Comparisons among neutron-star mergers and heavy-ion collisions

Veronica Dexheimer

Neutron-star mergers:

Phys. Rev. Lett. 122 (2019) 6, 061101, e-Print: <u>1807.03684</u> Eur. Phys. J. A 56 (2020) 2, 59, e-Print: <u>1910.13893</u>

<u>3D phase diagrams:</u> Phys. Rev. D 102 (2020) 7, 076016, e-Print: <u>2004.03039</u> J.Phys.Conf.Ser. 1602 (2020) 1, 012013, e-Print: <u>2010.00996</u> e-Print: <u>2011.11686</u>

Charge Fraction Y_Q=Q/B overview

- Heavy-ion collisions: $0.4 \rightarrow 0.5$
- Cold catalyzed neutron stars cores: $0 \rightarrow 0.15$
- Supernovae explosions and proto-neutron stars: 0.1 \rightarrow 0.5 (0.4)
- Neutron-star mergers ?

Merger in the QCD Phase Diagram

- Background: 2D (T, n_B) CMF EoS Y_Q=Q/B=0.05
- Solve coupled Einstein-hydrodynamics system using (FIL)
- 3D (T,n_B,Y_Q) CMF EoS with 1st order phase transition for binaries with mass 2.9 M_{sun}
- Tracking maximum temperature
 and density

More Phase Diagrams

- Increase in abs. value of charged chemical potential until phase transition, when it drops
- Decrease in charge fraction of core when quarks appear (not reaching heavy-ion/supernovae conditions)

3D QCD Phase Diagrams (Y_s=0)

- T, $\tilde{\mu}$, Y_Q with charge fraction $Y_Q = Q/B = 0 \rightarrow 0.5$ and Gibbs free energy per baryon $\tilde{\mu} = \mu_B + Y_Q \mu_Q$
- Larger Y_Q (at fixed T) pushes the phase transition to larger $\widetilde{\mu}$
- Changes due to $Y_{\rm Q}$ effects on the EoS (particle population) on each side

3D QCD Phase Diagrams (Y_s=0)

Slices of 3D QCD Phase Diagrams $(Y_s=0, Y_s \neq 0 \text{ in black})$

• For finite net strangeness $Y_S \neq 0$, deconfinement takes place at larger free energy/ baryon chemical potential

• For finite net strangeness $Y_S \neq 0$, isospin and charge fraction relation is not trivial $Y_I = Y_Q - 0.5 + \frac{1}{2}$

 Y_S

Chemical Equilibrium Lines

- Leptons in chemical eq. with baryons/quarks $\mu_Q = \mu_{e,\mu}$
- Charge neutrality $Y_Q = Y_{lepton}$, finite strangeness $Y_S \neq 0$

Conclusions and Outlook

- Astrophysics provides an ideal testing ground for nuclear physics
- Conditions created in neutron-star mergers are unique (Y_Q, Y_I, Y_S, leptons, S/B...)

- We need to be careful when comparing deconfinement within different scenarios
- Y_Q , Y_I affect significantly the deconfinement to quark matter: μ_B can change by up to 130 MeV and $\mu_{Q,I}$ by up to 330 MeV
- Model dependency is hard to quantify: more realistic models are needed