

EXPLORING THE PROTON STRUCTURE WITH COMPTON SCATTERING

BARBARA PASQUINI

University of Pavia and INFN Pavia

``What proton is depends on how you look at it, or rather on how hard you hit it'' *A. Cooper-Sarkar, CERN Courier, June, 2019*

Resolution scale

hadronic d.o.f.

nucleon resonances

partonic d.o.f.

How can we explain the evolving picture of hadrons from low to high resolution scale?

RCS polarizabilities

VCS generalized pol.

VVCS generalized pol.

global response

local response on a distance scale depending on $Q^2\,$

inclusive inelastic structure functions

RCS polarizabilities

VCS generalized pol.

VVCS generalized pol.

DVCS generalized parton distributions

DIS parton distributions

Real Compton Scattering at low energies

Powell cross section: photon scattering off a pointlike nucleon with anomalous magnetic moment

Static polarizabilities: response of the internal nucleon degrees of freedom to a static electric and magnetic field

 $H_{\text{eff}}^{\text{pol.}} = -2\pi \left\{ \omega^2 \left[\alpha_{E1} \vec{E}^2 + \beta_{M1} \vec{B}^2 \right] + \omega^3 \left[\gamma_{E1E1} \vec{\sigma} \cdot (\vec{E} \times \dot{\vec{E}}) + \gamma_{M1M1} \vec{\sigma} \cdot (\vec{B} \times \dot{\vec{B}}) \right] + \omega^3 \left[\gamma_{E1E1} \vec{\sigma} \cdot (\vec{E} \times \dot{\vec{E}}) + \gamma_{M1M1} \vec{\sigma} \cdot (\vec{B} \times \dot{\vec{B}}) \right] + \mathcal{O}(\omega^3) \right\}$ $-2\gamma_{M1E2} \sigma_i B_j E_{ij} + 2\gamma_{E1M2} \sigma_i E_j B_{ij} + \mathcal{O}(\omega^3) \right\}$ spin-dependent dipole dipole-quadrupole

RCS Polarizabilities

Measure of the strength of induced polarizations: 2 scalar polarizabilities + 4 spin polarizabilities

RCS Polarizabilities

Measure of the strength of induced polarizations: 2 scalar polarizabilities + 4 spin polarizabilities

 $\vec{D}_E \sim \alpha_{\rm E1} \vec{E}$

Unlike atoms, it is not proportional to volume

 $V \sim \langle r_p \rangle^3 \approx 0.6 \, {\rm fm}^3$ $\alpha_{\rm E1} \approx 10^{-4} \, V_p$

much ``stiffer" than hydrogen!

RCS Polarizabilities

Measure of the strength of induced polarizations: 2 scalar polarizabilities + 4 spin polarizabilities

Dispersion Relations at fixed t

 $A_i(\nu, t)$:6 analytical functions in the complex ν plane, with cuts and poles on the real axis $\nu = E_{\gamma} + \frac{t}{4M}$ Im $\nu \uparrow$ • $\nu + i\epsilon$ Re ν $-\nu_{\rm B}$ $\nu_{\rm B}$ • Cauchy integral formula $A_i(\nu, t, Q^2) = \oint_C \mathrm{d}\nu' \frac{A_i(\nu', t, Q^2)}{\nu' - \nu}$

• Crossing symmetry and analyticity

$$A_i(\nu, t, Q^2) = A_i(-\nu, t, Q^2) \qquad \qquad A_i(\nu^*, t, Q^2) = A_i^*(\nu, t, Q^2)$$

Drechsel, B.P., Vanderhaeghen, Phys. Rept. 378 (2003); B.P., Vanderhaeghen, Ann. Rev. Nucl. Part. Sci. 68 (2018)

Dispersion Relations at fixed t

 $A_i(\nu, t)$:6 analytical functions in the complex ν plane, with cuts and poles on the real axis $\nu = E_{\gamma} + \frac{t}{4M}$ Im $\nu \uparrow$ R ∞ R • $\nu + i\epsilon$ Re ν $-\nu_{\rm B}$ $\nu_{\rm B}$ • Cauchy integral formula $A_i(\nu, t, Q^2) = \oint_C \mathrm{d}\nu' \frac{A_i(\nu', t, Q^2)}{\nu' - \nu}$ Crossing symmetry and analyticity

 $A_i(\nu, t, Q^2) = A_i(-\nu, t, Q^2) \qquad A_i(\nu^*, t, Q^2) = A_i^*(\nu, t, Q^2)$

Drechsel, B.P., Vanderhaeghen, Phys. Rept. 378 (2003); B.P., Vanderhaeghen, Ann. Rev. Nucl. Part. Sci. 68 (2018)

UNsubtracted Dispersion Relations

Re
$$A_i^{\text{NB}}(\nu, t) = \frac{2}{\pi} P \int_{\nu_{thr}}^{\infty} \text{Im}_s A_i(\nu', t) \frac{\nu' d\nu'}{\nu'^2 - \nu^2}$$

non-convergent integrals

SUBtracted Dispersion Relations

$$\operatorname{Re} A_{i}^{\operatorname{NB}}(\nu, t) = A_{i}^{\operatorname{NB}}(0, t) + \frac{2}{\pi}\nu^{2}\operatorname{P} \int_{\nu_{thr}}^{\infty} \operatorname{Im}_{s} A_{i}(\nu', t) \frac{d\nu'}{\nu'(\nu'^{2} - \nu^{2})}$$

subtraction at $\nu = 0$

 $A_i^{\text{NB}}(0,t) = A_i^{\text{NB}}(0,0) + \text{t-channel SUBtracted dispersion integrals}$ subtraction at t = 0

Subtracted Dispersion Relations

 $A_i(\nu, t) = A_i^s(\nu, 0) + A_i^t(0, t) + A_i(0, 0)$

• $A_i^s(\nu, 0)$ \longrightarrow subtracted dispersion relations in the s-channel

MAID, Drechsel, Kamalov, Tiator, EPJA34 (2007)

• $A_i^t(0,t) \longrightarrow$ subtracted dispersion relations in the t-channel $\gamma \gamma \rightarrow NN$

• $A_i(0,0)$ \longrightarrow polarizabilities: free parameters fitted to data

Gorchtein, Drechsel, B.P., Vanderhaeghen, PRC61 (1999); B.P., Vanderhaeghen, Ann. Rev. Nucl. Part. Sci. 68 (2018)

Constraints on the RCS polarizabilities

 $\begin{aligned} & \text{Baldin sum rule} \\ & \alpha_{E1} + \beta_{M1} = \frac{1}{2\pi^2} \int_{\nu_{thr}}^{\infty} \frac{\sigma_{1/2} + \sigma_{3/2}}{\nu^2} d\nu \\ & \alpha_{E1} + \beta_{M1} = (13.8 \pm 0.4) \times 10^{-4} \text{ fm}^3 \\ & \text{A1 Coll. (MAMI), EPJA10 (2011)} \end{aligned}$

$$\gamma_{0} = \frac{1}{4\pi^{2}} \int_{\nu_{thr}}^{\infty} \frac{\sigma_{1/2} - \sigma_{3/2}}{\nu^{3}} d\nu$$

 $\gamma_0 = -\gamma_{E1E1} - \gamma_{M1M1} - \gamma_{E1M2} - \gamma_{M1E2}$

$$\gamma_0 = (-1.01 \pm 0.08) \times 10^{-4} \, \text{fm}^4$$

BP, Pedroni, Drechsel, PLB687 (2010)

RCS fit below pion-production threshold

BP, Pedroni, Sconfietti, JPG 42 (2019)

Status of RCS scalar polarizabilities

PDG2018: $\alpha_{E1} = 11.2 \pm 0.4$ $\beta_{M1} = 2.5 \pm 0.4$

Baldin sum rule: $\alpha_{E1} + \beta_{M1} = 13.8 \pm 0.4$

New extraction with Subtracted Dispersion Relations:

 $\alpha_{\rm E1} = 12.03^{+0.48}_{-0.54} \qquad \qquad \beta_{\rm M1} = 1.77^{+0.52}_{-0.54}$

BP, Pedroni, Sconfietti, JPG 42 (2019) and to appear in PDG 2021

Status of RCS scalar polarizabilities

PDG2018: $\alpha_{E1} = 11.2 \pm 0.4$ $\beta_{M1} = 2.5 \pm 0.4$

Baldin sum rule: $\alpha_{E1} + \beta_{M1} = 13.8 \pm 0.4$

New extraction with Subtracted Dispersion Relations:

 $\alpha_{\rm E1} = 12.03^{+0.48}_{-0.54} \qquad \qquad \beta_{\rm M1} = 1.77^{+0.52}_{-0.54}$

BP, Pedroni, Sconfietti, JPG 42 (2019) and to appear in PDG 2021

DRs used also for the first extraction of spin pol.: A2 Coll. (MAMI), PRC102 (2020); PRL114 (2015)

New data for scalar pol. from MAMI: A2 Coll. (MAMI), to appear in 2021 (PhD Thesis E. Mornacchi)

Virtual scattering at threshold can be interpreted as electron scattering by a target which is in constant electric and magnetic fields

Mandelstam Plane for VCS at fixed Q²

Status of VCS scalar polarizabilities

Status of VCS scalar polarizabilities

Spatial density of induced polarizations

Frame with fast moving proton in the longitudinal direction and $Q^2 = q_{\perp}^2$

 $\vec{q}_{\perp} \xleftarrow{FT} \vec{b}_{\perp}$ true probabilistic interpretation!

$$\vec{E} \sim iq'^{0}\vec{\epsilon}'_{\perp}$$
 quasi-static electric field $\longrightarrow \vec{P}$ induced polarization depending on scalar and spin GPs

Gorchtein, Lorcé, BP, Vanderhaeghen, PRL104 (2010) 112001

DVCS at leading twist

Form Factors of Energy Momentum Tensor

$$\langle p | T_{\mu\nu}^{Q,G} | p' \rangle = \bar{u}(p') \left[\frac{M_2^{Q,G}(t)}{M_2} \frac{P_{\mu}P_{\nu}}{M_N} + J^{Q,G}(t) \frac{i(P_{\mu}\sigma_{\nu\rho} + P_{\nu}\sigma_{\mu\rho})\Delta^{\rho}}{2M_N} + d_1^{Q,G}(t) \frac{\Delta_{\mu}\Delta_{\nu} - g_{\mu\nu}\Delta^2}{5M_N} \pm \bar{c}(t)g_{\mu\nu} \right] u(p)$$

Relation with second-moments of GPDs:

$$\sum_{q} \int \mathrm{d}x \, x \, H^{q}(x,\xi,t) = M_{2}^{Q}(t) + \frac{4}{5} \, d_{1}^{Q}(t)\xi^{2}$$

$$\sum_{q} \int \mathrm{d}x \, x \, E^{q}(x,\xi,t) = 2J^{Q}(t) - M_{2}^{Q}(t) - \frac{4}{5} \, d_{1}^{Q}(t)\xi^{2}$$

"Charges" of the EMT Form Factors at t=0

- $M_2(0)$ nucleon momentum carried by parton
- J(0) angular momentum of partons

$$d_1(0)$$
 D-term ("stability" of the nucleon)

Form Factors of Energy Momentum Tensor

Fourier transform in coordinate space

$$T_{ij}^{Q}(\vec{r}) = s(\vec{r}) \begin{pmatrix} r_{i}r_{j} \\ r^{2} \end{pmatrix} - \frac{1}{3}\delta_{ij} \end{pmatrix} + p(\vec{r}) \delta_{ij}$$

shear forces pressure
$$\downarrow$$
$$d_{1}^{Q}(0) = 5\pi M_{N} \int_{0}^{\infty} \mathrm{d}r \, r^{4} \, p(r)$$

M. Polyakov, PLB 555 (2003) 57

• s-channel subtracted DRs:

$$\operatorname{Re} A_2(\nu, t, Q^2) = \Delta(t, Q^2) + \frac{2}{\pi} \nu^2 \mathcal{P} \int_{\nu_0}^{\infty} \operatorname{Im} A_2(\nu', t, Q^2) \frac{\mathrm{d}\nu'}{\nu'(\nu'^2 - \nu^2)}$$

• s-channel subtracted DRs:

$$\operatorname{Re} A_2(\nu, t, Q^2) = \Delta(t, Q^2) + \frac{2}{\pi} \nu^2 \mathcal{P} \int_{\nu_0}^{\infty} \operatorname{Im} A_2(\nu', t, Q^2) \frac{\mathrm{d}\nu'}{\nu'(\nu'^2 - \nu^2)}$$

• t-channel DRs for subtraction function

$$\Delta(t,Q^2) = -\frac{4}{N_f} D(t,Q^2) = \frac{1}{\pi} \int_{4m_\pi^2}^{\infty} dt' \frac{\operatorname{Im}_t A_2(0,t',Q^2)}{t'-t} + \frac{1}{\pi} \int_{-\infty}^{-a} dt' \frac{\operatorname{Im}_t A_2(0,t',Q^2)}{t'-t} + \frac{1}{\pi} \int_{-\infty$$

• s-channel subtracted DRs:

$$\operatorname{Re} A_2(\nu, t, Q^2) = \Delta(t, Q^2) + \frac{2}{\pi} \nu^2 \mathcal{P} \int_{\nu_0}^{\infty} \operatorname{Im} A_2(\nu', t, Q^2) \frac{\mathrm{d}\nu'}{\nu'(\nu'^2 - \nu^2)}$$

• t-channel DRs for subtraction function

• s-channel subtracted DRs:

$$\operatorname{Re} A_2(\nu, t, Q^2) = \Delta(t, Q^2) + \frac{2}{\pi} \nu^2 \mathcal{P} \int_{\nu_0}^{\infty} \operatorname{Im} A_2(\nu', t, Q^2) \frac{\mathrm{d}\nu'}{\nu'(\nu'^2 - \nu^2)}$$

• t-channel DRs for subtraction function

$$\Delta(t,Q^2) = -\frac{4}{N_f} D(t,Q^2) = \frac{1}{\pi} \int_{4m_\pi^2}^{\infty} dt' \frac{\operatorname{Im}_t A_2(0,t',Q^2)}{t'-t} + \frac{1}{\pi} \int_{-\infty}^{-a} dt' \frac{\operatorname{Im}_t A_2(0,t',Q^2)}{t'-t}$$

Unitarity relation in t-channel

Unitarity Relations in the t-channel

- Charge conjugation
- Partial wave expansion with $\nu = 0 \rightarrow \theta_t = 90^o$

two-pion intermediate state with I = 0 $J = 0, 2, \cdots$

Two-pion intermediate states with I = 0 and J = 0, 2

$$D(t) = \sum_{\{n \text{ odd}\}} d_n(t) \longrightarrow \text{DRs for } d_1(t)$$

• $\pi\pi \to N\bar{N}$: analytical continuation of s-channel partial-wave helicity amplitudes

 \rightarrow input $\pi\pi$ phase-shifts

DR Results for D-term Form Factor

BP, Polyakov, Vanderhaeghen, PLB 739 (2014) 133

D(t) form factor from data

Girod, Elouadrhiri,Burkert, Nature 557 (2018) 7705 and arXiv: 2104.02031; CLAS 6GeV data

D(t) form factor from data

Girod, Elouadrhiri,Burkert, Nature 557 (2018) 7705 and arXiv: 2104.02031; CLAS 6GeV data

D(t) form factor from data

r (fm)

Necessary to verify model assumptions in the exp extraction with more data coming from JLab, COMPASS and the future EIC, EICC

Kumericki, Nature 570 (2019) 7759; Dutriex et al, arXiv: 2101.03855

Dispersion Relations for Compton Scattering

use available information from other channels to constrain nucleon e.m. structure with a minimum of model dependence

Future of Compton Scattering

• Improve accuracy in the extraction of the RCS polarizabilities

- Constrain the Q² dependence of the generalized polarizabilities
 - → ongoing analysis of VCS data from JLab

- Big impact on GPD studies from JLab12, COMPASS, and future EIC
- New results for the VVCS polarizabilities from JLab
 - → challenge for the theoretical interpretation

Backup Slides

Convergence of DRs

D-term Form Factor: t-dependence

B. Pasquini, M. Polyakov, M. Vanderhaeghen, PLB739 (2014) 133

DR Results for D-term Form Factor

B. Pasquini, M. Polyakov, M. Vanderhaeghen, PLB739 (2014) 133

VVCS Polarizabilities

$$\delta_{LT}(Q^2) = \frac{1}{2\pi^2} \int_{\nu_{thr}}^{\infty} \frac{K(\nu, Q^2)}{\nu} \frac{\sigma_{LT}(\nu, Q^2)}{Q\nu} d\nu$$

$$= \frac{e^2 4M^2}{\pi Q^6} \int_0^{x_0} x^2 [g_1(x,Q^2) + g_2(x,Q^2)] \mathrm{d}x$$

VVCS Polarizabilities

$$\gamma_0(Q^2) = \frac{1}{2\pi^2} \int_{\nu_{thr}}^{\infty} \frac{K(\nu, Q^2)}{\nu} \frac{\sigma_{TT}(\nu, Q^2)}{\nu^3} d\nu$$

$$= \frac{e^2 4M^2}{\pi Q^6} \int_0^{x_0} x^2 [g_1(x, Q^2) - \frac{4M^2}{Q^2} x^2 g_2(x, Q^2)] \mathrm{d}x$$

