(Λ/M) in Eq.(44) arise from the vector and
axial vector currents, respectively. Similarly, in Eq.(41) 3 ln(Λ/mp) + g(E,Em) is the contribution from the
vector current while the remaining 3 ln(Λ/mp) + 9/4 emerges from the axial vector current. Thus, although the
axial vector current does not contribute to the Fermi matrix element at the tree-level, it plays a very important
role in O(α).

The finding that the radiative corrections to β-decay in the V -A theory are divergent, while those to muon-decay
are convergent, created a serious theoretical problem since both processes are fundamental observables. Originally,
Feynman, Berman, Kinoshita and Sirlin thought that this conundrum was due to the fact that strong interactions had
been ignored in the calculations of the β-decay corrections. In fact, it was easy to imagine that strong interactions

Uncorrected spectrum for Fermi transition:
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where fabc(a, b, c = 1 . . . 8) are the SU(3) structure constants, determines the normalization of the hadronic currents.
SU(3)flavor also led to the fundamental concept of quarks (Gell-Mann, 1964b; Zweig, 1964) and the quark model of
hadrons.

F. Radiative Corrections to β Decay in the V -A Theory

When the CVC hypothesis was formulated, it was natural to suspect that the ≈ 1% difference between GV and Gµ

was due to electromagnetic corrections. Here, we have in mind electromagnetic corrections not contained in Fermi’s
Coulomb-function which is automatically included in the theory of β-decay. However, when the O(α) corrections to
the decay probability of neutron β-decay were calculated by Berman (1958) and Kinoshita and Sirlin (1959a) in the
V -A theory (cf. Eq.(30)), a striking result was found: contrary to the case of muon decay, the O(α) corrections to
β-decay were logarithmically divergent! In particular, the detailed expression found by Kinoshita and Sirlin (1959a)
for the O(α) corrections to the electron or positron spectrum is given by

∆Pd3p =
α

2π
P 0d3p

{

6 ln

(

Λ

mp

)

+ g(E,Em) +
9

4

}

, (41)

g(E,Em) = 3 ln

(

mp

me

)

−
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4

β
Li2

(

2β

1 + β

)

+ 4

[

tanh−1 β
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− 1

] [

(Em − E)

3E
−

3

2
+ ln
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me

}]

+
tanh−1 β

β

[

2(1 + β2) +
(Em − E)2

6E2
− 4 tanh−1 β

]

, (42)

where p and E are the momentum and energy of the electron or positron, Em is the end-point energy, β = p/E, mp

the proton mass, Λ the ultraviolet cutoff, and

P 0d3p =
8G2

V

(2π)4
(Em − E)2d3p (43)

is the uncorrected spectrum. In deriving Eq.(41), strong interactions have been neglected, so these results represent
the corrections to the β-decay of “bare nucleons” devoid of hadronic structure. Very small contributions of O(E/mp)
have been also neglected.
The reason why the corrections to β decay are divergent in the V -A theory while those for muon decay are finite,

can be understood in two ways:

i) In contrast to the muon decay case, starting with the interaction Lagrangian of Eq.(30) appropriate to β-decay,
it is not possible to bring the two charged particles into the same covariant while retaining only V and A
interactions. Thus, the analogy with QED discussed in Section II.A is lost in the case of β-decay and the
corrections are divergent.

ii) Using a current algebra formulation, it can be shown that in the V -A theory the divergent part of the corrections
to Fermi transitions is of the form

α

2π
P 0d3p 3[1 + 2Q̄] ln(Λ/M) , (44)

where Q̄ is the average charge of the underlying hadronic fields in the process and M a relevant mass. In the
case of Eq.(30), the underlying fields are the neutron and proton so that Q̄ = 1/2 and the divergent part is
(α/2π)P 0d3p 6 ln(Λ/M), in agreement with Eq.(41). In the case of muon decay, the roles of p and n are played
by νµ and µ−, so that Q̄ = −1/2 and Eq.(44) vanishes, consistent with the fact that the corrections to muon
decay are finite in the V -A theory. It is interesting to note that in the corrections proportional to |MF |2, where
MF is the Fermi matrix element, the terms 3 ln(Λ/M) and 6Q̄ ln(Λ/M) in Eq.(44) arise from the vector and
axial vector currents, respectively. Similarly, in Eq.(41) 3 ln(Λ/mp) + g(E,Em) is the contribution from the
vector current while the remaining 3 ln(Λ/mp) + 9/4 emerges from the axial vector current. Thus, although the
axial vector current does not contribute to the Fermi matrix element at the tree-level, it plays a very important
role in O(α).

The finding that the radiative corrections to β-decay in the V -A theory are divergent, while those to muon-decay
are convergent, created a serious theoretical problem since both processes are fundamental observables. Originally,
Feynman, Berman, Kinoshita and Sirlin thought that this conundrum was due to the fact that strong interactions had
been ignored in the calculations of the β-decay corrections. In fact, it was easy to imagine that strong interactions

 average charge of fields involved:  but Q̄ : 1 + 2Q̄μ,νμ
= 0 1 + 2Q̄n,p = 2



Quark Mixing & CKM Unitarity
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The CKM matrix

Measured CKM matrix must be unitary due to the
universality of the charged weak interaction in SM.  

The Cabibbo-Kobayashi-Maskawa (CKM) matrix represents the mixing between the 
flavor eigenstates of quarks to form mass eigenstates:

Top-row CKM unitarity 

Unitarity Violation BSM Physics



Status of Top-Row CKM Unitarity
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PDG 2018:

|Vud |2 + |Vus |2 + |Vub |2 = 0.9994(4)Vud
(2)Vus

∼ 0.95 ∼ 0.05 ∼ 0.00002

PDG 2020:

|Vud |2 + |Vus |2 + |Vub |2 = 0.9985(3)Vud
(4)Vus
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Additionally:  from neutron decay asymmetry improved by factor 4gA
Vud = 0.9763(5)τn

(15)gA
(2)RC Vud = 0.9735(5)τn

(3)gA
(1)RC

Improvement in universal RC (1/2 uncertainty but central value shifted)
Seng, MG, Patel, Ramsey-Musolf, 1807.10197 

Seng, MG, Ramsey-Musolf, 1812.03352

PERKEO-III 
Märkisch et al., 1812.04666



Status of : superallowed nuclear decaysVud

6

|Vud |2 =
2984.43s

ℱt(1+ΔV
R)

Superallowed  decays0+ − 0+ : experiment + nucleus-specific QED + nuclear corrections 
: universal RC (common to all nuclear decays & free neutron) 

Only vector current involved — CVC protects from strong renorm.

ℱt
ΔV

R

4

Single-nucleon radiative correction

Superallowed 0+ → 0+ :  

Experiment + nuclear corrections Single-nucleon radiative correction (RC)

Uncertainty halved but central value shifted!

Major source of theory uncertainty: “gW-box diagram”

Estimate by Marciano and Sirlin, state-of-the-art result
from 2006 to 2018:

Year 2018: new evaluation with dispersion relation (DR) :

CYS, Gorchtein, Patel and
Ramsey-Musolf, 2018 PRL

Confirmed later by independent studies: Czarnecki, Marciano and Sirlin, 2019 PRD
Hayen, 2020
Shiells, Blunden and Melnitchouk, 2020

Major source of the theory uncertainty: -boxγW
Marciano, Sirlin PRL 2006:       ΔV

R = 0.02361(38)

Novel dispersion theory evaluation 
Seng, MG, Patel, Ramsey-Musolf 2018       ΔV

R = 0.02467(22)

Confirmed by several independent studies
Czarnecki, Marciano, Sirlin 1907.06737 
Hayen 2010.07262 
Shiells, Blunden, Melnitchouk, 2012.01580 

Phase space f, half-life t  
Ft = ft(1 + �0R)[1� (�C � �NS)]

Hardy, Towner 2020

J. C. HARDY AND I. S. TOWNER PHYSICAL REVIEW C 102, 045501 (2020)

FIG. 3. (a) In the top panel are plotted the uncorrected experi-
mental f t values for the 15 precisely known superallowed transitions
as a function of the charge on the daughter nucleus. (b) In the bottom
panel, the corresponding Ft values are given; they differ from the f t
values by the inclusion of the correction terms δ′

R, δNS, and δC . The
horizontal gray band gives one standard deviation around the average
Ft value. All transitions are labeled by their parent nuclei.

be established with high precision. Relatively imprecise mea-
surements of the tiny Gamow-Teller branches, which must be
subtracted from 100%, are all that is required.

Not so for the decays of the Tz = − 1 parents. They are
even-even nuclei that decay to odd-odd daughters, where 1+

states are available at low excitation energy. The Gamow-
Teller transitions to these states turn out to be strong enough to
compete with, and often surpass, the superallowed transitions.
This raises a serious experimental challenge: the intensity
of the Gamow-Teller branches—or the superallowed branch
itself—must be measured directly with high relative precision.
Considerable progress has been made in the last few years
in improving the measurements of superallowed branching
ratios from Tz = − 1 parents, but they still cannot match the
precision of the Tz = 0 parents’ branching ratios.

The eight cases included in Fig. 5 are much more limited
by experiment. All but 66As and 70Br are Tz = − 1 parents,
which will require very difficult measurements to arrive at
precise branching ratios. All but 18Ne and 30S are quite far
from stability and will be difficult to produce in sufficient
quantity for high statistical precision. Overall, the two most
advanced candidates are 18Ne and 30S but even they will

FIG. 4. Summary histogram of the fractional uncertainties at-
tributable to each experimental and theoretical input factor that
contributes to the final Ft values for the 15 precisely measured
superallowed transitions used in the Ft-value average. The two bars
cut off with jagged lines at about 0.20% actually rise to 0.23%
for 62Ga and 0.29% for 74Rb. The bars for δ′

R and δC-δNS include
provision for systematic uncertainty as well as statistical. See text.
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FIG. 5. Summary histogram of the fractional uncertainties at-
tributable to each experimental and theoretical input factor that
contributes to the final Ft values for the eight tabulated superallowed
transitions not known precisely enough to contribute to the Ft-value
average. The three bars cut off with jagged lines at about 4.0%
indicate that no useful experimental measurement has been made of
those parameters. The bars for δ′

R and δC-δNS include provision for
systematic uncertainty as well as statistical. See text.
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mental f t values for the 15 precisely known superallowed transitions
as a function of the charge on the daughter nucleus. (b) In the bottom
panel, the corresponding Ft values are given; they differ from the f t
values by the inclusion of the correction terms δ′

R, δNS, and δC . The
horizontal gray band gives one standard deviation around the average
Ft value. All transitions are labeled by their parent nuclei.

be established with high precision. Relatively imprecise mea-
surements of the tiny Gamow-Teller branches, which must be
subtracted from 100%, are all that is required.

Not so for the decays of the Tz = − 1 parents. They are
even-even nuclei that decay to odd-odd daughters, where 1+

states are available at low excitation energy. The Gamow-
Teller transitions to these states turn out to be strong enough to
compete with, and often surpass, the superallowed transitions.
This raises a serious experimental challenge: the intensity
of the Gamow-Teller branches—or the superallowed branch
itself—must be measured directly with high relative precision.
Considerable progress has been made in the last few years
in improving the measurements of superallowed branching
ratios from Tz = − 1 parents, but they still cannot match the
precision of the Tz = 0 parents’ branching ratios.

The eight cases included in Fig. 5 are much more limited
by experiment. All but 66As and 70Br are Tz = − 1 parents,
which will require very difficult measurements to arrive at
precise branching ratios. All but 18Ne and 30S are quite far
from stability and will be difficult to produce in sufficient
quantity for high statistical precision. Overall, the two most
advanced candidates are 18Ne and 30S but even they will

FIG. 4. Summary histogram of the fractional uncertainties at-
tributable to each experimental and theoretical input factor that
contributes to the final Ft values for the 15 precisely measured
superallowed transitions used in the Ft-value average. The two bars
cut off with jagged lines at about 0.20% actually rise to 0.23%
for 62Ga and 0.29% for 74Rb. The bars for δ′

R and δC-δNS include
provision for systematic uncertainty as well as statistical. See text.

18Ne 30S 42Ti 46Cr 50Fe 54Ni 66As 70Br
0

4.0

Parent nucleus

Q-value

Half-life
Branching ratio

δR

δ δC NS-

Fr
ac

tio
na

l u
nc

er
ta

in
ty

 (%
)

3.0

2.0

1.0

FIG. 5. Summary histogram of the fractional uncertainties at-
tributable to each experimental and theoretical input factor that
contributes to the final Ft values for the eight tabulated superallowed
transitions not known precisely enough to contribute to the Ft-value
average. The three bars cut off with jagged lines at about 4.0%
indicate that no useful experimental measurement has been made of
those parameters. The bars for δ′

R and δC-δNS include provision for
systematic uncertainty as well as statistical. See text.
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ℱt = 3072.24(57)stat(36)δ′ �R



|Vud |2 =
5099.34s

τn(1 + 3g2
A)(1+ΔR)

Status of : free neutron decayVud

|Vud | = 0.9735(5)τn
(3)gA

(1)RC

PERKEO-III 
Märkisch et al., 1812.04666

gA = − 1.2723(23) gA = − 1.2764(6)

Figure 2: Overview of neutron lifetime results, separated into “beam” and “bottle” experiments (see also Table 7). The “bottle” experiments
are performed with ultracold neutrons (UCN) stored in either a material bottle, a gravitational trap, or recently also a magneto-gravitational
trap. Note the about four standard deviations tension between the weighted average values of both types of experiments. The uncertainty of
the average of the “trap” measurements was scaled by a factor

p
�2/⌫ ⇡ 1.52 following the PDG prescription (Section 4.1).

understanding and control of neutron absorption and scattering in the 6LiF deposit and its substrate, (ii) detection of
recoil protons from the faint neutron beam halo, and (iii) nonlinearities of the Penning trap. The subsequent construction
of a new and larger version of the apparatus, based on similar principles but with an optimized design, is expected to
reduce the major systematic uncertainties to below 0.1 s [210].

At the J-PARC fundamental neutron physics beamline, a beam experiment (LiNA) using a Time Projection Chamber
(TPC) is being prepared [211]. The TPC consists of a drift cage with a multi-wire proportional chamber (MWPC)
inside the vacuum vessel. In a previous neutron lifetime experiment with a TPC at the Institute Laue-Langevin (ILL) in
Grenoble, a precision of 3.1 s was reached [212, 213]. The new design that will be used at J-PARC focuses on reducing the
background and improving signal e�ciency. Short neutron bunches with a length of approximately half the TPC will be
used and decay events will be analyzed only during the periods when the neutron pulse is completely confined inside the
TPC. The neutron intensity will be obtained by detecting protons produced in the (n, p) reaction on 3He diluted in the
gas filling of the TPC [211], thereby assuring that the same fiducial volume can be used for both the decay measurement
and the determination of the neutron intensity. The experiment envisages an uncertainty of about 1.0 s and later < 0.3 s
[214].

Bottle experiments. Several laboratories have developed new and improved bottle experiments. As mentioned
above, the Gravitrap experiment, located at the ILL, produced one of the most precise neutron lifetime results to date,
i.e. ⌧n = 878.5 ± 0.7stat ± 0.3syst s [197]. This value was about 6 standard deviations lower than the world average of
all previous experiments. However, losses in the Gravitrap experiment, and as a consequence also systematic corrections
and uncertainties, were about an order of magnitude smaller than previous material trap experiments. This was due to
the use of an improved coating for neutron storage with Fomblin grease, which has a low neutron capture cross-section,
at cryogenic temperatures of about 120 K. Since then, an improved version of the Gravitrap experiment was built that
uses a much larger storage volume and with the Fomblin wall coating being cooled to about 80 K to further reduce wall
losses. In addition, lower operating pressures (typically about 2 ⇥ 10�6 mbar) are used to reduce or even eliminate the
correction due to scattering losses on residual gas. The experiment is aiming at a precision of 0.2 s [215]. First results
yielded a value of ⌧n = (881.5± 0.7stat ± 0.6syst) s with storage times as long as about 865 s [203]. The apparatus is now
being modified to reach even lower trap temperatures of around 10 K, which should further reduce the loss factor and
allow obtaining storage times even closer to the neutron lifetime.

Gravitrap is presently the only storage experiment with a material vessel. All other new bottle experiments use
magnetic storage of ultracold neutrons. This o↵ers the attractive possibility to minimize losses due to interactions with
the walls by confining the ultracold neutrons in an inhomogeneous magnetic field.

In 2000, a magnetic trapping experiment at NIST used a quadrupole trap defined by a set of superconducting coils
[216–218]. It measured neutron decays in situ by detecting the decay electrons in superfluid 4He at a temperature near 300
mK. The helium served also to produce ultracold neutrons from a mono-energetic cold neutron beam. Scintillation light
from the decay electrons was counted in photomultiplier tubes outside the helium bath. The measurement was hampered
by systematic uncertainties, the most important ones being ultracold neutron absorption by 3He in the superfluid 4He
bath, imperfect background subtraction, and quasi-bound neutrons [188].

The first experiment to successfully use magnetic storage with permanent magnets and reach a competitive precision
on the neutron lifetime was the Ezhov experiment at the ILL using a magneto-gravitational trap [219, 220]. The first

24

Table 3: Selected ongoing and planned experiments discussed in Section 3. See main text for details. The approximate relative precision goals
are given together with their reference. If the SM value is zero, the absolute precision goal is then given. When precision goals are given as
a percentage, relative uncertainties are meant. The symbol O refers to the estimated order of magnitude for a precision goal. The precisions
given for a are obtained setting the Fierz term b to zero (see Section 4.2 and Ref. [95]).

Coe�cient Precision goal Experiment (Laboratory) Comments
⌧n 1.0 s; 0.1 s [210] BL2, BL3 (NIST) [210] In preparation; two phases

1.0 s; 0.3 s [214] LiNA (J-PARC) [211, 214] In preparation; two phases
0.2 s [215] Gravitrap (ILL) [203, 215] Apparatus being upgraded
0.3 s [201] Ezhov (ILL) [201] Under construction
0.1 s [222] PENeLOPE (Munich) [222] Being developed

. 0.1 s [223] UCN⌧ (LANL) [188, 189, 223, 224] Ongoing
0.5 s [225] HOPE (ILL) [188, 225, 226] Proof of principle Ref. [226]

1.0 s; 0.2 s [188] ⌧SPECT (Mainz) [188, 227] Taking data; two phases
�-spectrum O(0.01) [256] Supercond. spectr. (Madison) [256] Shape factor Eq. (51). Ongoing
�-spectrum O(0.01) [253] Si-det. spectr. (Saclay) [253, 254] Shape factor Eq. (51). Ongoing
bGT 0.001 Calorimetry (NSCL) [115, 260] Analysis ongoing (6He, 20F)

O(0.001) [270] miniBETA (Krakow-Leuven) [263–265, 270] Being commissioned
O(0.001) [276] UCNA-Nab-Leuven (LANL) [271, 272, 276] Analysis ongoing (45Ca)

bn < 0.05 [293, 294] UCNA (LANL) [390] Ongoing with An data
0.03 [295] PERKEO III (ILL) [295] Possible with An data
0.003 [289] Nab (LANL) [188, 289, 357, 358] In preparation
0.001 [291] PERC (Munich) [291, 292] Planned

aF 0.1% [306] TRINAT (TRIUMF) [306, 310] Planned (38K)
0.1% [343] TAMUTRAP (TA&M) [343] Superallowed � p emitters
0.1% [79] WISArD (ISOLDE) [79, 177] In preparation (32Ar � p decay)

a not stated Ne-MOT (SARAF) [311, 312] In preparation (18Ne, 19Ne, 23Ne)
aGT O(0.1)% [315] 6He-MOT (Seattle) [313, 315] Ongoing (6He)

not stated EIBT (Weizmann Inst.) [316–318] In preparation (6He)
0.5% [182] LPCTrap (GANIL) [182, 321, 323, 324] Analysis ongoing (6He, 35Ar)

amirror 0.5% [273] NSL-Trap (Notre Dame) [273, 344, 345] Planned (11C, 13N, 15O, 17F)
ãn 1.0% [350] aCORN (NIST) [350, 352–354] Data taking ongoing
an 1.0� 1.5% [351] aSPECT (ILL) [228, 229, 351] Analysis being finalized

0.15% [188, 358] Nab (LANL) [188, 289, 357, 358] In preparation
Ãn 0.14% [391] UCNA (LANL) [390] Data taking planned

0.18% [295] PERKEO III (ILL) [295] Analysis ongoing
Ãmirror O(0.1)% [78] TRINAT (TRIUMF) [78] Planned
B̃n 0.01% [397] UCNB (LANL) [397] Planned
Ãn (an, B̃n, . . .) 0.05% [291] PERC (Munich) [291, 292] In preparation
Ãn (an, B̃n, . . .) < O(0.1)% [399] BRAND (ILL/ESS) [399, 400] Proposed
D O(10�4) [418] MORA (GANIL / JYFL) [418] In preparation (23Mg)
R O(10�3) [427] MTV (TRIUMF) [427–429] Data taking ongoing (8Li)
D,R O(0.1)% [399] BRAND (ILL) [399, 400] Proposal

38

Will improve within the next decadeCurrent limitation: neutron lifetime 
Beam-bottle discrepancy  
(cold neutrons vs. UCN)

7
Gonzalez Alonso, Naviliat-Cuncic, Severijns PPNP 104, 2019

Axial current not protected from strong renormalization, gA ≠ 1
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Single-nucleon radiative correction

Superallowed 0+ → 0+ :  

Experiment + nuclear corrections Single-nucleon radiative correction (RC)

Uncertainty halved but central value shifted!

Major source of theory uncertainty: “gW-box diagram”

Estimate by Marciano and Sirlin, state-of-the-art result
from 2006 to 2018:

Year 2018: new evaluation with dispersion relation (DR) :

CYS, Gorchtein, Patel and
Ramsey-Musolf, 2018 PRL

Confirmed later by independent studies: Czarnecki, Marciano and Sirlin, 2019 PRD
Hayen, 2020
Shiells, Blunden and Melnitchouk, 2020
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Single-nucleon radiative correction

Superallowed 0+ → 0+ :  

Experiment + nuclear corrections Single-nucleon radiative correction (RC)

Uncertainty halved but central value shifted!

Major source of theory uncertainty: “gW-box diagram”

Estimate by Marciano and Sirlin, state-of-the-art result
from 2006 to 2018:

Year 2018: new evaluation with dispersion relation (DR) :

CYS, Gorchtein, Patel and
Ramsey-Musolf, 2018 PRL

Confirmed later by independent studies: Czarnecki, Marciano and Sirlin, 2019 PRD
Hayen, 2020
Shiells, Blunden and Melnitchouk, 2020

Universal RC from dispersion relations

Generalized Compton tensor  
time-ordered product — complicated!

Commutator (Im part) - only on-shell  
hadronic states — related to data

∫ dxeiqx⟨Hf(p) | [Jμ
em(x), Jν,±

W (0)] |Hi(p)⟩∫ dxeiqx⟨Hf(p) |T{Jμ
em(x)Jν,±

W (0)} |Hi(p)⟩

ImTμν
γW = … +

iεμναβpαqβ

2(pq)
FγW

3 (x, Q2)Interference  structure functionγW

 + model-independentΔV
R = 2 □VA

γW

□VA
γW =

3α
2π ∫

∞

0

dQ2

Q2

M2
W

M2
W + Q2

MγW(0)
3 (Q2)

Model-dependent part or RC: -boxγW

Box ~ 1st Nachtmann moment of  
Symmetry: only isoscalar photons contribute

FγW(0)
3

M3(n, Q2) =
n + 1
n + 2 ∫

1

0

dxξn

x2

2x(n + 1) − nξ
n + 1

F3(x, Q2), ξ =
2x

1 + 1 + 4M2x2 /Q2
Nachtmann moments:

Physics of model dependence: virtual photon polarizes the nucleus;  
Long-range part of the box sensitive to hadronic polarizabilities; 
Polarizabilities are related to the excitation spectrum via a dispersion relation (sum rule)



Input into dispersion integral

5

FIG. 3: Idealized structure of virtual photoabsorption on the nucleon (upper panel) and nuclei (lower panel). Plot taken from
the web but we’d need to make one ourselves.

Caution: We need to put back the superscript V A to ⇤�W because ⇤�W 6= ⇤V A
�W !! (i.e. V ⇥ A is NOT the only

non-zero piece in �W box diagram)
Compared to the old result by MS

⇤V A
�W =

↵

8⇡

Z 1

0

dQ2M2
W

M2
W +Q2

F (Q2), (17)

which only explicitly considered Q2 as a dynamical variable, our result allows for a greater detalization as we provide
a dispersion representation of that function,

F (Q2) =

Z 1

0
d⌫

8(⌫ + 2q)

M⌫(⌫ + q)2
F (0)
3 (⌫, Q2). (18)

This is the first essentially new result of our work. Armed with this new dispersive representation we can address
model dependence of the box graph calculation on a qualitatively new level. In doing so we can also rely on experi-
mental data: while F �W

3 (⌫, Q2) itself is not directly observable, its weak isospin partners F �Z
3 (⌫, Q2), FZZ

3 (⌫, Q2) and
FWW
3 (⌫, Q2) enter observables in inclusive electron and neutrino scattering.

IV. PHYSICS INPUT INTO THE DISPERSION RELATION FOR F
�W
3

It is informative to take a look at the general structure of the virtual photoabsorption spectrum displayed in Fig.
3. For a fixed value of Q2 one clearly sees three major structures as one goes from low to high energy ⌫: elastic peak
at Q2/(2M) (broadened by radiative corrections); nucleon resonances and non-resonant pion production starting
from the pion threshold [Q2 + (M +m⇡)2 �M2]/(2M) and up to roughly 2.5 GeV above the threshold; high-energy

14

W Wγγ

q q q q
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ε
δπ

π
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µναβ
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ν wrt odd is  since n termsubtractioconstant  No )0(
3T

Dispersive Approach: Formalism

Dispersion in energy:  
scanning hadronic intermediate states

Dispersion in Q2:  
scanning dominant physics pictures

2W

2Q

( )2πmM +2M

Bo
rn

Parton + pQCD

Nπ Res.
+B.G

Regge
+VMD

2GeV2~

2GeV5~

Boundaries between regions - approximate 

Input in DR related (directly or indirectly) 
to experimentally accessible data 

9

W2 = M2 + 2Mν − Q2



Input into dispersion integral -  dataν/ν̄

10

Isospin symmetry: vector-isoscalar current related to vector-isovector current

Mixed CC-NC  SF (no data) <—> Purely CC SF (inclusive neutrino data)γW

6

Single-nucleon radiative correction

Major limitating factor in the DR treatment:  low quality of the neutrino data in the most 
interesting region: Q2 ~ 1GeV2

Neutrino scattering data Free neutron gW box

Better-quality data may come from the Deep Underground Neutrino Experiment (DUNE),
which is however not in reach in the near future.

The next major breakthrough has to come from first-principles calculations!

6

Single-nucleon radiative correction

Major limitating factor in the DR treatment:  low quality of the neutrino data in the most 
interesting region: Q2 ~ 1GeV2

Neutrino scattering data Free neutron gW box

Better-quality data may come from the Deep Underground Neutrino Experiment (DUNE),
which is however not in reach in the near future.

The next major breakthrough has to come from first-principles calculations!

Main limitation: low quality of neutrino data (old bubble-chamber experiments) 
Better neutrino data from DUNE (Snowmass 2021 LOI in preparation) 
Next breakthrough: first principle calculation on the lattice

Marciano, Sirlin 2006:  —> ΔV
R = 0.02361(38) |Vud | = 0.97420(10)Ft(18)RC

DR (Seng et al. 2018):  —> ΔV
R = 0.02467(22) |Vud | = 0.97370(10)Ft(10)RC



First lattice QCD calculation of -boxγW

11

Neutron -box - complicated 
Address (very rare! BR ~ ) pion decay 

γW
10−8 π+ → π0 + e+ + νe

Γπℓ3 =
G2

F |Vud |2 m5
π | f π

+(0) |2

64π3
(1 + δ)Iπ = 0.3988(23) s−1Partial decay width:

Form factor: well under control 
RC: estimate in PT: χ δ = 0.0334(10)LEC(3)HO Cirigliano et al., 2003

4

Single-nucleon radiative correction

Superallowed 0+ → 0+ :  

Experiment + nuclear corrections Single-nucleon radiative correction (RC)

Uncertainty halved but central value shifted!

Major source of theory uncertainty: “gW-box diagram”

Estimate by Marciano and Sirlin, state-of-the-art result
from 2006 to 2018:

Year 2018: new evaluation with dispersion relation (DR) :

CYS, Gorchtein, Patel and
Ramsey-Musolf, 2018 PRL

Confirmed later by independent studies: Czarnecki, Marciano and Sirlin, 2019 PRD
Hayen, 2020
Shiells, Blunden and Melnitchouk, 2020

□VA
γW =

3α
2π ∫

∞

0

dQ2

Q2

M2
W

M2
W + Q2

MγW(0)
3π (Q2)

All values of Q contribute to the integral 
Use perturbative QCD expansion for Q2 ≥ 2 GeV2

pQCD at 4-loop:

8

LQCD not applicable at large Q2 (> 2 GeV2) due to large lattice artifacts. But 
perturbative QCD works well:

First lattice QCD calculation

Charged pion gW-box diagrams

p- p0
Integral sensitive to all values of Q2

Baikov, Chetyrkin and Kuhn, 
2010 PRL



For low : direct lattice calculation of the generalized Compton tensorQ2 ≤ 2 GeV2

2

tablished [2] that only the axial �W -box contribution is
sensitive to hadronic scales; see Fig. 1 for the �W dia-
grams. The relevant hadronic tensor TV A

µ⌫
is defined as

TV A

µ⌫
=
1

2 �
d4xeiqx�Hf(p)�T �J

em

µ
(x)JW,A

⌫
(0)� �Hi(p)�,

(1)
for a semileptonic decay process Hi → Hfe⌫̄e. Above,
Hi�f are given by neutron and proton for the neutron
beta decay, and by ⇡− and ⇡0 for the pion semileptonic
decay, respectively. Furthermore, Jem

µ
=

2
3 ū�µu−

1
3 d̄�µd−

1
3 s̄�µs is the electromagnetic quark current, and JW,A

⌫
=

ū�⌫�5d is the axial part of the weak charged current.

Figure 1. The �W -box diagrams for the semileptonic decay
process Hi →Hfe⌫̄e.

The spin-independent part of TV A

µ⌫
has only one term,

TV A

µ⌫
= i✏µ⌫↵�q

↵p�T3 + . . . , where T3 is a scalar function.
For the neutron beta decay, the spin-dependent contri-
butions, denoted by the ellipses here, are absorbed into
the definition of the nucleon axial charge gA, which can
be measured directly from experiments. According to
current algebra [2], it is this spin-independent term that
gives rise to the hadron structure-dependent contribution
and dominates the uncertainty in the theoretical predic-
tion. Using T3 as input, the axial �W -box correction to
the tree-level amplitude is given as [3]

�
V A

�W
�
H
=

1

FH+
↵e

⇡ �
∞

0
dQ2 m2

W

m2
W
+Q2

×�

�
Q2

−�Q2

dQ0

⇡

(Q2
−Q2

0)
3
2

(Q2)2
T3(Q0,Q

2
). (2)

Here Q2
= −q2 > 0 is the spacelike four-momentum

square. The normalization factor FH+ arises from the lo-
cal matrix element �Hf(p

′
)�JW,V

µ
�Hi(p)� = (p + p

′
)µF

H+ ,

with FH+ = 1 for the neutron and
√
2 for the pion decay.

Methodology – In the framework of lattice QCD, the
hadronic tensor TV A

µ⌫
in Euclidean spacetime is given by

TV A

µ⌫
=
1

2 �
dt e−iQ0t

� d3xe−i �Q⋅�xHV A

µ⌫
(t, �x) (3)

with HV A

µ⌫
(t, �x) defined as

H
V A

µ⌫
(t, �x) ≡ �Hf(P )�T �J

em

µ
(t, �x)JW,A

⌫
(0)� �Hi(P )�. (4)

Here the Euclidean momenta P and Q are chosen as

P = (imH ,�0), Q = (Q0, �Q) (5)

with mH the hadron mass.
By multiplying ✏µ⌫↵�Q↵P� to TV A

µ⌫
, we can extract the

function T3(Q0,Q
2
) through

T3(Q0,Q
2
) = −

I

2m2
H
� �Q�2

, I = ✏µ⌫↵�Q↵P�T
V A

µ⌫
. (6)

Here I can be written in terms of HV A

µ⌫
as

I =
i

2
✏µ⌫↵0Q↵mH � dt e−iQ0t

� d3�xe−i �Q⋅�xHV A

µ⌫

=
mH

2 �
dt e−iQ0t

� d3�xe−i �Q⋅�x✏µ⌫↵0 @H
V A

µ⌫

@x↵

. (7)

We can average over the spatial directions for �Q and have

I =
mH

2 �
dt e−iQ0t

� d3�x j0 �� �Q���x�� ✏µ⌫↵0
@HV A

µ⌫

@x↵

=
mH

2 �
dt e−iQ0t

� d3�x
� �Q�

��x�
j1 �� �Q���x�� ✏µ⌫↵0x↵H

V A

µ⌫
,

(8)

where jn(x) are the spherical Bessel functions. A key
ingredient in this approach is that once the Lorentz scalar
function ✏µ⌫↵0x↵H

V A

µ⌫
is prepared, e.g. from a lattice

QCD calculation, one can determine T3(Q0,Q
2
) directly.

Putting Eqs. (8) and (6) into Eq. (2) and changing

the variables as � �Q� =
�

Q2 cos ✓ and Q0 =
�

Q2 sin ✓, we
obtain the master formula
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�
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=
3↵e
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m2
W
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W
+Q2

MH(Q
2
) (9)

with

MH(Q
2
) = −

1

6

1

FH+

�
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� d4x!(t, �x)✏µ⌫↵0x↵H
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�
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(10)

For small Q2, lattice QCD can determine the function
MH(Q

2
) with lattice discretization errors under control.

For largeQ2, we utilize the operator product expansion

1

2 �
d4xe−iQxT �Jem

µ
(x)JW,A

⌫
(0)�

=
i

2Q2
�Ca(Q

2
)�µ⌫Q↵ −Cb(Q

2
)�µ↵Q⌫

−Cc(Q
2
)�⌫↵Qµ�J

W,A

↵
(0)

+
1

6Q2
Cd(Q

2
)✏µ⌫↵�Q↵J

W,V

�
(0) +�. (11)

There are only four possible local operators at leading
twist. (For the pion decay, the hadronic matrix ele-
ments for the first three operators vanish.) Multiplying

MγW(0)
3π (Q2) = −

1

6 2

Q
mπ ∫ d4xω(Q, x)εμνα0xαℋVA

μν (x)

Main executors: Xu Feng (Peking U.), Lu-Chang Jin (UConn/RIKEN BNL) 
Supercomputers: Blue Gene/Q Mira computer (Argonne, USA),  

       Tianhe 3 prototype (Tianjin, China)

Feng, MG, Jin, Ma, Seng 2003.09798

Lattice setup: 
5 LQCD gauge ensembles at physical pion mass 
Generated by RBC and UKQCD collaborations  
w. 2+1 flavor domain wall fermion

9

At low Q2 (< 2 GeV2): direct lattice computation of the generalized Compton tensor

First lattice QCD calculation

Lattice setup:
Five lattice QCD gauge ensembles
at the physical pion mass, generated 
by RBC and UKQCD Collaborations using
2+1 flavor domain wall fermion.

Blue: DSDR  
Red : Iwasaki

Quark contraction diagrams

9

At low Q2 (< 2 GeV2): direct lattice computation of the generalized Compton tensor

First lattice QCD calculation

Lattice setup:
Five lattice QCD gauge ensembles
at the physical pion mass, generated 
by RBC and UKQCD Collaborations using
2+1 flavor domain wall fermion.

Blue: DSDR  
Red : Iwasaki

Quark contraction diagrams

12

First lattice QCD calculation of -boxγW



10

First lattice QCD calculation

(integral range, 64I)

Estimate of major systematic effects:
● Lattice discretization effect: Estimated using the discrepancy between DSDR and Iwasaki
● pQCD calculation: Estimated from the difference between 3-loop and 4-loop results
● Higher-twist effects at large Q2: Estimated from lattice calculation of type (A) diagrams  

Final result:

1% precision!

(before cont. extrapolation) (after cont. extrapolation)

First lattice QCD calculation of -boxγW

Significant reduction of the uncertainty! δ : 0.0334(10)LEC(3)HO → 0.0332(1)γW(3)HO

13

Cleanest way to access  theoretically:  
Next-gen experiments: aim at 1 o.o.m. exp. uncertainty improvement  
(Snowmass 2021 LOI)

Vud |Vud | = 0.9740(28)exp(1)th
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Implications for the free nucleon -boxγW
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Implications of the study

2. On free neutron and superallowed nuclear decays:

The “asymptotic” contribution is extracted 
from the pion lattice curve; result consistent

 with 2018 but much more solid

2018

2020 pQCD

It provides an independent assessment 
of the single-nucleon RC:

CYS, Feng, Gorchtein and Jin,
2020 PRD

Main uncertainty of the DR calculation of the free neutron -box: 
Poorly constrained parameters of the Regge contribution which dominates  
the Nachtmann moment at  
Use the Regge universality and a body of , N, NN scattering data.

γW

Q2 ∼ 1 − 2 GeV2

ππ π
Seng, MG, Feng, Jin, 2003.11264

3

Figure 3: The Regge-exchange contribution to F (0)
3 for neu-

tron and pion. The vertical propagator represents the ex-
change of the ⇢-trajectory.

low 2 GeV2 e↵ects of generic higher-twist terms start to
show up, and the LO OPE+pQCD prediction disagrees
significantly with the lattice result.

We shall describe how the lattice result for �V A

�W
on the

pion can be used to improve our understanding of �V A

�W

on the neutron. First, for the neutron we parametrized

the structure function F
(0)
3N (hence, also M

(0)
3N ) as [3, 4]:

F
(0)
3N = F

(0)
3N,el +

(
F

(0)
3N,res + F

(0)
3N,⇡N

+ F
(0)
3N,R, Q

2
 Q

2
0,

F
(0)
3N,pQCD, Q

2
� Q

2
0,

(5)
where Q

2
0 ⇡ 2 GeV2 is the scale above which the LO

OPE + pQCD description is valid. Above, we isolated
the contributions from the elastic intermediate state (el)
fixed by the nucleon magnetic [17, 18] and axial elastic
form factor [19], from the non-resonance ⇡N continuum
(⇡N) in the low-energy region, from the N

⇤ resonances
(res) 2, and the Regge contribution (R) that allow to
economically describe the multi-hadron continuum.

In a similar way, we parametrize the pion structure
function as

F
(0)
3⇡ =

(
F

(0)
3⇡,res + F

(0)
3⇡,R, Q

2
 Q

2
0,

F
(0)
3⇡,pQCD, Q

2
� Q

2
0.

(6)

We note the absence of the elastic and the low-energy
continuum contributions. The former is identically zero
because the axial current does not couple to the spin-0
pion ground state. The latter would correspond to the
non-resonant part of the ⇡⇡ continuum in the p-wave;
however, this partial wave is known to be entirely domi-
nated by the ⇢

0 resonance up to the KK̄ threshold.
Comparing the parameterizations of Eqs. (5,6), we

make an important observation. Among the various con-
tributions there are the process-specific ones that reside
in the lower part of the spectrum (elastic, resonance and

that of F
(0)
3H at O(↵3

s), but such a di↵erence is numerically in-

significant at Q2 > 2 GeV2.
2 � resonances do not contribute due to the isoscalar nature of the
photon.

low-energy continuum). They have to be explicitly cal-
culated for the pion and for the nucleon and cannot be
related to each other. On the other hand, the asymptotic
contributions (Regge and pQCD) are universal. This is
the central point of our analysis.

Universality of the OPE is straightforward. The only

di↵erence between F
(0)
3N,pQCD and F

(0)
3⇡,pQCD is in the

normalization of the isospin states, thus F
(0)
3⇡,pQCD =

(F⇡
�

+ /F
n

+)F
(0)
3N,pQCD.

Universality is among the central predictions of Regge
theory. It dictates that the upper and lower vertices in
the Regge ⇢-exchange amplitudes T ⇢(W++⇡

�
! �+⇡

0)
and T

⇢(W+ + n ! � + p) in Fig. 3 factorize, so that,
e.g.,

R⇡/N =
T

⇢

W++⇡�!�+⇡0

T
⇢

W++n!�+p

=
T

⇢

⇡⇡!⇡⇡

T
⇢

⇡N!⇡N

=
T

⇢

⇡N!⇡N

T
⇢

NN!NN

, (7)

where T
⇢

⇡⇡!⇡⇡
, T

⇢

⇡N!⇡N
, T

⇢

NN!NN
stand for the ampli-

tudes in elastic ⇡⇡, ⇡N, NN scattering in the channel
that corresponds to an exchange of the quantum num-
bers of the ⇢ meson in the t-channel. Regge factorization
has been tested on global data sets for elastic pion, pion-
nucleon and nucleon-nucleon scattering.

This leads to a prediction based on Regge universality,

F
(0)
3N,R(x,Q

2) = R
�1
⇡/N

F
n

+A(Q
2)fN

th(W
2)

✓
Q

2

x

◆↵
⇢
0

(8)

F
(0)
3⇡,R(x,Q

2) = F
⇡
�

+ A(Q2)f⇡

th(W
2)

✓
Q

2

x

◆↵
⇢
0

,

with ↵
⇢

0 = 0.477 [20]. Here we define the threshold func-
tion f

H

th = ⇥(W 2
�W

2
th,H)(1� exp[(W 2

th,H �W
2)/⇤2]),

where W
2 = M

2
H
+Q

2( 1
x
� 1) and ⇤ = 1GeV2 [21]. The

threshold parameter Wth,H characterizes the threshold
for the multi-hadron contributions. In Ref. [3] we fixed
Wth,N = mN + 2M⇡, such that the threshold function
f
N

th ⇡ 1 for W & 2.5GeV. In the pion sector, one expects
Wth,⇡ to lie between M⇢ and 1.2 GeV, the scale above
which Regge description is valid [22]. In this work we
choose Wth,⇡ ⇡ 1 GeV, and account for the uncertainty
due to its variation between the two boundaries.

The function A(Q2) describes the interaction at the
upper half of Fig.3 and is, within the Regge framework,
common for neutron and pion. It is generally unknown
but is now completely fixed by the lattice result plotted
in Fig.2—upon subtracting the resonance contribution.
With these ingredients, the ratio of the first Nachtmann
moments of the Regge contributions reads,

M
(0)
3N,R(1, Q

2)

M
(0)
3⇡,R(1, Q

2)
=

1

R⇡/N

R 1
0 dx

1+2rN
(1+rN )2 f

N

th(W
2)x�↵

⇢
0

R 1
0 dx

1+2r⇡
(1+r⇡)2

f
⇡

th(W
2)x�↵

⇢
0

. (9)

To fully specify the parametrization of F (0)
3⇡ we turn

now to the resonance contribution depicted in Fig. 4.

Independent confirmation of the empirical DR result AND uncertainty 
ΔV

R = 0.02467(22)DR → 0.02477(24)LQCD+DR
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Implications for semileptonic kaon decays

13

Implications of the study

3. On kaon semileptonic decays and Vus:

A similar lattice calculation of the Kp gW-box 
diagram in the flavor SU(3) limit fixed the 
important low-energy constants in kaon 
semileptonic decays Ma, Feng, Gorchtein, Jin 

and CYS, 2102.12048

Combining with new treatments of loop and bremsstrahlung contributions, the theory uncertainty 

of the long-range electromagnetic RC in the semileptonic decay process K→pen (K
e3

) is 

reduced by an order of magnitude (10-3 → 10-4) CYS, Galviz, Gorchtein and Meißner, 
2103.00975, 2103.04843

A new avenue to extract Vus:

Czarnecki, Marciano and Sirlin,
2020 PRD

With the future improvement of the pion semileptonic decay BR measurement, R
V
 will provide by 

far the most precise determination of Vus/Vud  

Ma, Feng, MG, Jin, Seng 2102.12048

A direct calculation of the -box for transition  
In the flavor SU(3) limit: 
Allowed to fix relevant LEC’s of PT analysis

γW Kπ

χ

Seng, Galviz, MG, Meißner 2103.00975, 2103.04843

Allowed to reduce the uncertainty of the long-range e.-m. RC  
by an order of magnitude ( )10−3 → 10−4

New proposal to extract  (alternative to ):Vus/Vud Kℓ2/πℓ2

Czarnecki, Marciano, Sirlin 2020RV =
ΓKe3

Γπe3
∝

|Vus |2

|Vud |2

Potentially the most precise  determination when improved measurements  
of  partial width will become available

Vus/Vud
πℓ3

Major advance in RC to beta decays via a combination of dispersion theory,  
direct lattice calculations and EFT methods;  
Further goals: nuclear corrections,  

  direct LQCD -box for neutron and kaon beyond SU(3)γW
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Figure 14: (Left) 90% CL constraints on ✏S,T at µ = 2 GeV from �-decay data, cf. Eq. (87), with ��2 = 4.61, (black ellipse), from the
analysis of pp ! e + MET + X at the 8-TeV LHC (20 fb�1) [12] (blue ellipse), and from radiative pion decay, cf. Eq. (118) [23] (orange
band). The green band shows the 90% CL bound (��2 = 2.71) using only superallowed Fermi decays. (Right) Same figure but using projected
�-decay data, cf. Eq. (100) (black) and projected LHC bounds from pp ! e+MET+X searches with 14 TeV and 300 fb�1 [23] (blue).

Requiring that the leading logarithmic part of the 2-loop correction is not larger than current bounds on the neutrino
mass, the following bounds were found [13]

|✏̃L| . 10�2
, (129)

|✏̃S ± ✏̃P | . 2⇥ 10�3
, (130)

|✏̃T | . 0.5⇥ 10�3
, (131)

where µ = 1 TeV was used as the initial running scale. The bounds on scalar and tensor interactions are about 3 times
stronger than those derived from LHC data in Eqs. (121)-(122) and orders of magnitude stronger than those from � decay,
cf. Section 4.5. The bound on the pseudoscalar coupling is also 3 times stronger than the LHC one, but still weaker than
that from pion decay, cf. Eq. (114). Finally, the neutrino-mass considerations above o↵er a valuable alternative probe for
the ✏̃L coupling, which can also be accessed through CKM unitarity, but with slightly less accuracy, cf. Eq. (79).

5.5. Electric dipole moments

It can be shown that in the SMEFT framework, the same dimension-6 e↵ective operators generating CP-violating
e↵ects in � decay would also generate at tree- or one-loop-level a non-zero nuclear and neutron Electric Dipole Moment
(EDM) [473]. As a result one can translate the stringent EDM bounds [474] in indirect limits on the �-decay CP-
violating coe�cients, such as D or R, which are two orders of magnitudes stronger than their direct limits from �-decay
measurements [13]. This takes into account the calculation of Ref. [475] that relaxed the EDM bound by an order of
magnitude with respect to Ref. [473].

In principle, these indirect bounds can be avoided through a fine-tuned cancellation with additional dimension-6
operators contributing to the EDMs, or using dimension-8 operators. The precise realization in specific models is however
nontrivial, as shown for instance for leptoquark models, where the connection with EDMs is still present, although the
indirect bounds can be relaxed in this case [473]. Finally, the EDM bounds can be avoided abandoning altogether the
SMEFT framework, introducing for example light new particles. Thus, current measurements of CP-violating coe�cients
in � decay can be considered as probes of the SMEFT framework itself, or at least its simpler realizations where large
fine-tunings are not considered. A recent and detailed review of the connection between EDMs and �-decay measurements
is presented in Ref. [13].

6. Conclusions

We have reviewed the role of precision measurements in nuclear and neutron � decay, as useful tools to improve our
understanding of fundamental interactions. Transitions with small nuclear-structure uncertainties (or none in neutron
decay) are used to learn about QCD, to extract the values of fundamental SM parameters such as Vud, and to search for
new physics.

First, we have introduced the theoretical formalism that describes � decay at the elementary level with special attention
to the latest developments, such as the precise calculations of the hadronic charges in the lattice, or the SMEFT framework
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where g is the gauge coupling of the SU(2)L group, and mW is the W mass. Likewise, the ✏i and ✏̃i complex coe�cients
are model-dependent functions of the masses and couplings of the new particles. Since they were defined with respect to
the SM contribution, one expects them, on pure dimensional grounds, to scale as

✏i, ✏̃i /

⇣
mW

⇤

⌘n
, (4)

where n � 2, and ⇤ denotes the characteristic NP scale. In the simplest case n = 2 and the new interaction is generated
à la Fermi, which gives ✏i, ✏̃i ⇠ 10�3 for NP scales at or above the TeV. The non-standard Wilson coe�cients can also be
suppressed (enhanced) by NP couplings smaller (larger) than the SM coupling g, or by loop factors. In Section 2.5.2 we
discuss the specific form of the coe�cients in various NP models.

The phenomenological extraction of the Fermi constant from muon decay gives Gµ
F /(~c)3 = 1.1663787(6)⇥10�5 GeV�2

[20]. Since this process can also be a↵ected by NP e↵ects, we write G
µ
F = G

0
F + �GF , but for the sake of simplicity we

will omit the µ superindex hereafter. Up to an overall phase, there are ten real couplings and nine phases that are, at
least in principle, phenomenologically accessible. It is to be stressed that the SM piece comes together with the ✏L and
�GF coe�cients and cannot be separated using only �-decay data. For this reason, we define

Ṽud ⌘ Vud (1 + ✏L + ✏R)

✓
1�

�GF

GF

◆
, (5)

where we also included ✏R for later convenience, since the most precise Vud determination comes from vector-mediated
transitions.

Given the expected smallness of the NP couplings it is useful to work at linear order in them to identify their main e↵ect
on the di↵erent observables. In this approximation we can neglect the ✏̃i terms, since they involve right-handed neutrinos
and thus their interference with the SM piece is suppressed by the smallness of the neutrino mass. The “linearized”
low-energy e↵ective Lagrangian can be written as

Le↵ = �
GF Ṽud
p
2

n
ē�µ(1��5)⌫e · ū�

µ [1� (1� 2✏R) �5] d

+ ✏S ē(1��5)⌫e · ūd� ✏P ē(1��5)⌫e · ū�5d+ ✏T ē�µ⌫(1��5)⌫e · ū�
µ⌫(1��5)d

o
+ h.c. , (6)

All in all, there are nine couplings left in this approximation:

• The overall normalization, given by Vud in the SM and now replaced by Ṽud ⇡ Vud

⇣
1 + ✏L + ✏R �

�GF
GF

⌘
. Its only

consequence is the violation of the unitarity condition of the first row of the CKM quark mixing matrix;

• The relative size of the axial current with respect to the vector one is modified by the presence of CP-conserving non-
standard right-handed currents Re(✏R). To probe this coupling requires however an accurate theoretical knowledge
of the non-perturbative hadronization (and nuclearization) of this current;

• The real parts of the (pseudo)scalar ✏S,P and tensor ✏T couplings that modify the energy distributions and CP-even
correlation coe�cients in � decay. Moreover, ✏T and ✏P also modify at tree-level the radiative and non-radiative
leptonic pion decay. These interactions are sometimes called chirality-flipping because the chiralities of the two
fermions in each bilinear are di↵erent. That is, a left-handed neutrino comes with a right-handed electron;

• The imaginary parts of ✏R, ✏S , ✏P and ✏T , which modify CP-odd observables. More precisely these are sensitive to
the relative phase between these coe�cients and the vector one (1 + ✏L + ✏R).

It is clear that the quark-level e↵ective Lagrangian, Eq. (2), makes possible to compare model-independently nuclear
and neutron �-decay searches with other semileptonic hadron decays that are governed by the same dynamics, like for
example ⇡±

! ⇡
0
e
±
⌫. The details of the hadronization are obviously di↵erent, with di↵erent form factors needed in each

process, but the underlying partonic process is the same. On the other hand it facilitates the connection with particle
physics. As a matter of fact, the e↵ective Lagrangian in Eq. (2) describes any flavor transition of the type d

j
! u

i
`
�
⌫̄`

once the necessary flavor indices are added. Finally, the non-trivial hadronization is performed once and for all in this
model-independent framework, instead of doing it for every NP model.

It is important to keep in mind that this approach, as general as it is, does not capture more exotic scenarios with
non-standard light particles, which could be emitted in � decays, or with violations of Lorentz symmetry. A recent
example of the former can be found in Ref. [21], whereas the latter was discussed in great detail in Ref. [13].
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�GF coe�cients and cannot be separated using only �-decay data. For this reason, we define

Ṽud ⌘ Vud (1 + ✏L + ✏R)

✓
1�

�GF

GF

◆
, (5)

where we also included ✏R for later convenience, since the most precise Vud determination comes from vector-mediated
transitions.

Given the expected smallness of the NP couplings it is useful to work at linear order in them to identify their main e↵ect
on the di↵erent observables. In this approximation we can neglect the ✏̃i terms, since they involve right-handed neutrinos
and thus their interference with the SM piece is suppressed by the smallness of the neutrino mass. The “linearized”
low-energy e↵ective Lagrangian can be written as

Le↵ = �
GF Ṽud
p
2

n
ē�µ(1��5)⌫e · ū�

µ [1� (1� 2✏R) �5] d

+ ✏S ē(1��5)⌫e · ūd� ✏P ē(1��5)⌫e · ū�5d+ ✏T ē�µ⌫(1��5)⌫e · ū�
µ⌫(1��5)d

o
+ h.c. , (6)

All in all, there are nine couplings left in this approximation:

• The overall normalization, given by Vud in the SM and now replaced by Ṽud ⇡ Vud

⇣
1 + ✏L + ✏R �

�GF
GF

⌘
. Its only

consequence is the violation of the unitarity condition of the first row of the CKM quark mixing matrix;

• The relative size of the axial current with respect to the vector one is modified by the presence of CP-conserving non-
standard right-handed currents Re(✏R). To probe this coupling requires however an accurate theoretical knowledge
of the non-perturbative hadronization (and nuclearization) of this current;

• The real parts of the (pseudo)scalar ✏S,P and tensor ✏T couplings that modify the energy distributions and CP-even
correlation coe�cients in � decay. Moreover, ✏T and ✏P also modify at tree-level the radiative and non-radiative
leptonic pion decay. These interactions are sometimes called chirality-flipping because the chiralities of the two
fermions in each bilinear are di↵erent. That is, a left-handed neutrino comes with a right-handed electron;

• The imaginary parts of ✏R, ✏S , ✏P and ✏T , which modify CP-odd observables. More precisely these are sensitive to
the relative phase between these coe�cients and the vector one (1 + ✏L + ✏R).

It is clear that the quark-level e↵ective Lagrangian, Eq. (2), makes possible to compare model-independently nuclear
and neutron �-decay searches with other semileptonic hadron decays that are governed by the same dynamics, like for
example ⇡±

! ⇡
0
e
±
⌫. The details of the hadronization are obviously di↵erent, with di↵erent form factors needed in each

process, but the underlying partonic process is the same. On the other hand it facilitates the connection with particle
physics. As a matter of fact, the e↵ective Lagrangian in Eq. (2) describes any flavor transition of the type d

j
! u

i
`
�
⌫̄`

once the necessary flavor indices are added. Finally, the non-trivial hadronization is performed once and for all in this
model-independent framework, instead of doing it for every NP model.

It is important to keep in mind that this approach, as general as it is, does not capture more exotic scenarios with
non-standard light particles, which could be emitted in � decays, or with violations of Lorentz symmetry. A recent
example of the former can be found in Ref. [21], whereas the latter was discussed in great detail in Ref. [13].

4

LHC: pp —> e + MET + X 

Complementarity w. LHC now and in the future!



Precise determination of the weak mixing angle



Precision measurements of weak mixing angleStandard Model
3 interactions, 3 generations of quarks and leptons, Higgs

In SM fermions interact via exchange of a vector boson (or a Higgs)

LNC = � GF
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WMA: mixing of gauge fields
Weak mixing angle - mixing of the NC gauge fields

4

The SM running of the weak mixing angle

WMA determines the relative strength 
of the weak NC vs. e.-m. interaction

Qp=+1 QpW =1-4sin2θW

e e

e
e

Møller scattering

Purely leptonic

γ  Z

e e

P2 MESA @ Mainz 
Q-Weak @ JLab

Coherent quarks in p or 12C

γ  Z

e e
e-DIS @ JLab, EIC

Incoherent e-q scattering

γ  Z
p
n

μ,ν
ν-DIS @ NuTEV

Incoherent ν-q scattering

W  Z
p
n

ν

e

Atomic PV

Coherent quarks in a nucleus

γ  ZZ
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e-

q

-q

Colliders

Z-pole measurement
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SM running of the weak mixing angle

19

Universal quantum corrections  
can be absorbed into running,  
scale-dependent sin2θW(μ)

SM uncertainty: few x 10-4

Universal running - clean prediction of SM 
Deviation anywhere - BSM signal

Frank Maas for project P2,	3
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P2	sensitive	to	mass	scales	for	physics	beyond	standard	model	from	70	MeV	up	to	49	TeV
Complementary	to	experiments	at	LHC,	CERN
Quantum	corrections	process	dependent

Sensitivity to new physics beyond the Standard Model

Extra	Z
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Dark	photon	or	
Dark	Z

Contact	interaction New
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Weak charge of the proton from PVES 
Weinberg angle at low energy

Q2Elastic e-p scattering 
with polarized e�beam

APV (✏, Q2) = � GF Q2

4
p
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low Q2, ✏! 1
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4
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h
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W + B(Q2)Q2
i

Qp, tree
W = 1� 4 sin2 ✓tree

W ⇡ 0.05SM at tree-level: suppressed
Good candidate for BSM search

Proton’s weak charge

Elastic scattering of polarized electrons off unpolarized protons 
at low momentum transfer

APV =
�! � � 
�! + � 

= � GF Q2

4
p

2⇡↵

⇥
Qp

W + Q2B(Q2)
⇤

Effects of hadronic structure (size, spin, strangeness) kinematically suppressed

P2 @ MESA/Mainz: go down to Q2~0.005 GeV2 — tiny asymmetry to 1.5-2%

The reward: QWp = 1-4sin2θW ~ 0.07 in SM

Need to know radiative corrections sufficiently precise

� sin2 ✓W

sin2 ✓W
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1� 4 sin2 ✓W
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�Qp
W
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20

Qweak@JLab: Q2~0.03 GeV2          (rel. 6%)APV = − (226.5 ± 9.3) ppb Qp
W = 0.0718 ± 0.0044

D. Androic et al [Qweak Coll.], Nature 557 (2018), 207

Marciano, Sirlin, ’85; Ramsey-Musolf, ’99

Qp
W = (1 + �⇢ + �e)(1� 4 sin2 ✓̂W + �0

e) + ⇤WW + ⇤ZZ + ⇤�Z

Hadronic effects under control

Sensitive to hadronic structure



21

-box correction to hadronic weak chargesγZ
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-box: steep dependence on the electron energy 

First application of dispersion theory to EW boxes

γZ

MG, Horowitz PRL 2009

Motivated theoretical activity:
Sibirtsev, Blunden, Melnitchouk, Thomas, PRD 2010 
Rislow, Carlson, PRD 2011 
MG, Horowitz, Ramsey-Musolf, PRC 2011 
Blunden, Melnitchouk, Thomas, PRL 2011 
Blunden, Melnitchouk, Thomas, PRL 2012 
Rislow, Carlson, PRD 2013 
Hall, Blunden, Melnitchouk, Thomas, PLB 2013 
MG, Zhang PLB 2015 
MG, Spiesberger, Zhang PLB 2016 
MG, Spiesberger PRC 2016 
Erler, MG, Koshchii, Seng, Spiesberger PRD 2019

Motivated PVES program at Mainz at lower energy to minimize -box uncertaintyγZ

MESA
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Frank Maas for project P2,	3
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Ensured correct interpretation of QWeak
Qweak	without	E-dep	 -boxγZ



MESA accelerator
new, Mainz Energy Recovering Acc.

Parity	violation	experiment
P2

Beam	Dump

Magnetic	spectrometer	MAGIX
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easily be compensated for by parallelizing the simulation
to run on multiple CPU cores. Figure 12 shows the experi-
mental setup that has been implemented in the simulation
using CADMesh.

Fig. 12. Drawing of the experimental setup which has been
implemented in the Geant4 simulation of the P2-Experiment.
The drawing was created using CAD software.

6.1.2 Generation of events

One of the simulation’s central aspects is the realistic sim-
ulation of the interaction between the electron beam and
the 600 mm long `H2-target. While Geant4 is an excel-
lent tool to simulate the energy loss of the beam electrons
through collisions and Bremsstrahlung inside the target
volume, the simulation of elastic electron-proton scatter-
ing under large angles ✓f ⇠ 35� in a manner that is coher-
ent with the simulation of the energy loss processes imple-
mented in Geant4 is not purposeful, because the probabil-
ity of such an event to take place is of the order O(10�4).

In order to perform an e�cient simulation of the e-p
scattering process, a dedicated event generator has been
developed. In a first step, the passage of the beam elec-
trons through the target volume is simulated. The beam
electrons are tracked inside the `H2 volume, while the soft
energy loss processes are calculated by Geant4. Since all
beam electrons undergo very similar processes, each of the
beam electrons’ trajectories may be regarded as the mean
of an ensemble of similar trajectories. For this reason, one
may randomly scan several initial states of the elastic e-p
scattering process along each of the beam electrons’ trajec-
tories without interfering with the simulation of the other
physics processes. Figure 13 illustrates the principle. An
initial state of elastic electron-proton scattering is defined
by:

– The position of the vertex inside the target volume
– The initial state energy Ei of the beam electron
– The 3-momentum vector of the beam electron

As the beam electrons are propagated through the
`H2 volume, Geant4 generates secondary particles in the
course of the simulation of the soft collision and Brems-
strahlung processes. All of these particles are tracked through

the target volume as well up to the point where they
leave the volume. One at this point, the particles state
is scanned, saved, and the particle is stopped and termi-
nated in order to save CPU time. In this manner, one
ends up with an ensemble of particle states corresponding
to background processes and beam electrons on the target
volume’s surface. Such a state is defined by:

– The particle type
– The position on the target volume’s surface
– The 4-momentum vector of the particle

Once calculated for a specific target geometry, both
the initial state ensemble of the elastic e-p scattering pro-
cess and the ensemble of background particle states may
be reused an arbitrary number of times to generate final
state ensembles for the detector simulation. Of course one
has to take care of the proper normalization in order to be
able to predict event rate distributions with this method.
Figure 14 shows a sample distribution of initial states of
the e-p scattering process.

Fig. 13. To illustrate the principle of generating ensembles
of initial states of elastic e-p scattering and background parti-
cles. The beam electrons are impinged upon the `H2-volume.
In Geant4, all particles are propagated in spatial steps of finite
length. While the soft enery loss processes are simulated with
Geant4, initial states of elastic e-p scattering are scanned at
random positions along the beam electrons’ trajectories with-
out interfering with the simulation of the other physics pro-
cesses. When a particle reaches the surface of the `H2-volume
from it’s inside, the particle’s state is scanned and the simula-
tion of the trajectory is stopped.

For each of the initial states of elastic e-p scattering,
a final state is generated using an event generator that
has been developed for the simulation application. It sam-
ples the electron’s scattering angles ✓f and �f using flat
probability density distributions and uses the Rosenbluth
formula (equation (22)) as a weighting factor for the sam-
pled event so that an electron and a proton in the final

P2 experiment @ MESA
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for ŝ2Z and

�QW (p)

QW (p)
= 1.77 % (33)

for the proton’s weak charge.

Ebeam 155MeV

✓̄f 35�

�✓f 20�

hQ2iL, �✓f 6⇥ 10�3 (GeV/c)2

hAexpi �39.94 ppb

(�Aexp)Total 0.68 ppb (1.70%)

(�Aexp)Statistics 0.51 ppb (1.28%)

(�Aexp)Polarization 0.21 ppb (0.53%)

(�Aexp)Apparative 0.10 ppb (0.25%)

(�Aexp)⇤�Z
0.08 ppb (0.20%)

(�Aexp)nucl. FF 0.29 ppb (0.72%)

hŝ2Zi 0.23116

(�ŝ2Z)Total 3.34⇥ 10�4 (0.14%)

(�ŝ2Z)Statistics 2.68⇥ 10�4 (0.12%)

(�ŝ2Z)Polarization 1.01⇥ 10�4 (0.04%)

(�ŝ2Z)Apparative 5.06⇥ 10�5 (0.02%)

(�ŝ2Z)⇤�Z
4.16⇥ 10�5 (0.02%)

(�ŝ2Z)nucl. FF 1.42⇥ 10�4 (0.06%)

Table 2. Results of the error propagation calculation per-
formed for the design parameters of the P2-Experiment. The
mean values and standard deviations of the parameters listed
in table 1 have been used for the calculation. The expected
value of Q2 has been calculated in analogy to equation (21).
The error values given in round brackets are the relative errors
w.r.t. the expected value.

4 The MESA accelerator

Responsible: Kurt

4.1 Polarized Source

Responsible: Kurt

4.2 Polarimetry

Responsible: Kurt

4.3 Beam control

Responsible: Juergen, Ruth

– introduction:
– beam parameters x, y, x’, y’, I, E
– helicity-correlated changes of beam parameters cause

false (apparative) asymmetries
– monitoring during data taking mandatory to judge

beam quality and later apply corrections to data
– possibility for active stabilization of beam parame-

ters (feedback plus “forward cancellation” of h.c.)
– proposed system for beam control:

– experience from A4: cavity BPMs (for x, y, x’, y’) ,
cavity BCMs (for I; with longitudinally dispersive
beamline also E), analog feedback for h.c. suppres-
sion

– now: digital system for better integration, flexibil-
ity

– test beamline, measurements show P2 goals can
very likely be accomplished, development of new
methods (digital, IQ etc.)

– cavity design for MESA (2.6GHz?)

As already mentioned in [7], an apparative asymmetry
Aapp will arise from helicity-correlations of the six beam
parameters position x, y, angle x0, y0, intensity I, and en-
ergy E at the P2 target. Therefore accurate, continuous
measurement of the beam parameters is mandatory in or-
der to be able to determine Aapp and possibly correct for
it. Such corrections should not exceed a certain raction of
the physics asymmetry APV and their precision must not
exceed �Aapp =0.1 ppb as in table [?].

To keep corrections small, two possibilities exist: Beam
parameter fluctuations can be actively suppressed by feed-
back systems. This was done successfully in the A4 ex-
periment [?] at MAMI using analog feedback loops for
position, angle, intensity and a digital loop to stabilize
the beam energy. However, this approach removes helicity-
correlated as well as non-helicity correlated beam fluctu-
ations which may not be desirable as the latter help to
decorrelate the individual contributions Aapp

i to the to-
tal apparative asymmetry. Removing them can therefore
degrade the precision �Aapp of the correction.

Another possibility is to measure the helicity-correlations
of all beam parameters online and to provide a helicity-
correlated forward-cancellation or at least suppression to
keep Aapp reasonably small.

4.4 Proposed beam control system

The operation of the existing MAMI accelerator and the
former A4 parity violation experiment rely on measuring
the beam parameters with cavity beam monitors: cavity
BCMs (beam current monitors) can be used for beam
intensity and also for beam phase measurement, while
cavity BPMs (beam position monitors) provide measure-
ments of beam position and angle (from di↵erences be-
tween two BPMs). Due to our experience and the good

Additionally: APV measurement on C-12 
Asymmetry is 15 times larger than p; 
Cross sections 36 times larger than p; 
2500h data - 0.3% on sin2θW possible!

Principal goal: PVES on proton 
200 days of data - 150 µA beam - 85% polarization 

Production: 2023 on
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Parity-violating 4-fermion electron-quark couplings
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Summary and Outlook

Precision low-energy tests — sensitivity to BSM complementary to LHC 

CKM unitarity deficit observed ( ) in the top row could be  

New development in theory of EW radiative corrections:  
Electroweak boxes from dispersion theory + lattice QCD + EFT 

Theoretical uncertainties reduced over the past 2 years, more to come 

Experiment on beta decays and PVES doing a tremendous progress 

Precision tests will stay in the game even with the high-lumi LHC

∼ 3σ

χ


